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Abstract

In this paper we obtain convergence rates for sieved maximum-
likelihood estimators of the log-hazard function in a censoring model.
We also establish convergence results for an adaptive version of the
estimator based on the method of structural risk-minimization. Ap-
plications are discussed to tensor product spline estimators as well as
to neural net and radial basis function sieves. We obtain simplified
bounds in comparison to the known literature. This allows to derive
several new classes of estimators and to obtain improved estimation
rates. Our results extend to a more general class of estimation prob-
lems and estimation methods (minimum contrast estimators).

Keywords: adaptive estimation, sieved maximum likelihood, neural
nets, structural risk minimization, hazard functions

1 Introduction

In this paper we establish convergence rates for sieved maximum-likelihood
estimators for the log-hazard function in a censoring model. We also establish
an adaptive version of the estimator based on the method of structural risk
minimization (complexity regularization) as introduced in Vapnik (1995).
Our results are obtained for general sieves and then are applied to some
special types of sieves like tensor product splines or neural nets. We also state
extensions of these results to more general estimation procedures (minimum
contrast estimators) and to other types of estimation problems like regression
problems comparable to those considered in Birgé and Massart (1998) or in
Barron, Birgé, and Massart (1999). For related results see also Krzyzak and
Linder (1998), Lugosi and Zeger (1995), Wong and Shen (1995), Yang and
Barron (1998), and Kohler(1999a,b).

Sieved ML-estimators are defined in the general framework of empiri-
cal risk minimization. The main tools for their analysis are from empirical
process theory. The main part of the proof of convergence properties is to
establish an exponential maximal inequality for the log-likelihood functional
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and to obtain estimates for the covering numbers and Vapnik-Cervonenkis di-
mension of the involved function classes. In comparison to a similar maximal
inequality in Birgé and Massart (1998) we avoid the somewhat complicated
condition M2 on control of fluctuations in the L∞-metric and replace it by
some more handy growth condition on L1-covering numbers. Our L1-covering
condition is related to condition M1,[ ] ( L1-metric with bracketing) in Bar-
ron, Birgé, and Massart (1999) which is used in that paper to deal with
model selection in a general framework and applied to several examples (see
sections 4.1.5 and 4.1.6). In comparison our covering condition seems to be
particularly simple and well suited for the examples considered in this paper.
Our proof is based on an exponential maximal inequality in Lee, Bartlett,
and Williamson (1996). In several examples we obtain improved convergence
rates in comparison to the literature and some of them are established for
the first time in this paper.

In the case of tensor product splines we obtain up to a logarithmic factor
the optimal convergence rate in the minimax sense in smoothness classes as
derived in Kooperberg, Stone, and Truong (1995b) the only paper on con-
vergence rates in this context so far. For general background on censoring
models and reference to martingale based estimation methods we refer to
Andersen, Borgan, Gill, and Keiding (1993). Related consistency results for
kernel type estimators and further references on nonparametric functional
estimation of hazard functions can be found in van Keilegom and Veraver-
beke (2001). In comparison to Kooperberg, Stone, and Truong (1995b) we
consider the stronger MISE (mean integrated square error). The conver-
gence rate obtained in this paper depends on the smoothness parameter p of
the underlying class of hazard functions as well as on the dimension of the
covariables. Some empirical study of an adaptive estimator (’HARE’) has
been given in Kooperberg, Stone, and Truong (1995a). The related complex-
ity regularized estimator introduced in section 4 of this paper is proved to be
adaptive up to a logarithmic order and, therefore, approximatively minimax
adaptive. We also discuss applications to general net sieves assuming that
the log hazard function allows an integral representation. In particular we
consider neural nets, radial basis-function nets and wavelet nets. For further
details related to this paper we refer to the dissertation of Döhler (2000b).
Some related consistency results (without rates) have been given in Döhler
(2000a).

The paper is organized as follows: In chapter 2 we establish an exponential
inequality for the log-likelihood functional in the case of right censored data
and indicate how similar exponential inequalities can be derived in a general
framework. We use this result to obtain general error bounds for sieved ML-
estimators (chapter 3) and their complexity regularized versions (chapter 4).
In chapter 5 we apply these results to tensorproduct splines and neural net
type sieves. We conclude the paper with a short outlook.

The framework of hazard function estimation is as in Kooperberg, Stone,
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and Truong (1995b) where however also additive models are considered. Let
(Ω,A, P ) be the underlying probability space, T : Ω → IR+ a survival (fail-
ure) time, C : Ω → T a bounded censoring time, X : Ω → X = [0, 1]k a vec-
tor of covariates, and Y = T ∧ C the observable time. By normalization we
assume without loss of generality that T = [0, 1]. With the censoring indi-
cator δ = 1(T≤C) (right censoring) the observation vector is Z = (X, Y, δ).
We assume existence of a conditional density f0(t|x) and denote by F0(t|x)
the conditional distribution function of T given X = x. Further we define
λ0(t|x) = f0(t|x)

F 0(t|x)
the conditional hazard function, with conditional survival

function F 0(t|x) = 1 − F0(t|x), and finally α0(t|x) = log λ0(t|x) the condi-
tional log-hazard function. Based on iid data (T1, C1, X1), . . . , (Tn, Cn, Xn)
respectively the corresponding observed data Zi = (Xi, Yi, δi), 1 ≤ i ≤ n, our
aim is to estimate the underlying conditional log-hazard function α0.

According to Kooperberg, Stone, and Truong (1995b) the conditional
log-likelihood of a sample z1, . . . , zn is given by

Ln(α) =
n∑

i=1

`(zi, α) (1.1)

where ` ((x, y, δ), α) = δα(y, x)− ∫ y

0
exp α(u, x)du.

The underlying log-hazard function is assumed to be in a class F of
functions on T × X to be specified later. Generally we assume that α is
bounded on T × X and that T and C are conditionally independent given
X.

Let

Λ(α) = EL1(α) (1.2)

denote the expected conditional log-likelihood function. Then Λ is maximized
at the underlying conditional log-hazard functional α0. The sieved maximum-
likelihood estimator α̂n will be defined by

α̂n = arg max
α∈Fn

Ln(α) (1.3)

over some net (sieve) Fn ⊂ F depending on the number n of observations.
For the ‘Λ-distance’ between an arbitrary element α ∈ F and the under-

lying true α0 the following representation is useful (see Döhler (2000a)):

|Λ(α)− Λ(α0)| = Λ(α0)− Λ(α)

=

∫

T ×X
FC|XG(α− α0)dP (T,X) (1.4)

where FC|X is the conditional survival-function of the censoring time C and
G(y) = exp(y) − (1 + y). A standard argument leads to the decomposi-
tion of the estimation error of the ML-estimator α̂n (in Λ-distance) in an
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approximation error and a stochastic error:

|Λ(α̂n)−Λ(α0)| ≤ inf
α∈Fn

|Λ(α)−Λ(α0)|+ 2 sup
α∈Fn

∣∣∣∣
1

n
Ln(α)− Λ(α)

∣∣∣∣ . (1.5)

The main tool for proving convergence rates for the stochastic error of α̂n will
be an exponential maximal inequality derived in section 2. As in Kooperberg,
Stone, and Truong (1995b) we introduce the Lp-distance on F modified by
the conditional survival function:

∥∥α− β
∥∥p

p
=

∫

T ×X
FC|X |α− β|pdP (T,X). (1.6)

From the representation in (1.4) one obtains (see Döhler (2000a)):

Λ-convergence of αn → α0 implies ‖αn − α0‖1 → 0. (1.7)

Also for α, β ∈ F , |α| ≤ M , |β| ≤ M holds:

k
∥∥α− α0

∥∥2

2
≤ |Λ(α)− Λ(β)| ≤ k′

∥∥α− β
∥∥2

2
(1.8)

where k = k(M) = 1
4M

, k′ = k′(M) = exp(2M)
4M2 .

For the proof of (1.8) define

F (y) =

{ G(y)
y2 if y 6= 0,

1
2

if y = 0,

where G is as in (1.4). Then it is easy to establish that F is strictly increasing
on IR and F (2M) ≤ k′(M), F (−2M) ≥ k(M) for M ≥ 1. Therefore,
k(M)y2 ≤ G(y) ≤ k′(M)y2 which implies k(M)(α − β)2 ≤ G(α − β) ≤
k′(M)(α− β)2 and the result follows.

Finally we note that for β, α ∈ F , |β|, |α| ≤ M

E (`(Z, α)− `(Z, β))2 ≤ (B0 exp M + 1)2
∥∥α− β

∥∥2

2
(1.9)

where B0 = exp M exp(exp M). For the proof see Döhler (2000b, Proposition
2.9). So the L2-norm allows to control the expected squared loss in the
likelihood.

2 Exponential maximal inequality for the

log-likelihood functional

In this section we derive an exponential maximal inequality for the log-
likelihood functional Ln(α). The proof is based on the following exponential
inequality of Lee, Bartlett, and Williamson (1996) which was used in their
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paper and also in Kohler (1997) and Krzyzak and Linder (1998) for regres-
sion estimation by minimum L2-empirical risk estimators. Based on the error
decomposition in (1.5) and relations (1.6), (1.7), and (1.8) we will apply this
result to obtain convergence rates of ML-estimators for right censored data.

Let N(ε,F , d) denote the ε-covering number of F with respect to a met-
ric d. In the following we will use Lp-metrics denoted by dLp(µ) on certain
Lp-spaces. The notion of permissibility of F denotes a weak measurability
condition on F allowing to measure sets involving suprema over f ∈ F . For
a formal definiton see (Pollard 1984, pg. 196). For this and related notions
and some basic results on VC-classes we refer to van der Vaart and Wellner
(1996) and Pollard (1990).

Theorem 2.1 (Lee, Bartlett, and Williamson (1996))
Let F be a permissible class of functions on Z with |f | ≤ K1, Ef ≥ 0
and Ef 2 ≤ K2Ef for all f ∈ F . Let ν, νc > 0, 0 < α ≤ 1

2
, then for

m ≥ max{4(K1 + K2)/α
2(ν + νc), K

2
1/α

2(ν + νc)} holds:

P

(
sup
f∈F

Ef − 1
m

∑m
i=1 f(zi)

ν + νc + Ef
≥ α

)
(2.1)

≤ sup
z∈Z2m

2N
(ανc

4
,F , dL1(νz)

)
exp

( −3α2νm

4K1 + 162K2

)

+ sup
z∈Z2m

4N

(
ανc

4K1

,F , dL1(νz)

)
exp

(−α2νm

2K2
1

)

where νz = 1
2m

∑2m
i=1 δzi

.

Let now Z = X × T × {0, 1} and for zi = (xi, yi, δi) ∈ Z, 1 ≤ i ≤ n and
z = (z1, . . . , zn) let νz = 1

n

∑n
i=1 δzi

, ν̃z = 1
n

∑n
i=1 δxi

and let U [0, 1] be the
uniform distribution on [0, 1].

Theorem 2.2 (maximal inequality for the log-likelihood)
There exists B0 = B0(‖α0‖) > 0 such that for all M ≥ M0 := ‖α0‖∞,
for all admissible F ⊂ {α : T ×X → [−M,M ]} for any ν, νc > 0, 0 < γ ≤ 1

2

and n ≥ 24M(B0 exp M+1)2

γ2(ν+νc)
holds:

P

(
sup
α∈F

Λ(α0)− Λ(α)− 1
n
(Ln(α0)− Ln(α))

ν + νc + Λ(α0)− Λ(α)
≥ γ

)
(2.2)

≤ κ(νc,F) exp

(
− γ2νn

κ0B2
0M exp(2M)

)
,where

κ(νc,F) = 6 supz∈Z2n

[
N

(
γνc

64 exp M
,F , dL1(νz)

)
N

(
γνc

64 exp(2M)
,F , dL1(eνz⊗U [0,1])

)]

and γ0 = 2608
3
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Proof: W.l.g. let M0, B0 ≥ 1. Define F = {fα = `(·, α0)− `(·, α); α ∈ F},
then by (1.4) |fα| ≤ 2(M +exp M). Also by (1.4) Efα ≥ 0 and by application
of (1.9) and (1.8)

Ef 2
α = E [`(·, α0)− `(·, α)]2

≤ (B0 exp M + 1)2
∥∥α− α0

∥∥2

2

≤ 4M(B0 exp M + 1)2Efα.

This implies that the conditions of Theorem 2.1 are fulfilled with K1 =
2(M + exp M), K2 = 4M(B0 exp M + 1)2.

Therefore, for n ≥ max
{

4 K1+K2

γ2(ν+νc)
,

K2
1

γ2(ν+νc)

}
= 4 K1+K2

γ2(ν+νc)
holds

P

(
sup
α∈F

Λ(α0)− Λ(α)− 1
n
(Ln(α0)− Ln(α))

ν + νc + Λ(α0)− Λ(α)
≥ γ

)
(2.3)

≤ sup
z∈Z2n

2N
(γνc

4
, F, dL1(νz)

)
exp

(
− 3γ2νn

4K1 + 162K2

)

+ sup
z∈Z2n

4N

(
γνc

4K1

, F, dL1(νz)

)
exp

(
−γ2νn

2K2
1

)
.

By easy calculations max
{
2K2

1 ,
4K1+162K2

3

} ≤ κ0B
2
0M exp(2M) and 4 K1+K2

γ2(ν+νc)

≤ n0 := 24M(B0 exp M+1)2

γ2(ν+νc)
. Therefore, using 4 exp M ≥ K1 ≥ 1 we obtain that

for n ≥ n0 the right hand side of (2.3) is bounded above by

6 sup
z∈Z2n

N

(
γνc

4K1

, F, dL1(νz)

)
exp

(
− γ2νn

κ0B2
0M exp(2M)

)

≤ 6 sup
z∈Z2n

N

(
γνc

16 exp M
,F, dL1(νz)

)
exp

(
− γ2νn

κ0B2
0M exp(2M)

)
.

Theorem 2.2 now will be a consequence of the following estimate. For
ε > 0 holds

N(ε, F, dL1(νz)) ≤ N
(ε

4
,F , dL1(νz)

)
N

(
ε

4 exp M
,F , dL1(eνz⊗U [0,1])

)
. (2.4)

For the proof of (2.4) introduce F̃ = {f̃α(·) = `(·, α); α ∈ F}, then

N(ε, F, dL1(νz)) ≤ N
(ε

2
, F̃ , dL1(νz)

)
N

(ε

2
, {`(α0)}, dL1(νz)

)

= N
(ε

2
, F̃ , dL1(νz)

)
.

Define H = {gα(x, y, δ) = δα(y, x); α ∈ F} and K = {kα(x, y, δ) =∫ y

0
exp α(u, x)du; α ∈ F}

, then obviously N
(
ε,H, dL1(νz)

)≤N
(
ε,F , dL1(νz)

)
.
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Further,

dL1(νz)(kα1 , kα2) =
1

n

n∑
i=1

∫ yi

0

| exp α1(u, xi)− exp α2(u, xi)|du

≤ 1

n

n∑
i=1

∫ 1

0

| exp α1(u, xi)− exp α2(u, xi)|du

= dL1(eνz⊗U [0,1])(exp ◦α1, exp ◦α2).

This implies

N
(
ε,K, dL1(νz

) ≤ N
(
ε, exp ◦F , dL1(eνz⊗U [0,1])

)

≤ N

(
ε

exp M
,F , dL1(eνz⊗U [0,1])

)

using that for F with |f | ≤ K for f ∈ F and Lipschitzfunctions
ϕ : [−K, K] → IR

N
(
ε, ϕ ◦ F , dLp(µ)

) ≤ N

(
ε

Lipϕ
,F , dLp(µ)

)
. (2.5)

This implies using a well-known upper bound for the covering number of the
sum of two function classes

N(ε, F̃ , dL1(νz)) = N(ε,HªK, dL1(νz))

≤ N
(ε

2
,F , dL1(νz)

)
N

(
ε

2 exp M
,F , dL1(eνz⊗U [0,1])

)

and we obtain by combining the above estimates the statement of Theorem
2.2. 2

Remark 2.3 (more general loss functions and estimation problems)
From the proof of Theorem 2.2 one obtains a similar maximal inequality for
more general loss functions ` (i.e. for more general estimation problems and
(minimum contrast) estimation methods) satisfying the following three con-
ditions:

|`(α0)− `(α)| ≤ K1

E`(α0) ≥ E`(α)

E(`(α0)− `(α))2 ≤ K2E(`(α0)− `(α)). (2.6)

For (2.6) the following two conditions corresponding to (1.8) and (1.9) are
sufficient:

E(`(α0)− `(α)) ≥ k
∥∥α− α0

∥∥2

2
(2.7)

E(`(α0)− `(α))2 ≤ k̃
∥∥α− α0

∥∥2

2
. (2.8)
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Therefore, under condition (2.6) we obtain exponential inequalities with

N

(
γνc

4K1

, F, dL1(νz)

)
replacing the capacity term (2.9)

N

(
γνc

64 exp M
,F , dL1(νz)

)
N

(
γνc

64 exp(2M)
,F , dL1(eνz⊗U [0,1])

)

in (2.2), where F = {fα = `(α0)− `(α); α ∈ F} is defined as in the proof of
Theorem 2.2. This exponential inequality can be applied to prove convergence
rates for the corresponding empirical minimum risk estimators. Condition
(2.8) corresponds roughly to condition M1 in Birgé and Massart (1998). Con-
dition (2.7) together with an upper bound as in (1.8) corresponds to condition
C in Birgé and Massart (1998). Their growth condition M2 involving also
the L∞-metric is replaced in our approach by corresponding growth conditions
on the L1-covering numbers N(·, F, dL1(νz)) which then is closer related to the
L1-metric condition with bracketing M1,[ ] in Barron, Birgé, and Massart
(1999).

3 Error bounds for maximum-likelihood esti-

mators for conditional log-hazard functions

As a measure of complexity of a model F we define

Cn(F) = 6 sup
z∈Z2n

N

(
1

n
,F , dL1(νz)

)
N

(
1

n
,F , dL1(eνz⊗U [0,1])

)
(3.1)

which arises from the first part of the estimate in (2.2). The following theorem
estimates the mean Λ-error and the MISE of the ML-estimator in a model
F . Admissibility of F is a weak measurability condition (cf. Lee, Bartlett,
and Williamson (1996)) which is satisfied for the examples considered in this
paper.

Theorem 3.1 Let F ⊂ {α : T × X → [−M,M ]} be admissible where M ≥
M0 = ‖α0‖∞ and B0, κ0 are as in Theorem 2.2. Assume that Cn(F) <
∞, then for the ML-estimator α̂n = arg maxα∈F Ln(α) the following error
estimates hold:

E |Λ(α̂n)− Λ(α0)| (3.2)

≤ 2 inf
α∈F

|Λ(α)− Λ(α0)|+ 8κ0B
2
0M exp(2M)

log Cn(F) + 1

n

and

E
∥∥α̂n − α0

∥∥2

2
(3.3)

≤ 2 exp(2M) inf
α∈F

∥∥α− α0

∥∥2

2
+ 32κ0B

2
0M

2 exp(2M)
log Cn(F) + 1

n
.
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Proof: In our proof we use a similar technique as in the context of regression
estimation in Kohler(1997, 1999a, 1999 b). We decompose the Λ-error into
two parts

|Λ(α̂n)− Λ(α0)| = T1,n + T2,n (3.4)

with T1,n = Λ(α0) − Λ(α̂n) − 2
n
(Ln(α0) − Ln(α̂n)) and T2,n = 2

n
(Ln(α0) −

Ln(α̂n)). From the definition of α̂n we obtain by a standard argument
ET2,n ≤ 2 infα∈F |Λ(α)− Λ(α0)|.

It remains to establish

ET1,n ≤ 8κ0B
2
0M exp(2M)

log Cn(F) + 1

n
. (3.5)

For t ≥ t0 = 96M(B0 exp M+1)2

n
we obtain from Theorem 2.2 with γ = 1

2
,

ν = νc = t
2

P (T1,n ≥ t) ≤ P

(
sup
α∈F

Λ(α0)− Λ(α)− 1
n
(Ln(α0)− Ln(α))

t
2

+ t
2

+ Λ(α0)− Λ(α)
≥ 1

2

)

≤ 6 sup
z∈Z2n

[
N

( 1
2

t0
2

64 exp M
,F , dL1(νz)

)
N

( 1
2

t0
2

64 exp(2M)
,F , dL1(eνz⊗U [0,1])

)]

· exp

(
− tn

8κ0B2
0M exp(2M)

)
.

For M ≥ 1 holds
1
2

t0
2

64 exp(2M)
≥ 1

n
and, therefore,

P (T1,n ≥ t) ≤ Cn(F) exp

(
− tn

8κ0B2
0M exp(2M)

)
.

This implies for u ≥ t0

ET1,n ≤
∫ u

0

1 dt +

∫ ∞

u

P (T1,n ≥ t) dt (3.6)

≤ u + Cn(F)
8κ0B

2
0M exp(2M)

n
exp

(
− un

8κ0B2
0M exp(2M)

)
.

The r.h.s. of (3.6) is minimized by u0 = 1
n
8κ0B

2
0M exp(2M) log Cn(F). It is

easy to see that u0 ≥ t0. With this u0 inserted in (3.6) we obtain inequality
(3.5) and so statement (3.2).

From (1.8) we then conclude

E
∥∥α̂n − α0

∥∥2

2

≤ 4M E |Λ(α̂n)− Λ(α0)|
≤ 8M inf

α∈F
|Λ(α)− Λ(α0)|+ 32κ0B

2
0M

2 exp(2M)
log Cn(F) + 1

n

≤ 8M
exp(2M)

4M2
inf
α∈F

∥∥α− α0

∥∥2

2
+ 32κ0B

2
0M

2 exp(2M)
log Cn(F) + 1

n
.

2



10 Adaptive estimation of hazard functions.

Remark 3.2 (general estimation problem)
The error estimates in Theorem 3.1 decompose the error as usual in an ap-
proximation error and a stochastic error of the order log Cn(F)+1

n
. As in Re-

mark 2.3 (see (2.9)) we obtain a similar estimate for general loss functions
` by replacing the model complexity term Cn(F) by

Cn(F ) = 6 sup
z∈Z2n

N

(
1

n
, F, dL1(νz)

)
(3.7)

with F = {fα = `(·, α0)− `(·, α); α ∈ F}. In comparison to a related result
in Birgé and Massart (1998, Corollary 1, section 5) which uses in condition
M2 assumptions on the L2- and L∞-covering numbers of F our estimate uses
only L1-covering numbers in the model complexity term Cn(F) resp. Cn(F ).
Our condition is closer to the L1-condition with bracketing M1,[ ] in Barron,
Birgé, and Massart (1999, section 6).

From Pollard’s estimate for bounded VC-classes F , d = dimVCF , with
majorant H stating that for ε > 0

N
(
ε‖H‖Lp(µ),F , dLp(µ)

) ≤ κd(16e)d

(
1

ε

)p(d−1)

, (3.8)

(see van der Vaart and Wellner (1996, Theorem 2.6.7)) we obtain from
our estimate in (3.3) a direct connection of convergence rates to the VC-
dimension of the class F .

As a consequence of this remark we obtain

Corollary 3.3 Under the conditions of Theorem 3.1 where F is a bounded
VC-class we obtain

E
∥∥α̂n−α0

∥∥2

2
≤ C1(M) inf

α∈F

∥∥α−α0

∥∥2

2
+C2(M,B0) dimVC(F)

log n

n
. (3.9)

A similar convergence rate result holds for general estimation problems as in
Remarks 2.3, 3.2.

Remark 3.4 (Sieve estimators) Let (FK)K∈IN be a sieve of VC-classes
in the underlying model F with DK = dimV C FK and approximation rate
bK = infα∈FK

‖α− α0‖2
2. Assume that for some r, s > 0

bK = O(K−r), DK = O(Ks). (3.10)

There are two well studied types of sieves, linear sieves, i.e. finite dimen-
sional vector spaces which approximate typically smooth function classes and
secondly nets (like neural nets, radial basis function nets, ...). Under assump-
tion (3.10) we obtain from the estimate in (3.9) when choosing the optimal
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parameter Kn in the bias-variance decomposition (3.9) an estimate for the
MISE of α̂n of the form:

E
∥∥α̂n − α0

∥∥2

2
= O

((
log n

n

) r
r+s

)
. (3.11)

Here r determines the approximation rate of the sieve which is usually for
splines, wavelets, polynomials related to smoothness of the parameter and s
determines the complexity of the net.

If FK is a subset of a K-dimensional vector space, then s = 1, and if
r = 2p

d
(with p = degree of smoothness, d = dimension of space) we will

obtain in some examples optimal convergence rates up to logarithmic terms.
Polynomial rates (i.e. bK are as in (3.10)) can also be obtained for func-

tion classes which are obtained from VC-classes by some operations like trans-
formations, sums, etc.

4 Structural risk-minimization

Based on the maximal inequality in Theorem 2.2 one obtains for η ∈ (0, 1)
and any data dependent estimator αn ∈ F , that with probability 1− η

|Λ(αn)− Λ(α0)| (4.1)

≤ 1

n
8κ0B

2
0M exp(2M) log

Cn(F)

η
+

2

n
(Ln(α0)− Ln(αn)) .

The idea of structural risk minimization (complexity regularization) due to
Vapnik (1995) is to construct an estimator minimizing approximatively the
r.h.s. of (4.1), i.e. minimizing

cn
log Cn(F)

n
− 2

n
Ln(α) (4.2)

where cn is a slowly increasing function independent of the unknown param-
eters which asymptotically majorizes the corresponding constant in (4.1).
The minimization is carried out not only over α in one fixed class F = Fn

but allows to choose α within a finite set of model classes {Fn,p; p ∈ Pn}, p
typically describing some smoothness or network complexity. The error term
cn

log Cn(Fn,p)

n
can be interpreted as a penalization term for the complexity of

the model.
A detailed and general description of this approach with several appli-

cations has been given in Barron, Birgé, and Massart (1999) based on the
error estimates in Birgé and Massart (1998) as well as on new tools. In that
paper one also finds several references to this method. In our paper we use
some technical ideas from Kohler (1997, proof of Theorem 4.2), concerning
regression estimates minimizing empirical penalized squared loss there.
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Let M0 = ‖α0‖∞ > 0, B0 = B0(‖α0‖∞) > 0 be as in Theorem 2.2, and let
Pn be finite sets for n ∈ IN, and for p ∈ Pn let Fn,p ⊂ {α : T ×X → [−M, M ]}
be admissible models, M ≥ M0 with Cn(Fn,p) < ∞, ∀p ∈ Pn. Then the
complexity regularized estimator α∗n is defined in two steps:

1. Let p∗n = arg min
p∈Pn

(
− 1

n
sup

α∈Fn,p

Ln(α) + penn(p)

)
(4.3)

where penn(p) is a penalization term for the complexity of model Fn,p

satisfying asymptotically as n →∞

penn(p) ≥ 4κ0B
2
0M exp(2M)

log Cn(Fn,p)

n
. (4.4)

2. α∗n = arg max
α∈Fn,p∗n

Ln(α). (4.5)

It is important to note that the r.h.s. of (4.4) is not supposed to be the
actual penalty term used in application since it depends on the unknown M0

and B0. This expression represents a lower bound for the penalty, sufficient
for Theorem 4.1 to hold(cf. also (4.2)). For asymptotic results the actual
penalty term should be chosen independently of M0 and B0, majorising the
r.h.s. of (4.4) for large sample sizes. An example of how this can be done
is given in Theorem 5.3. The following theorem gives an error bound for
complexity regularized sieve estimators based on the maximal inequality in
Theorem 2.2. A general related error bound is given in Barron, Birgé, and
Massart (1999, Theorem 8) under some alternative conditions on L2 − L∞
covering respectively L1 covering with bracketing.

Theorem 4.1 For the complexity regularized ML-estimator α∗n the following
error estimates hold:

E |Λ(α∗n)− Λ(α0)| ≤ 2 inf
p∈Pn

(
penn(p) + inf

α∈Fn,p

|Λ(α)− Λ(α0)|
)

+
4κ0B

2
0M exp(2M)

n
(1 + log |Pn|) (4.6)

and

E
∥∥α∗n − α0

∥∥2

2
≤ 2 inf

p∈Pn

(
4M penn(p) + exp(2M) inf

α∈Fn,p

∥∥α− α0

∥∥2

2

)

+
16κ0B

2
0M

2 exp(2M)

n
(1 + log |Pn|). (4.7)

Proof: As in the proof of Theorem 3.1 we consider the decomposition of the
error into two terms

T1,n := Λ(α0)− Λ(α∗n)− 2

n
(Ln(α0)− Ln(α∗n))− 2 penn(p∗n) (4.8)

T2,n :=
2

n
(Ln(α0)− Ln(α∗n)) + 2 penn(p∗n).
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Our first aim is to prove

ET1,n ≤ 4κ0B
2
0M exp(2M)

n
(1 + log |Pn|). (4.9)

For the proof we obtain as in Kohler (1997, pg. 85).

P (T1,n > t) ≤
∑
p∈Pn

P

(
sup

α∈Fn,p

Λ(α0)− Λ(α)− 1
n
(Ln(α0)− Ln(α))

t + 2 penn(p) + Λ(α0)− Λ(α)
≥ 1

2

)
.

Then for n ≥ 24M(B0 exp M+1)2

1
4
t

we obtain from Theorem 2.2 with γ = 1
2
, ν =

t + penn(p), νc = penn(p) observing that the condition n ≥ 24M(B0 exp M+1)2

1
4
(t+2penn(p))

is fulfilled for any p ∈ Pn

P (T1,n > t)

≤
∑
p∈Pn

[
6 sup
z∈Z2n

N

(1
2
penn(p)

64 exp M
,Fn,p, dL1(νz)

)
N

( 1
2
penn(p)

64 exp(2M)
,Fn,p, dL1(eνz⊗U [0,1])

)

︸ ︷︷ ︸
=:sn(p)

· exp

(
− penn(p)n

4κ0B2
0M exp(2M)

) ]
exp

(
− tn

4κ0B2
0M exp(2M)

)
.

Since log Cn(Fn,p) ≥ 1 and hence 1
n
≤ 1

2
penn(p)

64 exp M
,

1
2

penn(p)

64 exp(2M)
for any p ∈ Pn, we

obtain sn(p) ≤ Cn(Fn,p). Further

sn(p) exp

(
− penn(p)

4κ0B2
0M exp(2M)

n

)

≤ exp

(
log Cn(Fn,p)− penn(p)

4κ0B2
0M exp(2M)

n

)

≤ exp(0) = 1

by definition of penn(p), and, therefore, for t ≥ t0 := 96M(B0 exp M+1)2

n
holds

P (T1,n > t) ≤ |Pn| exp

(
− t

4κ0B2
0M exp(2M)

n

)
. (4.10)

This implies for u ≥ t0

ET1,n ≤
∫ u

0

1 dt +

∫ ∞

u

P (T1,n ≥ t)dt (4.11)

≤ u + |Pn|4κ0B
2
0M exp(2M)

n
exp

(
− u

4κ0B2
0M exp(2M)

n

)
.

The r.h.s. of this inequality is minimized by

u = u0 :=
4κ0B

2
0M exp(2M)

n
log |Pn|,
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and w.l.g. for κ0 · log |Pn| ≥ 24(1 + 1
B0 exp M

)2) it holds that u0 ≥ t0. This

choice of u leads to (4.9).

From the definition of p∗n and α∗n we obtain that

T2,n = 2

[
1

n
Ln(α0)− 1

n
sup

α∈Fn,p∗n

Ln(α) + penn(p∗n)

]

= 2

[
1

n
Ln(α0) + inf

p∈Pn

(
− 1

n
sup

α∈Fn,p

Ln(α) + penn(p)

)]

= 2 inf
p∈Pn

[
inf

α∈Fn,p

1

n
(Ln(α0)− Ln(α)) + penn(p)

]
. (4.12)

Therefore, using that penn(p) is deterministic we obtain

ET2,n ≤ 2 inf
p∈Pn

E

[
inf

α∈Fn,p

1

n
(Ln(α0)− Ln(α)) + penn(p)

]

≤ 2 inf
p∈Pn

[
inf

α∈Fn,p

E
1

n
(Ln(α0)− Ln(α)) + penn(p)

]

≤ 2 inf
p∈Pn

[
inf

α∈Fn,p

|Λ(α)− Λ(α0)|+ penn(p)

]
. (4.13)

(4.11) and (4.13) imply (4.6). The proof of (4.7) then follows from (1.8). 2

5 Adaptive sieve estimates for the condition-

al log-hazard function

In this section we apply the results of sections 3 and 4 to several types of
sieves. In the first part we obtain that the complexity regularized spline es-
timate is approximatively optimal even with unknown degree of smoothness,
i.e. it has up to a logarithmic term the same optimal convergence rate as the
estimator of Kooperberg, Stone, and Truong (1995b) in the case with known
degree of smoothness. In the second part we obtain convergence results for
net estimates under the assumption that the conditional log-hazards have a
certain representation property. Some applications to Sobolev class models
will be considered in a subsequent paper.

5.1 Tensor product splines

In this section we consider tensor product splines. For general background
of this class of functions we refer to Kohler (1997) and the references given
there.
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Let Vh,M denote the class of tensor product splines of [−hM, 1 + hM ]k+1

of degree M ∈ IN0 in each coordinate and of grid width h > 0. Let Φ(L, Vh,M)
(for L > 0) denote the class of truncated functions TL ◦ g, g ∈ Vh,M where

TL ◦ g =





L if g ≥ L

g if −L ≤ g ≤ L

−L if g ≤ −L.

(5.1)

We consider for p = r+β, r ∈ IN0, β ∈ (0, 1) the smoothness classes
∑

(p, L)
of bounded conditional hazard functions α(t, x) on [0, 1]k+1 satisfying for all
z1, z2 ∈ [0, 1]k+1 a Hölder condition of order p

‖α‖∞ ≤ L and |Drα(z1)−Drα(z2)| ≤ L‖z1 − z2‖β
2 . (5.2)

For classes with known degree of smoothness we obtain the following
result.

Theorem 5.1 (known smoothness class) Let 1 ≤ p < ∞, L > 0, M̃ ∈
IN, M̃ ≥ p− 1 and hn =

(
log n

n

) 1
2p+k+1 . Then the spline ML-estimator

α̂n = arg max
α∈Φ(L,V

hn,fM )

Ln(α) (5.3)

satisfies

sup
α∈P(p,L)

E
∥∥α̂n − α0

∥∥2

2
= O

((
log n

n

) 2p
2p+k+1

)
(5.4)

and

sup
α∈P(p,L)

E|Λ(α̂n)− Λ(α0)| = O

((
log n

n

) 2p
2p+k+1

)
. (5.5)

Proof: From definition of the truncation operator TL it follows that

inf
α∈Φ(L,V

hn,fM )
‖α0 − α‖∞ ≤ inf

α∈V
hn,fM ‖α0 − α‖∞

and, therefore, from the approximation result in Kohler (1997, Lemma 1.5)
for approximation of Hölder-continuous functions by tensor product splines
(which is in sup-norm) we obtain

inf
α∈Φ(L,V

hn,fM )

∥∥α0 − α
∥∥2

2
≤ Ch2p

n ≤ C

(
log n

n

) 2p
2p+k+1

(5.6)

with C = C(p, L) independent of α0.
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To estimate the stochastic error in Theorem 3.1 note that Vhn,fM is a

vector space of dimension ≤
(⌈

1
hn

⌉
+ M̃

)k+1

(see Kohler (1997, pg. 79) and,

therefore, (cf. van der Vaart and Wellner (1996, Lemma 2.6.18))

dimV C Φ(L, Vhn,fM) ≤ dimV C Vhn,fM ≤
(⌈

1

hn

⌉
+ M̃

)k+1

+ 2. (5.7)

Therefore, we obtain from Theorem 3.1

E
∥∥ân−a0

∥∥2

2
≤ C1

(
log n

n

) 2p
2p+k+1

+C2



(⌈(

n

log n

) 1
2p+k+1

⌉
+M̃

)k+1

+ 2


 log n

n
. (5.8)

This implies with M := L, F := Φ(L, Vhn,fM) and B0 = B0(L) the first state-
ment (5.4).

For the proof of (5.5) we next establish the approximation rate

inf
α∈Φ(L,V

hn,fM )
|Λ(α)− Λ(α0)| ≤ Ch2p

n (5.9)

for the Λ-distance.
From the representation (1.4) and using some elementary properties of

the function G we obtain

inf
α∈Φ(L,V

hn,fM )
|Λ(α)− Λ(α0)| = inf

α∈Φ(L,V
hn,fM )

∫

T ×X
FC|XG(α− α0) dP (T,X)

≤ inf
α∈Φ(L,V

hn,fM )

∫

T ×X
FC|XG(‖α− α0‖∞) dP (T,X)

≤ inf
α∈Φ(L,V

hn,fM )
G (‖α− α0‖∞)

≤ G( inf
α∈Φ(L,V

hn,fM )
‖α− α0‖∞)

For the last inequality we observe that infx∈A G(x) = G(inf A) for A ⊂ IR+.
Since for xn ↓ 0, G(xn) = O(x2

n), we obtain infα∈Φ(L,V
hn,fM ) |Λ(α) − Λ(α0)| =

O((infα∈Φ(L,V
hn,fM ) ‖α − α0‖∞)2) = O((infα∈V

hn,fM ‖α0 − α‖∞)2) = O(h2p
n ) as

in (5.6). 2

Remark 5.2 The convergence rate in (5.4) for the MISE is up to a logarith-
mic factor optimal in the minimax-sense (see Kooperberg, Stone, and Truong
(1995b, Remark to Corollary 1, note however that the convergence in MISE
is stronger), i.e.

lim inf
n→∞

n
2p

2p+k+1 infbαn

sup
α0∈

P
(p,L)

E
∥∥α̂n − α0

∥∥2

2
> 0 (5.10)

for any p ≥ 1, L > 0.
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If we do not know the smoothness parameter, i.e. assume that

α ∈ ∑
:=

⋃
1≤p<∞;L<∞

∑
(p, L) (5.11)

then we will obtain that our penalized spline ML-estimator defined in (4.5)
adapts up to a logarithmic factor to the unknown smoothness and is up
to (log n)2 minimax adapted in the sense of Barron, Birgé, and Massart
(1999). An adaptive estimation method (‘HARE’) had been introduced in
Kooperberg, Stone, and Truong (1995b) and empirically investigated there,
however no adaptation result has been proved. As result we obtain that the
complexity regularized estimator α∗n from (4.5) is approxmatively adaptive.

Theorem 5.3 (unknown smoothness degree, adaptation)
For n ∈ IN, qmax(n), Kmax(n) ∈ IN let Pn := {(K, q) ∈ IN × IN|K ≤
Kmax(n), q ≤ qmax(n)} and for (K, q) ∈ Pn and βn := 1

5
log log n define the

models Fn,(K,q) := Φ(βn, V 1
K

,q−1). Define the complexity regularized estimate

α∗n as in (4.5) with penalization term

penn((K, q)) :=
(log n)

8
5

n

[
(K + q − 1)k+1 + 2

]
.

With Kmax(n) := n and q = qmax(n) → ∞ such that qmax(n)
n

→ 0 we obtain
for p ≥ 1 and L > 0

sup
α0∈Σ(p,L)

E
∥∥α∗n − α0

∥∥2

2
= O

(
log n

(
log n

n

) 2p
2p+k+1

)
(5.12)

and

sup
α0∈Σ(p,L)

E |Λ(α∗n)− Λ(α0)| = O

(
log n

(
log n

n

) 2p
2p+k+1

)
. (5.13)

Proof: For the proof of (5.12), (5.13) we first establish the following more
general estimates:

For p ≥ 1, L > 0 there exists N0 = N0(L) ∈ IN such that for any n ≥ N0:

sup
α0∈Σ(p,L)

E
∥∥α∗n − α0

∥∥2

2
(5.14)

≤ 2 inf
(K,q)∈Pn

(
4

5

log log n(log n)
8
5

n

[
(K + q − 1)k+1 + 2

]

+ (log n)
2
5 inf

α∈Fn,(K,q)

∥∥α− α0

∥∥2

2

)

+
16κ0B

2
0

25

(log log n)2(log n)
2
5

n
(1 + log(Kmax(n)qmax(n)))
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and

sup
α0∈Σ(p,L)

E |Λ(α∗n)− Λ(α0)| (5.15)

≤ 2 inf
(K,q)∈Pn

(
(log n)

8
5

n

[
(K + q − 1)k+1 + 2

]

+ inf
α∈Fn,(K,q)

|Λ(α∗n)− Λ(α0)|
)

+
16κ0B

2
0

5

log log n(log n)
2
5

n
(1 + log(Kmax(n)qmax(n))),

where κ0 and B0 are as in Theorem 3.1.
The statements (5.14), (5.15) follow from Theorem 4.1 with M := βn >

M0 := L, n ≥ n0 and the estimate

penn((K, q)) ≥ 4κ0B
2
0βn exp(2βn)

log Cn(Fn,(K,q))

n
. (5.16)

For the proof of (5.16) we use that for a K-dimensional vector space V of
functions and β > 0 we have for any probability measure µ on T ×X , ε > 0
the estimate:

N(ε, Φ(β, V ), dLp(µ)) ≤ κ(K + 2)(16e)K+2βp(K+1)

(
1

ε

)p(K+1)

(5.17)

with some universal constant κ.
This implies that

N(ε,Fn,(K,q), dL1(µ)) (5.18)

≤ κ((K + q − 1)k+1 + 2)(16e)(K+q−1)k+1+2

(
βn

ε

)(K+q−1)k+1+1

,

since V 1
K

,q−1 has dimension ≤ (K + q − 1)k+1. Therefore

log Cn(Fn,(K,q)) ≤ log κ2 + 2 log((K + q − 1)k+1 + 2)

+
[
(K + q − 1)k+1 + 2

]
[log(nβn) + 2 log 16e]

≤ log κ2

+
[
(K + q − 1)k+1 + 2

]
[log(nβn) + 2 log 16e + 2]

≤ 2
[
(K + q − 1)k+1 + 2

]
log(nβn)

for n ≥ N0 where N0 is independent of K, q, L, p. This implies

4κ0B
2
0βn exp(2βn)

log Cn(Fn,(K,q))

n

penn((K, q))
≤ 4κ0B

2
0βn exp(2βn)2 log(nβn)

(log n)
8
5

≤ 4κ0B
2
0βn exp(2βn)4

(log n)
3
5

≤ 1
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for n ≥ N0(κ0, B0(L)), and so the result follows.

For the proof of (5.12) let Kn :=

⌈(
n

log n

) 1
2p+k+1

⌉
. Then by the approxi-

mation result in (5.2) for Kn ≤ Kmax(n), and for qmax(n) ≥ p holds

inf
(K,q)∈Pn

(
4βn penn((K, q)) + exp(2βn) inf

α∈Fn,(K,q)

∥∥α− α0

∥∥2

2

)

≤ 4βn penn((Kn, p)) + exp(2βn) inf
α∈Fn,(Kn,p)

∥∥α− α0

∥∥2

2

≤ C1
log log n(log n)

8
5

n

[
(Kn + p− 1)k+1 + 2

]
+ C2(log n)

2
5

(
1

Kn

)2p

= O

(
log log n(log n)

8
5

n

(
n

log n

) k+1
2p+k+1

)
+O

(
(log n)

2
5

(
log n

n

) 2p
2p+k+1

)

= O

(
log n

(
log n

n

) 2p
2p+k+1

)
.

This yields an estimate for the first term in (5.14). For the second term
we use the assumptions on Kmax(n) and qmax(n) to obtain the estimate

16κ0B
2
0

25

(log log n)2(log n)
2
5

n
(1 + log(Kmax(n)qmax(n)))

= O

(
log n

(
log n

n

) 2p
2p+k+1

)
.

This implies (5.12). (5.13) is proved similarly observing that as in the proof
of the approximation error in (5.9) we obtain

inf
α∈Fn,(Kn,p)

|Λ(α)− Λ(α0)| = O

((
1

Kn

)2p
)

. (5.19)

2

The truncation constants βn = 1
5
log log n are not meant as proposals for

practical examples. Note that the same estimates in part b) of the theorem
hold for βn of the form cln, where c is some bigger constant and ln grows
slower than log log n.

5.2 Net sieves

In this section we apply our results to obtain convergence rates for the con-
ditional log-hazard function for net sieves under the assumption that the
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underlying conditional log-hazard function α0 has an integral representation
of the form

α0(t, x) =

∫

Θ

Ψ(aϑ(t, x))dν(ϑ) (5.20)

where aϑ, ϑ ∈ Θ ⊂ IRm, x ∈ X ⊂ IRk is a set of sieve defining functions,
Ψ ◦ aϑ is the continuous net and ν is a signed measure of bounded variation
on Θ. This kind of representation is typically related to some smoothness
classes (see Yukich, Stichcombe, and White (1995)). Some approximation
results by finite nets with rates of approximation are given in Döhler and
Rüschendorf (2001a) and applied in the following. Let Zk+1(F0) denote the
class of all functions satisfying (5.20).

Define the basis of the net F0 = {Ψ ◦ aϑ; ϑ ∈ Θ} and for β > 0, K ∈ IN
and the finite approximation net

F(β, K) =

{
α : T × X → IR; α(t, x) =

K∑
i=1

cifi(t, x), fi ∈ F0,

K∑
i=1

|ci| ≤ β

}
.

(5.21)

The following conditions were introduced in Döhler and Rüschendorf (2001a)
to prove approximation rates by finite nets. Let µ be a probability measure
on IRd+1.

A1) There exists a D > 1 such that

N(δ,F0, dL2(µ)) = O

((
1

δ

)2(D−1)
)

. (5.22)

A2) Define bz(ϑ) = aϑ(z), z ∈ T × X , then the class {Ψ ◦ bz, z ∈ IRk+1} is
a P -Donsker class for any probability measure P on Θ.

Theorem 5.4 Assume conditions A1) and A2). Let Kn := n
1

2+ 1
D−1 , βn :=

1
5
log log n, and consider the net ML-estimator

α̂n := arg max
α∈F(βn,Kn)

Ln(α).

Then for any α0 ∈ Zk+1(Ψ,T, T × X ) holds

E
∥∥α̂n − α0

∥∥2

2
= O

(
(log n)2

n
1
2
+ 1

4D−2

)
(5.23)

and

E |Λ(α̂n)− Λ(α0)| = O

(
(log n)2

n
1
2
+ 1

4D−2

)
. (5.24)
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Proof: We apply Theorem 4.1. The approximation error was estimated in
Döhler and Rüschendorf (2001a). Let να0 be the signed measure representing
α0, then for n with βn ≥ 2|να0| holds

inf
α∈F(βn,Kn)

∥∥α− α0

∥∥2

2
= O

((
1

Kn

)1+ 1
D−1

)
. (5.25)

Next we prove that for β > 0, K ∈ IN holds:

Cn(F(β, K)) ≤ C(D)K(βK)2K(2D−1)n2K(2D−1). (5.26)

Define F ′(β,K) := {α : T × X → IR, (t, x) 7→ ∑K
i=1 cifi(t, x)

∣∣ fi ∈ F0,|ci| ≤
β}. Then F(β, K) ⊂ F ′(β,K), and we obtain for any probability measure ν
on T × X and δ > 0 using some well-known rules for covering numbers (cf.
van der Vaart and Wellner (1996)).

N(δ,F ′(β,K), dL1(ν))

≤ N(δ,F ′(β, K), dL2(ν))

≤ N

(
δ, 10s

K⊕
i=1

[−β, β]¯F0, dL2(ν)

)
≤ N

(
δ

K
, [−β, β]¯F0, dL2(ν)

)K

≤
[
N

(
δ

2βK
,F0, dL2(ν)

)
4βK

δ

]K

≤
[
C

(
δ

2βK

)−2(D−1)
4βK

δ

]K

= C(D)K(βK)K(2D−1)

(
1

δ

)K(2D−1)

independent of ν as in (5.26).
From Theorem 4.1 with M = βn this implies

E
∥∥α̂n − α0

∥∥2

2

= O

(
exp(3βn)

[(
1

Kn

)1+ 1
D−1

+
Kn

n
log

(
C(D)(nβnKn)2(2D−1)

)
])

= O


log n




(
1

n

) 1+ 1
D−1

2+ 1
D−1

+

(
1

n

)1− 1

2+ 1
D−1

log n







= O

(
(log n)2

(
1

n

)1− 1

2+ 1
D−1

)

= O

(
(log n)2

(
1

n

) 1
2
+ 1

4D−2

)
,

and the result follows.
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The proof of (5.24) is analogous using the approximation estimate

inf
α∈F(βn,Kn)

|Λ(α)− Λ(α0)| = O

((
1

Kn

)1+ 1
D−1

)
. (5.27)

For the proof note that for n with βn ≥ L := max{2|να0|, ‖α0‖∞} it holds by
(1.8) that

inf
α∈F(βn,Kn)

∣∣Λ(α)− Λ(α0)
∣∣ ≤ inf

α∈F(L,Kn)
|Λ(α)− Λ(α0)|

≤ k′(L) inf
α∈F(L,Kn)

∥∥α− α0

∥∥2

2

= O

((
1

Kn

)1+ 1
D−1

)
;

the last estimate is from Döhler and Rüschendorf (2001a). 2

As in section 5.1 alternative choices of the truncation constants βn are
possible.

We consider the special classes of neural nets, wavelet nets, and radial
basis function nets. In the following examples we use some approximation
results from Döhler and Rüschendorf (2001a).

a) Neural nets Here F0 = {f0 : T × X → [0, 1], z 7→ Ψ(γz + δ) | γ ∈
IRk+1, δ ∈ IR}, where Ψ : IR → [0, 1] is of bounded variation. Then the
conditions A1) and A2) are fulfilled with D = k + 4 and Theorem 5.4
implies

E
∥∥α̂n − α0

∥∥2

2
= O

(
(log n)2

n
1
2
+ 1

4k+14

)
. (5.28)

The same rate holds if the representation property of α0 is replaced by
Barron’s (1993) finiteness condition on the Fourier transform

Cf =

∫
|w|1|f̃(w)|dw < ∞ (5.29)

where f̃ is the Fourier transform of f .

If P (T,X) has a density with bounded support the convergence rate can be
improved to

E
∥∥α̂n − α0

∥∥2

2
= O

(
(log n)2

n
1
2
+ 1

4k+6

)
. (5.30)

Similar rates with 1
2

instead of 1
2

+ 1
4k+6

in the exponent were obtained
previously for regression estimation, in Barron (1994) and for density
estimation in Modha and Masry (1996).
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b) Radial basis-function nets Here F0 = {f0 : T × X → [0, 1], z 7→
%(‖γ(z− δ)‖) | γ ∈ IRk+1, δ ∈ IR}, where % : IR+ → [0, 1] is monotonically
non-increasing. Then the conditions A1) and A2) are fulfilled with D =
k + 5 and from Theorem 5.4 we obtain

E
∥∥α̂n − α0

∥∥2

2
= O

(
(log n)2

n
1
2
+ 1

4k+18

)
. (5.31)

c) Wavelet nets Here F0 = {f0 : T × X → [0, 1], z 7→ Ψ(γ(z − δ)) | γ ∈
IRk+1, δ ∈ IR}, where Ψ : IRd+1 → [0, 1] is Lipschitz with bounded support.
Then by Theorem 5.4 with D = 3k + 4 we obtain

E
∥∥α̂n − α0

∥∥2

2
= O

(
(log n)2

n
1
2
+ 1

12k+14

)
. (5.32)

Note that in all three cases a corresponding convergence result also holds
in terms of the Λ-distance.

Résumé

In conclusion this paper gives quite general results on the convergence rates
for sieved minimum contrast estimators and also for the related adaptive ver-
sions of these estimators. The results are formulated in detail for the example
of estimating the log-hazard function in censoring models. In comparison to
the related general approach in Birgé and Massart (1998) and Barron, Birgé,
and Massart (1999) we use some simpler conditions concerning the covering
numbers. The results in this paper are illustrated with examples of sieves
such as neural nets, wavelet nets, radial basis function nets and tensor prod-
uct splines. Some further applications of the method in this paper to more
general type of censorings as well as to a more detailed study of neural net
estimators is given in the forthcoming papers in Döhler and Rüschendorf
(2000, 2001b).
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