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Abstract

In the first part of this paper we give an introduction to the con-
traction method for the analysis of additive recursive sequences of
divide and conquer type. Recently some general limit theorems have
been obtained by this method based on a general transfer theorem.
This allows to conclude from the recursive structure and the asymp-
totics of first moment(s) the limiting distribution. In the second part
we extend the contraction method to max-recursive sequences. We ob-
tain a general existence and uniqueness result for solutions of stochas-
tic equations including maxima and sum terms. We finally derive a
general limit theorem for max-recursive sequences of the divide and
conquer type.

Keywords: Analysis of algorithms, parallel algorithms, limit laws, re-
currence, probability metric, limit law for maxima.

1 Introduction to the contraction method

The analysis of algorithms is a rapidly expanding area of analysis. Since the
introduction of the average case analysis in Knuth (1973) there have been
developed several approaches to limit laws for various parameters of recur-
sive algorithms, random trees and combinatorial structures. The contraction
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2 Analysis of algorithms by the contraction method

method is a probabilistic technique of analysis with a broad range of applica-
tions which supplements the analytic techniques (generating functions) and
the other probabilistic techniques like martingales or branching processes.
The contraction technique was first introduced for the analysis of Quicksort
in Rösler (1991) and further on developed independently in Rösler (1992)
and Rachev and Rüschendorf (1995), as well as in Neininger and Rüschendorf
(2003a, 2003b), see also the survey article Rösler and Rüschendorf (2001). It
has been successfully applied to a broad range of algorithms (see Neininger
(1999, 2001), Rösler (2001), Hwang and Neininger (2002), and Neininger and
Rüschendorf (2003a)).

The idea of the contraction method is to reduce the analysis of an algo-
rithm to the study of contraction properties of transformations associated
to the algorithm, and then to use some variant of the Banach fixed point
theorem. We explain some general aspects of this method at the example of
the Quicksort algorithm.

Let Ln denote the number of comparisons of the Quicksort algorithm to
sort n randomly permuted real numbers, see, e.g. Mahmoud (2000). Then

`n = ELn = 2n log n + (2γ − 4)n + O(ln n), (1.1)

γ the Euler constant

and σ2
n = Var(Ln) =

(
7− 2π2

3

)
n2 + O(n ln n). (1.2)

Régnier (1989) established that Zn = Ln−`n

n+1
is a L2-bounded martingale and,

therefore, a.s. convergence to some rv’s Z holds:

Zn → Z a.s. (1.3)

In order to determine the distribution of Z it is useful to consider the recur-
sive structure of Ln. By an obvious simple argument we have

Ln
d
= LIn + L̄n−1−In + n− 1, (1.4)

where L̄k are independent copies of Lk, In is uniformly distributed on {0, . . . ,
n−1} and independent of (Lk), (Ik). In is the size of the subgroup which
is smaller than the first pivot element chosen by the Quicksort algorithm.
After normalization, Yn = Ln−`n

n
satisfies the recursion

Yn
d
=

In

n
YIn +

n− 1− In

n
Ȳn−1−In + cn(In), (1.5)

with cn(j) =
n− 1

n
+

1

n
(`j + `n−1−j − `n),

where (Ȳn) is a distributional copy of (Yn). With c(x) := 2x log x + 2(1 −
x) log(1− x) + 1 it is easy to see that: supx∈(0,1] |cn([nx])− c(x)| ≤ 4

n
log n +

O
(

1
n

)
. Choosing w.l.g. some version of In such that

In

n
→ τ a.s., (1.6)
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where τ is uniformly distributed on [0, 1] we obtain from (1.3), (1.5) that the
limit Y of Yn exists a.s. and satisfies the limit equation:

Y
d
= τY + (1− τ)Ȳ + c(τ). (1.7)

There exists exactly one solution of the limiting equation (1.7) in the class
M2(0) of probability measures on R with mean zero and with finite variance.
To that purpose we define the transformation T : M2(0) →M2(0) by

T (P ) = L(τY + (1− τ)Ȳ + c(τ)) (1.8)

if P = L(Y ). The operator T is closely related to the Quicksort algorithm.
It is an asymptotic approximation of the recursion operator in (1.5). T is
a contraction operator w.r.t. the minimal `2-metric defined for probability
measures P , Q by

`2(P,Q) = inf
{(

E(X − Y )2
)1/2 ; X

d
= P, Y

d
= Q

}
; (1.9)

`2(TP, TQ) ≤
√

2
3
`2(P, Q). (1.10)

For the proof of (1.10) let Xi
d
= P , Yi

d
= Q, i = 1, 2 be i.i.d. copies of P , Q

such that E(Xi − Yi)
2 = `2

2(P, Q). Then

`2
2(TP, TQ) ≤ E(τX1 + (1− τ)X2 + c(τ)− [τY1 + (1− τ)Y2 + c(τ)])2

= E[τ 2(X1 − Y1)
2 + (1− τ)2(X2 − Y2)

2]

= 2Eτ 2`2
2(P, Q) = 2

3
`2
2(P, Q). (1.11)

Thus by Banach’s fixed point theorem the limiting equation (1.7) has a
unique solution in M2(0). The uniqueness of the solution of the limiting
equation (1.7) implies that Yn converges in distribution to Y

Yn
D−→ Y, (1.12)

where Y is the unique solution of the limiting fixed point equation (1.7)
which is called the Quicksort-distribution.

The contraction method allows to extend this type of convergence ar-
gument to a general class of recursive algorithms. It simultaneously also
allows to prove the essential convergence step (1.3) in the argument above
without reference to a martingale argument as above. This is of considerable
importance since a related martingale structure has been found only in few
examples of recursive algorithms.

In section two of this paper we review some recent developments of the
contraction method for additive recursive sequences of divide and conquer
type. In the final part of the paper we develop some new tools which are
basic for an extension of the contraction method to recursive sequences of
divide and conquer type which are based on maxima (like parallel search
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algorithms). Similar as the additive recursive algorithms are ‘relatives’ of
the classical central limit theorem for sums the max-based recursive algo-
rithms can be considered as relatives of the classical central limit theorem
for maxima.

2 Limit theorem for divide and conquer al-

gorithms

In the recent paper Neininger and Rüschendorf (2003a) a general limit theo-
rem has been derived for recursive algorithms and combinatorial structures
by means of the contraction method. In comparison to the introductory
example in section 1 the main progress in that paper is a general transfer
theorem which allows to establish a limit law on the basis of the recursive
structure and using the asymptotics of the first moment(s) of the sequence.
Thus the strong information by the martingale structure can be replaced by
the information on first moment(s). For a lot of examples of algorithms this
information on moments is available by highly developed analytical methods.

A common type of univariate recursions (Yn) of the divide and conquer
type is of the following form:

Yn
d
=

K∑
r=1

Y
(r)

I
(n)
r

+ bn, n ≥ n0 (2.1)

with (Y
(1)
n ), . . . , (Y

(K)
n ), (I(n), bn) independent Y

(r)
j

d
= Yj, P (I

(n)
r = n) → 0

and Var(Yn) > 0 for n ≥ n1. I
(n)
r describe subgroup sizes of the divide and

conquer algorithm and bn is a toll function for the splitting into and merging
of K smaller problems.

The analysis of the asymptotics of (Yn) is based on the Zolotarev metric
ζs on M the set of all probability measures on R1 defined by (see Zolotarev
(1997))

ζs(P, Q) = sup
f∈Fs

|Ef(X)− Ef(Y )|, (2.2)

where L(X) = P , L(Y ) = Q, and Fs = {f ∈ C(m)(R); ‖f (m)(x)−f (m)(y)‖ ≤
|x− y|α} with s = m + α, 0 < α ≤ 1,m ∈ N0. Finiteness of ζs(L(X),L(Y ))
is guaranteed if X, Y have identical moments of orders 1, . . . , m and finite
absolute moments of order s. Since ζs is of main interest for s ≤ 3, we
introduce the following subspaces of Ms – the set of measures with finite
s-th moments – to obtain finiteness of ζs. Define Ms(µ)(Ms(µ, σ2)) for
1 < s ≤ 2 (2 < s ≤ 3) to be the elements in Ms with fixed first moment
µ (resp. also fixed variance σ2) and define M∗

s to be identical to Ms for
0 < s ≤ 1, to Ms(µ) for 1 < s ≤ 2 and to Ms(µ, σ2) for 2 < s ≤ 3, where
µ, σ2 are fixed in the context.
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An important property of ζs for the contraction method is that

ζs(X + Z, Y + Z) ≤ ζs(X, Y ) and ζs(cX, cY ) = |c|sζs(X,Y ) (2.3)

for all Z independent of X,Y and c ∈ R\{0}, whenever these distances are
finite. ζs convergence implies weak convergence.

For the limiting analysis of Yn we need a stabilization condition for the
recursive structure and a contraction condition for the limiting fixed-point
equation; in more detail: Assume for functions f, g : N0 → R+

0 with g(n) > 0
for n ≥ n1 we have the following stabilization condition in Ls

(
g(I

(n)
r )

g(n)

)1/2

→ A∗
r, r = 1, . . . , K and

1

g
1/2(n)

(
bn − f(n) +

K∑
r=1

f(I(n)
r )

)
→ b∗,

(2.4)

as well as the contraction condition

E

K∑
r=1

|A∗
r|s < 1. (2.5)

Then the following limit theorem is obtained by the contraction method (see
Neininger and Rüschendorf (2003a, Theorem 5.1)).

Theorem 2.1 Let (Yn) be s-integrable and satisfy the recursive equation
(2.1) and let f , g satisfy the stabilization condition (2.4) and the contraction
condition (2.5) for some 0 < s ≤ 3. Furthermore, in case 1 < s ≤ 3 assume
the moment convergence condition

EYn = f(n) + o(g
1/2(n)) if 1 < s ≤ 2 and

EYn = f(n) + o(g
1/2(n)), Var(Yn) = g(n) + o(g(n)) if 2 < s ≤ 3. (2.6)

Then
Yn − f(n)

g
1/2(n)

D→ X, where X is the unique fixed-point of

X
d
=

K∑
r=1

A∗
rX

(r) + b∗ (2.7)

in M∗
s (with µ = 0, σ2 = 1), where (A∗

1, . . . , A
∗
K , b∗), X(1), . . . , X(K) are

independent, X(r) d
= X.

Remark 2.2 a) For the proof of Theorem 2.1 one gets from the moment
convergence condition (2.6) and the stabilization condition (2.4) the form
of the limiting equation (2.7). The existence of a unique fixed point of
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(2.7) follows from the contraction condition (2.5) by Banach’s fixed point
theorem. From the regularity properties of ζs in (2.3) we can argue that
the contraction property in the limiting equation can be carried over to
the recursive sequence.

b) Note that in the case that the conditions are satisfied for 0 < s ≤ 1 we do
not need any information on the asymptotics of moments; for 1 < s ≤ 2
the asymptotics of the first moment is needed. The case 0 < s ≤ 1 arises
for example for limit equations of the form

X
d
= 1√

2
X + 1√

2
N (0, 1), (2.8)

with the standard normal distribution as unique solution, or of the form

W
d
= UW + U, (2.9)

U uniformly distributed on (0, 1), with the Dickman distribution as unique
solution. The Dickman distribution arises e.g. as a limit in the context of
the Find algorithm. For normal limits, besides (2.8), the case 2 < s ≤ 3
is typical. Then typically the minimal `p-metrics (see (3.7)) cannot be
used directly to derive normal limit laws directly.

c) If the contraction method applies for s = 1 then Theorem 2.1 applied
with ζ1 yields the asymptotics of the first order moment. If it applies for
s = 2, then one needs asymptotics of the first moment and obtains the
asymptotics of the second moment.

d) A large class of examples for the application of Theorem 2.1 to the
asymptotics of recursive algorithms has been established. Note that there
are also several variants of this basic theorem (to the multivariate case,
weighted recursions, random number of components, alternative contrac-
tion conditions, degenerative limits, . . . ). In particular one gets a clas-
sification of algorithms according to their contraction behavior. To get
an impression of the range of application we give a list of established
examples (without giving detailed references):

1) Ms, 0 < s ≤ 1. Examples contain: FIND comparisons, number of ex-
change steps, Dickman, Multiple Quickselect, Bucket selection, Quick-
sort with error (number of inversions), leader election (flips), skip lists
(size), ideals in forest poset, distances in random binary search trees
(rBST), minimum spanning trees in rBST, random split tree (large
toll).

2) Ms(µ), 1 < s ≤ 2. Quicksort (comparisons, exchanges), internal
path length in quad trees, m-ary search trees, median search trees and
recursive trees, Wiener index in rBST and recursive trees. Yaglom’s
exponential limit law, random split trees for moderate toll.
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3) Ms(µ, σ2), 2 < s ≤ 3. Quicksort (rec. calls), patterns in trees, size in
m-ary search trees, size and path length in tries, digital search trees,
and Patricia trees, merge sort (comparisons top-down version), ver-
tices with outdegrees in recursive trees, random split trees with small
toll.

For these and related examples see Neininger and Rüschendorf (2003a),
Hwang and Neininger (2002), and Neininger (1999, 2001).

e) In Neininger and Rüschendorf (2003a) it has been shown that one can
derive from the convergence results in the Zolotarev metric several local
and global limit theorems. It is also possible to obtain rate of convergence
results. In Neininger and Rüschendorf (2002) it is shown that the con-
vergence rate of the Quicksort algorithm is w.r.t. the Zolotarev metric ζ3

of the exact order ln n
n

.

3 Contraction and fixed point properties

with maxima

In this section we extend the analysis of algorithms defined via sums as
in (2.1) to recursive algorithms including maximum and sum terms. The
analysis in section 2 based on the Zolotarev metric ζs would go through in
this case if one could find a metric µs which is not only regular of order s
for sums as in (2.3) but also simultaneously for maxima too, i.e.

µs(X ∨ Z, Y ∨ Z) ≤ µs(X, Y ) and

µs(cX, cY ) = |c|sµs(X, Y ).
(3.1)

It was however shown in Rachev and Rüschendorf (1992) that only trivial
metrics may have this doubly ideal property.

For the central limit theorem for maxima the weighted Kolmogorov met-
ric %s, defined by

%s(X,Y ) = sup
x
|x|s|FX(x)− FY (x)| (3.2)

is max-regular of order s for real rv’s X, Y , i.e. it satisfies (3.1) and has been
used for deriving limit theorems. But for recursions including also additive
terms %s is not particular well suited (see Rachev and Rüschendorf (1995)
and Cramer (1997)).

Limiting distributions of max-recursive sequences will typically be iden-
tified as unique solutions in some subclass of M of stochastic equations of
the form:

X
d
=

K∨
r=1

(ArXr + br), (3.3)
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where (Xr) are i.i.d. copies of X and (Ar, br)1≤r≤K are random coefficients
independent of (Xr). The right hand side of (3.3) induces an operator T :

M→M defined for Q ∈M and X
d
= Q by

TQ = TX
d
= L

(
K∨

r=1

(ArXr + br)

)
. (3.4)

If Ar, br have absolute s-th moments and L(X) ∈ Ms then also TX has
absolute s-th moments. So T can be considered as operator Ms → Ms in
this case.

We next establish that the minimal `s-metric is well suited for the analysis
of equations as in (3.3) although it is not doubly ideal of order s. We need
the following simple lemma.

Lemma 3.1 For all a, b, c, d ∈ R and s > 0 holds true:

|a ∨ b− c ∨ d|s ≤ |a− c|s + |b− d|s. (3.5)

Proof: W.l.g. we assume that b < a, i.e., a ∨ b = a and c < d; otherwise we
would have c ∨ d = c and so the left hand side of (3.5) is |a − c|s while the
right hand side is |a− c|s + |b− d|s.

Furthermore, by symmetry we assume w.l.g. a < d. Then the left hand
side of (3.5) is |a − d|s. Noting that |a − d|s ≤ |b − d|s since b < a < d the
result follows. 2

Define as usual the Ls-norm by

Ls(X, Y ) =

{
(E|X − Y |s)1/s, 1 ≤ s < ∞
E|X − Y |s, 0 < s < 1

(3.6)

and the minimal Ls-metric `s by

`s(P, Q) = inf{Ls(X,Y ); X
d
= P, Y

d
= Q}. (3.7)

Then we obtain the following contraction property of T .

Proposition 3.2 If (Xr) are i.i.d., Xr
d
= X1, (Yr) are i.i.d., Yr

d
= Y1 and

Ar s-integrable, 1 ≤ r ≤ K, then for 0 < s < ∞

a) Ls

(
K∨

r=1

(ArXr + br),
K∨

r=1

(ArYr + br)

)

≤
(

E

K∑
r=1

|Ar|s
)1/s∧1

Ls(X1, Y1). (3.8)
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b) For the operator T defined in (3.4) holds

`s(TP, TQ) ≤
(

E

K∑
r=1

|Ar|s
)1/s∧1

`s(P,Q). (3.9)

Proof:

a) Consider the case 1 ≤ s. Then from induction we get by Lemma 3.1

Ls
s

(
K∨

r=1

(ArXr + br),
K∨

r=1

(ArYr + br)

)

= E

∣∣∣∣∣
K∨

r=1

(ArXr + br)−
K∨

r=1

(ArYr + br)

∣∣∣∣∣

s

≤
K∑

r=1

E|Ar(Xr − Yr)|s

=
K∑

r=1

E|Ar|sLs
s(X1, Y1).

The case 0 < s < 1 is similar.

b) Choose (Xr) i.i.d., Xr
d
= P and (Yr) i.i.d., Yr

d
= Q such that Ls(Xr, Yr) =

`s(P,Q), 1 ≤ r ≤ K. Then

`s(TP, TQ) ≤ Ls

(
K∨

r=1

(ArXr + br),
K∨

r=1

(ArXr + br)

)

≤
(

K∑
r=1

E|Ar|s
)1/s∧1

Ls(X1, Y1)

=

(
K∑

r=1

E|Ar|s
)1/s∧1

`s(P,Q).

2

Remark 3.3 Note that inequality (3.8) holds more generally without any
independence assumption on (Xr, Yr) and thus may be used to analyze a more
general class of stochastic equations. The br do not enter the contraction
estimate in (3.8), (3.9).

As a consequence we next obtain an existence and uniqueness result for the
stochastic equation (3.3). For µ0 ∈M define

Ms(µ0) = {µ ∈M; `s(µ, µ0) < ∞}, (3.10)

the equivalence class of µ0 w.r.t. `s. If µ0 ∈Ms, then Ms(µ0) = Ms.
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Theorem 3.4 Let for some s > 0 the coefficients Ar, br be s-integrable and
µ0 ∈ M such that ζ = E

∑K
r=1 |Ar|s < 1 and `s(µ0, Tµ0) < ∞. Then the

stochastic equation X
d
=

∨K
r=1(ArXr + br) has a unique solution in Ms(µ0).

Proof: Define for n ≥ 1, µn = Tµn−1 = T nµ0. Note that, by induction,
`s(µ0, Tµ0) < ∞ implies `s(µn, Tµn+p) < ∞ for all n ≥ 0, p ≥ 1. Then by
Proposition 3.2 using the triangle inequality for `s we obtain

`s(µn, µn+p) ≤
p−1∑
i=0

`s(µn+i, µn+i+1)

≤ `s(µ0, µ1)

p−1∑
i=0

ζn+i ≤ `s(µ0, µ1)
ζn

1− ζ

→ 0 as `s(µ0, µ1) < ∞.

Therefore, (µn) is a Cauchy-sequence in the complete metric space (Ms(µ0),
`s). Any limiting point is a fixed point of T by Banach’s fixed point
theorem. For the uniqueness let µ, ν ∈ Ms(µ0) be fixed points of T . Then

`s(Tµ, Tν) ≤ ζ
1/s∧1`s(µ, ν) and thus `s(µ, ν) = 0 and µ = ν. 2

Remark 3.5 a) Jagers and Rösler (2002) recently obtained a general exis-

tence result for equations of the form X
d
= ∨rArXr by relating them to

solutions of the additive form W
d
=

∑
r Aα

r Wr. This additive equation has
been well studied.

b) If µ0 ∈ Ms then the condition `s(µ0, Tµ0) < ∞ is fulfilled. So under
the contraction condition ζ < 1 there exists a unique fixed point of T in
Ms. But there may be further fixed points not in Ms but in some Ms(µ0)
without finite absolute moments of order s. So, for example the stochastic
equation

X
d
= 1

2
X1 ∨ 1

2
X2

has the (trivial) solution X = 0 which is in Ms. The contraction factor
is ζ = (1

2
)s−1 w.r.t. `s which is smaller than 1 for any s > 1. The

extreme value distribution with distribution function F (x) = e−x−1
, x ≥ 0

is a further (nontrivial) fixed point of this equation without finite first
moment. In fact a basic result of extreme value theory says that any
nondegenerate max-stable distribution is one of the three classical types
of extreme value distributions (Gumbel, Weibull, Fréchet). Recall that a
distribution function G is called max-stable if for all n ∈ N there exist
an > 0, bn ∈ R such that Gn( x

an
+ bn) = G(x), x ∈ R i.e., a random

variable X
d
= G satisfies the stochastic equations of the form

X
d
=

n∨
r=1

(anXr − bn), n ∈ N. (3.11)
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This characterization yields uniqueness without any moment considera-
tions but uses a system of stochastic equations instead of only one equation
as above.

c) Central limit theorem. As consequence of Propositions 3.2 and Theorem
3.4 one gets an easy proof of the central limit theorem for maxima. (For a
general discussion of this topic see Zolotarev (1997) and Rachev (1991)).

Let F (x) = FY1(x) = e−x−α
, x ≥ 0, be an extreme value distribution of

first type and let (Xr) be an i.i.d. sequence with tail condition `s(X1, Y1) <
∞ for some s > α. Then for the maxima sequence Mn := max{X1, . . . ,
Xn} holds:

`s(n
−1/αMn, Y1) → 0. (3.12)

For the proof note that Y1 is a solution of the stochastic equation

Y1
d
= n−1/α

n∨
r=1

Yr. (3.13)

This implies by Proposition 3.2

`s(n
−1/αMn, Y1) = `s

(
n−1/αMn, n

−1/α

n∨
r=1

Yr

)

≤ (n · n−s/α)
1/s∧1`s(X1, Y1)

= (n1−s/α)
1/s∧1`s(X1, Y1) → 0 as s > α.

For s →∞ the rate approaches the optimal rate n−1/α.

d) Transformation of the fixed point equation. The fixed point equation

X
d
=

K∨
r=1

(ArXr + br) (3.14)

can be transformed in various ways. Let, e.g., Y = exp(λX), then (3.14)
transforms to

Y =
K∨

r=1

eλbrY Ar
r , (3.15)

in particular, for Ar = 1, λ = 1,

Y =
K∨

r=1

ebrYr. (3.16)
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For Z = Y (α) = |X|α sgn(X) and W = 1
X(α) (3.14) transforms similarly

to further equivalent forms, in particular in the case br = b. In this
way all possible extreme value distributions can be reduced to the case of
extreme value distributions of type 1 considered in Remark 3.5a (see also
Zolotarev (1997)). Consider as example the stochastic equation:

X
d
=

2∨
r=1

(Xr − ln 2). (3.17)

This equation cannot be directly handled w.r.t. the `s-metric. Using Y =
exp(X) equation (3.17) transforms to

Y
d
= 1

2
Y1 ∨ 1

2
Y2. (3.18)

A solution is the extreme value distribution F (x) = e−x−1
, x ≥ 0. The

operator T corresponding to (3.18) has contraction factor ζ = (1
2
)s−1 with

respect to `s. So for any s > 1 F is a unique fixed point in Ms(F ) and the
central limit theorem holds for (Zr) with tail condition `s(Zr, Y ) < ∞, i.e.,

(1/n1/α) ∨n
r=1 Zr

d→ Y , where Y
d
= F equivalently ∨n

r=1Wr − (1/α) ln n
d→

X, where X is the corresponding solution of (3.17), Y = exp(X) and
Zr = exp(Wr).

4 Max-recursive algorithms of divide and

conquer type

We consider a general class of parameters of max-recursive algorithms of
divide and conquer type:

Yn
d
=

K∨
r=1

(
Ar(n)Y

(r)

I
(n)
r

+ br(n)
)

, n ≥ n0 (4.1)

where I
(n)
r are subgroup sizes, br(n) random toll terms, Ar(n) random weight-

ing terms and (Y
(r)
n ) are independent copies of (Yn) independent also from

(Ar(n), br(n), I(n)).
With normalizing constants `n, σn let Xn denote the normalized sequence

Xn = Yn−`n

σn
. Then

Xn =
K∨

r=1


Ar(n)Y

(r)

I
(n)
r

σn

+
br(n)

σn


− `n

σn

=
K∨

r=1

((
Ar(n)

σ
I
(n)
r

σn

)
X

(r)

I
(n)
r

+
1

σn

(
Ar(n)`

I
(n)
r

+ br(n)− `n

σn

))

=
K∨

r=1

(
A(n)

r X
(r)

I
(n)
r

+ b(n)
r

)
, (4.2)
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where b
(n)
r = 1

σn
(br(n) − `n + Ar(n)`

I
(n)
r

) and A
(n)
r = Ar(n)

σ
I
(n)
r

σn
. Thus we

obtain again the form (4.1) with modified coefficients.

As in section 2 we need a stabilization condition in Ls:

(
A

(n)
1 , . . . , A

(n)
K , b

(n)
1 , . . . , b

(n)
K

)
→ (A∗

1, . . . , A
∗
K , b∗1. . . . , b

∗
K) . (4.3)

Thus we obtain as limiting equation a stochastic equation of the form con-
sidered in section 3:

X
d
=

K∨
r=1

(A∗
rXr + b∗r). (4.4)

For existence and uniqueness of solutions of (4.4) we need the contraction
condition:

E

K∑
r=1

|A∗
r|s < 1. (4.5)

For the application of the contraction method let T be the limiting operator,

TX
d
=

K∨
r=1

(A∗
rXr + b∗r). (4.6)

Then `s(X, TX) < ∞ if X, A∗
r, b

∗
r have finite absolute s-th moments, X a

starting vector. More generally finiteness also holds under some tail equiva-
lence conditions for X and the corresponding TX. Finally, to deal with the
initial conditions we need the nondegeneracy condition: For any ` ∈ N and
r = 1, . . . , K holds

E
[
1{I(n)

r ≤`}∪{I(n)
r =n}|A(n)

r |s] → 0. (4.7)

Our main result gives a limit theorem for Xn.

Theorem 4.1 (Limit theorem for max-recursive sequences) Let
(Xn) be a max-recursive, s-integrable sequence as in (4.1) and assume the
stabilization condition (4.4), the contraction condition (4.5), and the nonde-
generacy condition (4.7) for some s > 0. Then (Xn) converges in distribu-
tion to a limit X∗, `s(Xn, X∗) → 0. X∗ is the unique solution of the limiting
equation

X∗ d
=

K∨
r=1

(A∗
rX

∗
r + b∗r) in Ms . (4.8)



14 Analysis of algorithms by the contraction method

Proof: By our assumption we have E|A∗
r|s, E|b∗r|s < ∞ and so for any

s-integrable X0 holds `s(X0, TX0) < ∞. Define the accompanying sequence

Wn :=
K∨

r=1

(
A(n)

r X∗
r + b(n)

r

)
, (4.9)

where X∗
1 , . . . , X

∗
K are i.i.d. copies of the solution X∗ of the limiting equation,

which exists and is unique by the contraction condition and Theorem 3.4.
Then

`s(Xn, X
∗) ≤ `s(Xn, Wn) + `s(Wn, X

∗). (4.10)

From the stabilization condition we first show that

`s(Wn, X∗) → 0. (4.11)

Subsequently, we assume s ≥ 1. For the proof of (4.11) we use the stabiliza-
tion condition (4.3)

`s(Wn, X∗) = `s

(
K∨

r=1

(
A(n)

r X∗
r + b(n)

r

)
,

K∨
r=1

(A∗
rX

∗
r + b∗r)

)
(4.12)

≤
(

K∑
r=1

Ls
s

(
A(n)

r X∗
r + b(n)

r , A∗
rX

∗
r + b∗r

)
)1/s

≤
(

K∑
r=1

[
Ls

(
A(n)

r X∗
r , A∗

rX
∗
r

)
+ Ls

(
b(n)
r , b∗r

)]s

)1/s

≤
(

K∑
r=1

[
Ls

(
A(n)

r , A∗
r

)
(E|X∗|s)1/s + Ls(b

(n)
r , b∗r)

]s
)1/s

→ 0.

Next let Υn denote the joint distribution of (A
(n)
1 , . . . , A

(n)
K , I(n), b

(n)
1 , . . . , b

(n)
K )

and let (α, j, β) = (α1, . . . , αK , j1, . . . , jK , β1, . . . , βK). Then we obtain by a
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conditioning argument for s ≥ 1

`s
s(Xn,Wn) = `s

s

(
K∨

r=1

(
A(n)

r X
(r)

I
(n)
r

+ b(n)
r

)
,

K∨
r=1

(
A(n)

r X∗
r + b(n)

r

)
)

(4.13)

≤
∫

Ls
s

(
K∨

r=1

(
αrX

(r)
jr

+ βr

)
,

K∨
r=1

(αrX
∗
r + βr)

)
dΥn(α, j, β)

≤
K∑

r=1

∫
Ls

s

(
αrX

(r)
jr

, αrX
∗
r

)
dΥn(α, j, β)

=
K∑

r=1

∫
|αr|s`s

s(Xjr , X
∗)dΥn(α, j, β)

≤ ps
n`

s
s(Xn, X∗) +

K∑
r=1

∫
1{jr<n}|αr|s`s

s(Xjr , X
∗)dΥn(α, j, β).

where pn =
(
E

∑K
r=1 1{I(n)

r =n}|A
(n)
r |s

)1/s
. With the inequality (a + b)1/s ≤

a1/s + b1/s for all a, b > 0 and s ≥ 1 we obtain with (4.10), (4.12) and (4.13)

`s(Xn, X
∗) ≤ 1

1− pn




(
K∑

r=1

E|A(n)
r |s

)1/s

max
0≤j≤n−1

`s(Xj, X
∗) + o(1)


 . (4.14)

Since, by (4.3), (4.5) and (4.7), we have
(∑K

r=1 E|A(n)
r |s

)1/s

→ ζ < 1 and

pn → 0 as n → ∞ it follows that the sequence (`s(Xn, X
∗))n≥0 is bounded.

Denote η̄ := supn≥0 `s(Xn, X
∗) and η := lim supn→∞ `s(Xn, X

∗). Now we
conclude that `s(Xn, X

∗) → 0 as n → ∞ by a standard argument. For all
ε > 0 there is an ` ∈ N such that `s(Xn, X∗) ≤ η + ε for all n ≥ `. Then
with (4.13), (4.10), and (4.12) we obtain

`s(Xn, X
∗) ≤ 1

1− pn

(
K∑

r=1

∫
1{jr≤`}|αr|s`s

s(Xjr , X
∗)dΥn(α, j, β)

+
K∑

r=1

∫
1{jr>`}|αr|s`s

s(Xjr , X
∗)dΥn(α, j, β) + o(1)

)1/s

≤ 1

1− pn

(
(η̄)sE

K∑
r=1

(
1{I(n)

r ≤`}|A(n)
r |s

)

+ (η + ε)sE

K∑
r=1

|A(n)|s + o(1)

)1/s

.

With (4.7) and n →∞ we obtain

η ≤ ζ(η + ε) (4.15)
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for all ε > 0. Since ζ < 1 we obtain η = 0. The proof for s < 1 is similar. 2

Remark 4.2 Theorem 4.1 is restricted to the case of solutions of the limit
equation in Ms. In the existence and uniqueness result in Theorem 3.4 also
solutions have been characterized without finite s-th moments. For several
applications it is of interest to extend Theorem 4.1 to this more general case.
This is to be considered in a separate paper.

References

Cramer, M. (1997). Stochastic analysis of Merge-Sort algorithm. Random
Structures Algorithms 11, 81–96.

Hwang, H.-K. and R. Neininger (2002). Phase change of limit laws in the
quicksort recurrence under varying toll functions. SIAM Journal on Com-
putating 31, 1687–1722.

Jagers, P. and U. Rösler (2002). Fixed points of max-recursive sequences.
Preprint.

Knuth, D. E. (1973). The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley Publishing Co., Reading.

Mahmoud, H. M. (2000). Sorting. Wiley-Interscience Series in Discrete Math-
emstics and Optomization. Wiley-Interscience, New York.

Neininger, R. (1999). Limit Laws for Random Recursive Structures and Al-
gorithms. Dissertation, University of Freiburg.

Neininger, R. (2001). On a multivariate contraction method for random re-
cursive structures with applications to Quicksort. Random Structures and
Algorithms 19, 498–524.
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Rachev, S. T. and L. Rüschendorf (1995). Probability metrics and recursive
algorithms. Advances Applied Probability 27, 770–799.



R. Neininger and L. Rüschendorf 17
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