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Abstract

In this paper we analyse a natural edge exchange Markov chain on
the set of spanning trees of an undirected graph by the method of mul-
ticommodity flows. The analysis then is refined to obtain a canonical
path analysis too. The construction of the flow and the canonical paths
is based on related path constructions in a paper of Cordovil and Mor-
eira (1993) on block matroids. The estimates of the congestion measure
imply a polynomial bound on the mixing time. The canonical paths
for spanning trees also yield polynomial time mixing rates for some re-
lated Markov chains on the set of forests with roots and on the set
of connected spanning subgraphs. We obtain a parametric class of sta-
tionary distributions from which we can efficiently sample. For rooted
forests this includes the uniform distribution. For connected spanning
subgraphs the uniform distribution is not covered.

Keywords: spanning trees, randomized algorithm, multicommodity flow,
canonical paths, Markov chain, rooted forests, connected subgraphs

1 Introduction

Counting the number of spanning trees in an undirected, connected, loop-free
graph is one of the few counting problems on graphs G = (V, E) which can be
solved deterministically in polynomial time. Remind that a spanning tree is a
maximum cardinality cycle free subgraph (V, S) of G. If D = diag(d0, . . . , dn−1)
is the diagonal matrix with the degrees d0, . . . , dn−1 of the n vertices in V on
its main diagonal and if A denotes the adjacency matrix of V, then the classical
Kirchhoff-formula states that for all 0≤ i≤n−1:

# spanning trees of G = det(D − A)ii (1.1)

where (D−A)ii is the (n− 1)× (n− 1) principal submatrix of D−A obtained
by deleting the ith row and the ith column. Since the determinant of a ma-
trix may be computed in time O(n3) by the Gaussian elimination algorithm
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this formula implies a polynomial time algorithm for counting spanning trees
in an undirected graph. Various techniques have been developed to establish
randomized approximation schemes (RAS) in particular for the approximative
counting of combinatorial and graph-theoretic structures. For a survey see Jer-
rum and Sinclair (1996) or Jerrum (2003). These Markov chain Monte Carlo
methods have been successfully applied to establish approximative polynomial
time counting algorithms for a series of difficult counting and approximation
problems like the number of perfect matchings, the graph colouring problem,
the approximation of the partition function in the Ising model, the volume of
convex bodies, and many others.

The basic problem is as follows. Let Ω = Ωn be a finite set depending on the
length n of the input (like the number of nodes n in a graph-theoretic problem).
Let N = Nn be the (unknown) number of elements of Ω. Then a random
algorithm A = An is called a fully polynomial randomized approximation
scheme (FPRAS) of N if for all n and for all small ε, δ ∈ (0, 1)

P ((1− ε)N ≤ A ≤ (1 + ε)N) ≥ 1− δ (1.2)

where the algorithm runs in time bounded by a polynomial in n, ε−1 and δ−1.
Note that N = N(n, ε, δ), A = A(n, ε, δ) depend on n, ε, δ and typically N
grows exponentially fast in n. Therefore, a naive Monte-Carlo algorithm will
not work in this case. The dependence on δ can be easily neglected by repeated
sampling.

Jerrum, Valiant, and Vazirani (1986) suggested a RAS by reducing the
problem of approximative counting of N = |Ω| to that of almost uniform
random sampling in the following way:

Assume that there is some decreasing sequence of subsets Ω = Ω0 ⊃ Ω1 ⊃
· · · ⊃ Ωr with the following properties:

a) |Ωr| can be calculated (1.3)

b) |Ωi|
/
|Ωi+1| is polynomial bounded in n for 0 ≤ i < r

c) r = rn is polynomially bounded in n

d) For 0 ≤ i < r elements of Ωi can be sampled approximatively uniformly

in polynomial time with respect to n.

Then by iterative sampling in Ωi as in d) one obtains an estimator X̄i of
|Ωi+1|

/
|Ωi| for 0 ≤ i < r. By b) a polynomial number of samples in n and ε−1

is sufficient. Define the RAS A by

A := |Ωr| |X̄|−1 (1.4)

where X̄ :=
∏r−1

i=0 X̄i. By a) and c) X̄ can be calculated in polynomial time.
Typically it will be not difficult to construct natural subsequences Ωi such
that a), b), c) hold. In typical applications the Ωi are of the same structure
as Ω (with different size). So solving d) for Ω0 = Ω yields solutions of d)
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for any Ωi. This property is called self-reducibility in Jerrum et al. (1986).
But the challenge is condition d) for Ω = Ω0 The main tool for constructing
approximatively uniform samples is to construct a suitable Markov chain M

which has as its stationary distribution the uniform distribution on Ω. (A
well-known application of this method is the simulated annealing algorithm.)

The main technical problem is to establish that the used Markov chain is
rapidly mixing. This property then yields that sampling can be done efficiently
(in polynomial time). Several tools have been developed to this aim. The main
tools are various eigenvalue estimates for the second largest eigenvalue of the
transition matrix (Diaconis and Stroock (1991)), coupling methods (see e.g.,
Aldous (1983) or Diaconis (1988)) the conductance method and the method of
canonical paths (see Diaconis and Stroock (1991) and Sinclair (1993)). Here the
basic idea to obtain a good upper bound on the mixing time of the Markov
chain is to select a set Γ = {γxy; x, y ∈ Ω} of canonical paths γxy for each
pair (x, y) such that no transition e = (v, w) of the graph of the chain is too
often used in the corresponding flow problem. Define the congestion measure
% = %(Γ) by

%(Γ) = max
e=(v,w)∈E

1

π(v)P (v, w)

∑
(x,y):γxy3e

π(x)π(y)|γxy|. (1.5)

Here P (v, w) is the transition matrix of the Markov chain, π is the stationary
distribution and |γxy| is the length of the path γxy. The sum term is the total
flow through edge e while the first term is the inverse capacity of edge e. By
a result of Diaconis and Stroock (1991) one obtains for irreducible, aperiodic,
reversible Markov chains with P (x, x) ≥ 1

2
for all x ∈ Ω the following estimate

of the mixing time τ = τ(ε):

τ(ε) ≤ %(Γ)(log π̂−1 + log ε−1) (1.6)

with π̂ = minx∈Ω π(x). So the problem to bound the mixing time of the Markov
chain can be reduced to obtain bounds on the congestion measure. Note that
for the uniform distribution π the term log π̂−1 is polynomial in n, when as
typically N = |Ω| is exponential in n.

To obtain bounds on %(Γ) an important technique is coding of the tran-
sitions of the canonical path. For e ∈ T = {(x, y) ∈ Ω × Ω : P (x, y) > 0}
define Pc(e) = {(x, y) ∈ Ω × Ω : γxy 3 e}, the set of pairs whose canoni-
cal path uses edge e. Then a coding is a system (ηe) of injective mappings
ηe : Pc(e) → Ω, e ∈ T . If π is the uniform distribution on Ω and (ηe) a coding,
then we obtain the estimate

%(Γ) = max
e=(v,w)∈T

1

π(v)P (v, w)

∑
(x,y)∈P(e)

π(x)π(y)|γxy| (1.7)

≤ max
e=(v,w)∈T

`max

P (v, w)

∑
(x,y)∈P(e)

π(ηe(x, y))

≤ max
e=(v,w)∈T

`max

P (v, w)
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where `max denotes the maximal length of the canonical paths. If π is not the
uniform distribution then a similar estimate holds if the coding is constructed
such that

π(v)P (v, w)π(ηe(x, y)) ≈ π(x)π(y). (1.8)

The multicommodity flow technique is a natural extension of canonical
paths introduced in Sinclair (1992). Let Pxy denote the set of all directed
paths from x to y in the Markov chain on Ω. Let fxy : Pxy → IR+

0 for x, y ∈ Ω
be a set of functions such that

∑
p∈Pxy

fxy(p) = 1. Then each fxy is called a

1-flow from x to y. In particular any canonical path defines a 1-flow. Then the
set F = {fxy ; x, y ∈ Ω} is called a multicommodity flow. Sinclair (1992) proved
that the estimate of the mixing time in (1.7) extends to multicommodity flows
F,

τ(ε) ≤ %(F )(log π̂−1 + log ε−1) (1.9)

where

%(F ) = max
e=(v,w)∈T

1

π(v)P (v, w)

∑
pxy3e

π(x)π(y)fxy(pxy)|pxy| (1.10)

is the congestion measure of the flow F . To bound %(F ) we define for a tran-
sition e ∈ T of M the set P(e) :=

⋃
x,y∈Ω{p ∈ Pxy : e ∈ p and fxy(p) > 0}.

A coding (ηe), for a multicommodity flow F is a system of (not necessarily
injective) mappings ηe : P(e) → Ω such that for all z ∈ Ω∑

pxy∈P(e):

ηe(pxy)=z

fxy(pxy) ≤ 1. (1.11)

Multicommodity flows are in some cases easier to construct than canon-
ical paths. In some recent papers these were instrumental for constructing
improved bounds for several basic counting problems (see Sinclair (1992)) and
to obtain randomized approximation schemes for long time open problems as
for the knapsack problem (Morris and Sinclair (2004)) and for the counting of
contingency tables (Cryan, Dyer, Goldberg, and Jerrum (2002)).

In this paper we construct and analyse at first a multicommodity flow for
the spanning tree problem and then refine the analysis to canonical paths which
needs some technically involved considerations. In section two we introduce the
natural Markov chain for this problem. The mixing time τs of this chain had
been bounded from above using coupling arguments by Broder (1989) and
Aldous (1990) who obtained a bound for the mixing time of the order

τs(ε) = O(m2n4(n log m + log ε−1)) (1.12)

with n = |V |, m = |E|. Feder and Mihail (1992) improved this bound using
the conductance method to the order

τs(ε) = O(mn2(n log m + log ε−1)). (1.13)
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In fact they considered an extension of the problem to matroids which sat-
isfy a certain balance-condition. Since for a graph G = (V, E) the pair M =
(E, ST(G)) – ST(G) the set of spanning trees of G – is a graphical matroid
satisfying this balance condition, the spanning tree problem is included in
their result. In a recent paper Jerrum and Son (2002)found a bound for the
log Sobolev constant which leads to an improvement of the Feder and Mihail
mixing result of the bases exchange walk for balanced matroids to the order
O(nm log n).

Jerrum (1998) suggested that the construction of Cordovil and Moreira
(1993) for paths in graphic block matroids is ‘ideally suited to this purpose’
but no further analysis is given in that paper. We prove in detail that based on
the paths of Cordovil and Moreira (1993) a multicommodity flow and canonical
paths can be defined such that no transition of the Markov chain carries too
much weight. This is not at all obvious but needs some careful consideration
of the canonical paths (see the proofs of Lemma 3.1 and of Theorem 3.2). As a
result we establish that by the method of multicommodity flow one obtains the
same bound for the mixing time obtained by Feder and Mihail (1992) by the
conductance method but one does not reach the improved bound of Jerrum
and Son (2002).

In the final sections we show that the canonical paths for spanning trees
are also useful for the analysis of some related Markov chains on the set of
forests with roots and on the set of connected spanning subgraphs. In both
cases the Markov chains can be shown to be rapidly mixing. Their stationary
distribution however is some distribution with weights given by the number
of components (for the forest problem) and by the number of spanning trees
(for the connected spanning subgraphs problem). For connected subgraphs the
interesting case of the uniform distribution remains open.

2 Markov chain on spanning trees

In this section we introduce a Markov chain on the set ST(G) of spanning
trees of an undirected graph G = (V, E) whose stationary distribution is the
uniform distribution on ST(G). We also introduce some notions from graph
theory and on matroids which are used for the construction of multicommodity
flows in section 3.

The Markov chain Ms(G) = (Xt)t∈IN on ST(G) is defined by the transition
probabilities. If Xt = X ∈ ST(G) is the state of Ms(G) at time t ∈ IN, then
we draw uniformly and independent e ∈ X and f ∈ E and set

1) Y = (X \ {e}) ∪ {f}

2) If Y ∈ ST(G) then we set

Xt+1 =

{
Y

X
each with probability 1

2
. (2.1)
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If Y 6∈ ST(G), then we set Xt+1 = X. We denote the transition matrix of
Ms(G) by Ps.

So the transitions of this chain are given by simple random exchanges of
two edges as long as they lead again to spanning trees.

Proposition 2.1 The Markov chain Ms(G) is ergodic and the stationary dis-
tribution of Ms(G) is the uniform distribution on ST(G).

Proof: Ergodicity is equivalent to irreducibility and aperiodicity. The ape-
riodicity is obvious from construction and also for any X ∈ ST(G) holds
Ps(X,X) > 1

2
. For any X, Y ∈ ST(G) we prove by induction on k = |X ⊕ Y |,

the cardinality of the symmetric difference of X and Y , that P t
s(X, Y ) > 0 for

some t ∈ IN. Note that k = |X⊕Y | ∈ 2IN. If k = 2, X⊕Y = {a, b}, a ∈ X, b ∈
Y . Then choosing (with positive probability) e = a and f = b in the definition
of the chain one gets Xt+1 = Y and Ps(X,Y ) > 0. If k > 2 and b ∈ Y \X then
X∪{b} contains a circle C with some edge a in C such that a ∈ X \Y . Choos-
ing (with positive probability) e = a, f = b, then X ′ = (X\{a})∪{b} ∈ ST(G)
and Ps(X, X ′) > 0. Furthermore, |X ′ ⊕ Y | = k − 2 and so by the induction
hypothesis P t

s(X
′, Y ) > 0 for some t ∈ IN and thus P t+1

s (X, Y ) > 0.

For any X, Y ∈ ST(G) with Ps(X, Y ) > 0, X 6= Y holds Ps(X, Y ) =
1

2(n−1)m
= Ps(Y,X) where n = |V |, m = |E|, i.e. the transition matrix is sym-

metric and thus reversible w.r.t. the uniform distribution π on ST(G). This
implies that the uniform distribution π is the stationary distribution of Ms(G).

2

The construction of the multicommodity flow in section three uses for its
proof an idea of Cordovil and Moreira (1993) for graphical block-matroids.
For the ease of reference we remind that a matroid M = (S, B) is a pair of
nonempty sets, B ⊂ P(S), such that for all X,Y ∈ B holds: ∀x ∈ X \Y exists
some y ∈ Y \X such that (X \ {x})∪{y} ∈ B. Elements of B are called bases
of M . A matroid M = (S, B) is called block-matroid if S = X ∪ Y for some
X, Y ∈ B.

In our context we consider the graphical matroid (E, ST(G)) which is a
graphical block-matroid if G can be decomposed into two disjoint spanning
trees, see Figure 1.
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Figure 1: A graphical block-matroid on the left with a decomposition into
two spanning trees.
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For a block-matroid M = (S, B) a basis element X ∈ B is a basis-cobasis
of M if S \X ∈ B. The basis-cobasis graph H = (V ′, E ′) is defined by V ′ =
{X ∈ B; X is basis-cobasis of M}, E ′ = {{X1, X2} ⊂ B; |X1 ⊕X2| = 2}.

Cordovil and Moreira (1993) proved constructively the following result:

Theorem 2.2 Let M be a graphical block-matroid with basis-cobasis graph
H = (V ′, E ′). Then for any X, Y ∈ V ′ there exists a connecting path from X
to Y in H of length 1

2
|X ⊕ Y |.

We will use the contraction of graphs along edges e in order to reduce our span-
ning tree problem to the framework of block-matroids and the basis-cobasis
graph. To explain the contraction G/e on an edge e see the following example.
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Figure 2: Contraction of a graph on edge e.

Here the graph is contracted on edge e with end nodes v, w, These con-
tracted nodes give rise to a new node ve, while edge e disappeared. For a
formal definition see Diestel (1996). For any subset S ⊂ E let G/S denote the
contraction on all edges in S.

3 Bounding the mixing time of Ms

We show now how to bound the mixing time of Ms(G) via the multicommod-
ity flow technique described in section 1.

Construction of the multicommodity flow F
G
:

For a graph G = (V, E), we have to define for each pair X, Y ∈ ST(G) a 1-flow
f

XY
: P

XY
→ IR+

0 with∑
p∈P

XY

f
XY

(p) = 1. (3.1)

To do this, we set M := (V, X ∪ Y )
/
(X ∩ Y ) as the graph with the nodes of

G and the edges of X ∪ Y contracted on the edges of X ∩ Y . While the nodes
of M correspond to the connected components of (V, X ∩ Y ), the edges of M
are those of the symmetric difference X ⊕ Y := (X ∪ Y ) \ (X ∩ Y ).

Now X \ Y and Y \ X are two disjoint spanning trees of M and thus
M forms a graphic block-matroid. Each spanning tree of M can be enhanced
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to an element of ST(G) by adding the edges of X ∩ Y . So the basis-cobasis
graph of M corresponds to a subgraph of the transition graph of Ms(G).
A path p′ = (B′

i)0≤i≤` in this basis-cobasis graph can be transferred to a
path p = (Bi)0≤i≤` in Ms by setting Bi := B′

i ∪ (X ∩ Y ) for all 0 ≤ i ≤ `.
Exactly to these paths f

XY
will assign a positive weight. The construction due

to Cordovil and Moreira (1993) is inductive over the number |M | of nodes in
M . We next show that this construction can be used to establish inductively
a multicommodity flow on ST(G).

If |M | = 1, then X = Y and nothing is to do. In the case |M | = 2, X and
Y are neighbours in Ms(G). We define f

XY
(p) = 1 for the path p = (Bi)0≤i≤1

which consists only of the transition from X to Y , i.e. B0 := X and B1 := Y .
For all other p′ ∈ P

XY
\ {p} we set f

XY
(p′) := 0, so equation (3.1) holds.

Generally we encode a transition (Bi, Bi+1) in a path (Bi)0≤i≤` that carries
any weight in F

G
by B̄i := B0 ⊕ B` ⊕ Bi. We have also to take care that

this encoding is a spanning tree. For the above path p from X to Y we get
B̄0 = X ⊕ Y ⊕X = Y , which is clearly an element of ST(G).

For |M | = ` + 1 let dmin be the minimal degree of a node in M and D
the set of nodes of degree dmin. Then dmin = 2 or dmin = 3 because X and Y
are spanning trees. Next for each v ∈ D we select a pair Xv, Yv ∈ ST(G) that
satisfies the induction hypothesis, and thus f

XvYv
is already defined. Further

for each path p′ ∈ P
XvYv

with f
XvYv

(p′) > 0 we construct an extension p ∈ P
XY

and we say p is based on p′. Let

V(p) :=
⋃
v∈D

{p′ ∈ P
XvYv

| p is based on p′}

be the set of all paths p is based on. Then we define

f
XY

(p) :=
∑

p′∈V(p)

1

|D|
f

X′Y ′ (p
′),

where X ′ and Y ′ are start and end nodes of p′ respectiveley. As for all X, Y ∈
ST(G) ⋃

p∈P
XY

V(p) =
⋃
v∈D

{p′ ∈ P
X′Y ′ | fX′Y ′ (p

′) > 0},

the induction hypothesis gives∑
p∈P

XY

f
XY

(p) =
∑

p∈P
XY

∑
p′∈V(p)

1

|D|
· f

X′Y ′ (p
′)

=
1

|D|
·
∑
v∈D

∑
p′∈P

XvYv

f
XvYv

(p′)

=
1

|D|
·
∑
v∈D

1

= 1.
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So f
XY

satisfies equation (3.1). We show now how to select for v ∈ D the pair
Xv, Yv and how to derive from the paths in P

XvYv
the paths of P

XY
.

If dmin = 2 let a ∈ X and b ∈ Y be the two edges in M at this node
v and set Xv := (X \ {a}) ∪ {b} and Yv := Y . For this pair the induction
hypothesis holds because Mv := (V, Xv ∪ Yv)/(Xv ∩ Yv) = (M/b) \ {a} has
exactly ` nodes. A path p′ = (B′

i)0≤i<` ∈ PXvYv
can easily be transformed into

a path p = (Bi)0≤i≤` ∈ PXY
by adding the transition from X to Xv at the first

step. Formally B0 := X and Bi+1 := B′
i for all 0 ≤ i < `.

p′ : Xv = B′
0 −→ . . . −→ B′

`−1︸ ︷︷ ︸ = Yy
p : X = B0

−a + b−−−−−−→
︷ ︸︸ ︷
B1 −→ . . . −→ B` = Y.

(3.2)

The encodings (B̄i)0≤i<` of p can also be derived from the encodings (B̄′
i)0≤i<`−1

of p′: We encode the transition (Bi, Bi+1) by B̄i := X⊕Y ⊕Bi = (B̄′
i+1 \{b})∪

{a} for 1 ≤ i < ` and B̄0 := Y . These are all spanning trees because in B̄′
i−1

the edge b is the only one at node v.
Now let dmin = 3 and w.l.o.g. let a, b ∈ X and c ∈ Y be the edges at v in

M . Further let a be that edge that is included in the only circle in X ∪ {c}.
We define Xv := X and Yv := (Y \ {c})∪ {a} and so the induction hypothesis
holds for the pair Xv, Yv because the graph Mv := (V, Xv ∪ Yv)/(Xv ∩ Yv) =
(M/a) \ {c} contains ` nodes.

To derive p = (Bi)0≤i≤` ∈ P
XY

out of a path p′ = (B′
i)0≤i<` ∈ P

XvYv
we

look at that transition in p′ which exchanges the edge b, e.g., b ∈ B′
j ⊕ B′

j+1

for some j ∈ {0, . . . , `− 2}. We then define:

Bi :=

{
B′

i , i < j

(B′
i−1 \ {a}) ∪ {c}, i > j

for all i ∈ {0, . . . , `} \ {j} and

Bj :=

{
(B′

j−1 \ {a}) ∪ {c}, if spanning tree

(B′
j−1 \ {b}) ∪ {c}, otherwise.

(3.3)

p′ : X −→ . . . −→ B′
j−1︸ ︷︷ ︸ −b + d−−−−−−−−−−−−−−−−−→ B′

j −→ . . . −→ Yv︸ ︷︷ ︸y y−a + c

p :
︷ ︸︸ ︷
X −→ . . . −→ Bj−1

−a + c−−−−−−→
−b + c

Bj
−b + d−−−−−−→
−a + d

︷ ︸︸ ︷
Bj+1 −→ . . . −→ Y

The (Bi)0≤i<j are spanning trees because of the hypothesis. For i > j the edge
a is the only edge at v in B′

i−1 and, therefore, the exchange of a by c leads
to another spanning tree Bi. Finally in (3.3) that edge is removed which is
contained in the circle in B′

i−1 ∪ {c}. This guarantees Bj ∈ ST(G). At last we
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have to make sure that the encodings B̄i = X⊕Y ⊕Bi are also spanning trees.
By definition is

B̄i =

{
(B̄′

i \ {a}) ∪ {c}, i < j

B̄′
i−1, i > j

for all i ∈ {0, . . . , `− 1} \ {j}. It follows as before, that these are all spanning
trees. B̄j = X⊕Y ⊕Bj needs a little more work. In the first case in (3.3) holds

B̄j = X ⊕ ((Yv \ {c}) ∪ {a})⊕
(
(B′

j−1 \ {c}) ∪ {a}
)

= X ⊕ Yv ⊕B′
j−1

= B̄′
j−1

Obviously this is a spanning tree by the hypothesis. In the second case in (3.3)
we have

B̄j = X ⊕ ((Yv \ {c}) ∪ {a})⊕
(
(B′

j−1 \ {c}) ∪ {b}
)

= X ⊕ Yv ⊕B′
j−1 ⊕ {a, b}

= (B̄′
j−1 \ {a}) ∪ {b}.

The circle in B̄′
j−1 ∪ {b} must include a and that is why B̄j also in this case is

a spanning tree.

The multicommodity flow F
G

:= {f
XY

| X, Y ∈ ST(G)} on Ms(G) and its
codings are now defined. Because the functions f

XY
: P

XY
→ IR+

0 are defined
on disjoint sets we can look at F

G
as a function on P :=

⋃
X,Y ∈ST(G)PXY

to

IR+
0 and we write

F
G
(p) = f

XY
(p) for all p ∈ P

XY
and all X, Y ∈ ST(G).

The inductive construction of F
G

has the positive effect that a 1-flow f
XY

∈ F
G

does not differ much to another flow f
X′Y ′ ∈ F

G
if the spanning trees X,X ′ and

Y, Y ′ are very similar. The following lemma makes this clear.

Lemma 3.1 Given X, Y ∈ ST(G) and a node w in M := (V, X ∪Y )/(X ∩Y )
of degree 3. The three edges in M at w are a, b ∈ Y and c ∈ X. Then Xa :=
(X \{c})∪{a} and Xb := (X \{c})∪{b} are also spanning trees. Furthermore,
let pa = (Ai)0≤i≤` ∈ PXaY

and pb = (Bi)0≤i≤` ∈ P
XbY

be the paths with

Ai =

{
Bi ⊕ {a, b}, 0 ≤ i ≤ j

Bi, j < i ≤ `
(3.4)

where j is that step in pa which exchanges b, i.e. b ∈ Aj⊕Aj+1. Then for these
paths pa, pb and the multicommodity flow F

G
holds

F
G
(pa) = F

G
(pb).
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Similary, for p′a ∈ (A′
i)0≤i≤` ∈ PY Xa and p′b = (B′

i)0≤i≤` ∈ P
Y Xb

with

A′
i =

{
B′

i, 0 ≤ i ≤ j

B′
i ⊕ {a, b}, j < i ≤ `

where again j ∈ {0, . . . , `− 1} with b ∈ A′
j ⊕ A′

j+1 holds FG(p′a) = FG(p′b).

Proof: By definition of Xa and Xb, one can easily see that the graphs Ma :=
(V, Xa ∪ Y )/(Xa ∩ Y ) and M b := (V, Xb ∪ Y )/(Xb ∩ Y ) are isomorph. If a
connects the nodes w and t and b the nodes w and s in M , then I : Ma → M b

given by

I(v) :=


v, v /∈ {va, s}
t, v = va

vb, v = s
und I(e) :=

{
e, e 6= b
a, e = b

for all nodes v and edges e in Ma defines an isomorphism. Figure ?? shows an
example.

u u
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u u
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@@

t

u vb

a

M b = (M/b) \ {c}

Figure 3: An example for a graph M from Lemma 3.1. The resulting graphs
Ma and M b are isomorph.

The number of nodes in Ma is the same as that in M b. The proof of Lemma
3.1 is given by induction over |Ma|:

For |Ma| = 2 the path pa = (Ai)0≤i≤1 given by A0 = Xa and A1 = Y is the
only path in P

XaY
with a positive weight in F

G
, i.e. F

G
(pa) = 1. The same holds

for pb = (Bi)0≤i≤1 given by B0 = Xb = (A0 \ {a}) ∪ {b} and B1 = Y = A1. So
in this case the lemma is proved.

If |Ma| = ` + 1 let Da be the set of nodes in Ma of minimal degree dmin

and Db the analogous set of nodes in M b. Each node in Da corresponds to a
node in Db via the isomorphism I.

The value of F
G
(pa) is based by construction on the paths in V(pa). For

v ∈ Da each path p′a ∈ PXa
v Yv

∩V(pa) corresponds to a path p′b ∈ PXb
uYu

∩V(pb),

u := I(v) ∈ Db. Is a an edge at v in Ma, so b is an edge at u in M b. This leads to
Xa

v = Xb
v and Yv = Yu and, therefore, p′a = p′b. Otherwise, if a is not an edge at

v we have v = u. In this case either Xa arises from Xa
v and Yv = Y or Xa

v = Xa

and Y arises from Yv by exchanging two edges. The same holds for Xb
v and Yv.

This modification can also be done at X and Y and for the resulting spanning
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trees Xv, Yv and the node w the induction hypothesis holds for all paths in
P

Xa
v Yv

and P
Xb

vYv
that satisfy (3.4). This condition is in particular satisfied by

p′a and p′b and, therefore, F
G
(p′a) = F

G
(p′b). It follows F

G
(p′a) = F

G
(p′b) for all

p′a ∈ V(pa) and for the corresponding p′b ∈ V(pb). Finally

F
G
(pa) =

1

|Da|
∑

p′a∈V(pa)

F
G
(p′a) =

1

|Db|
∑

p′b∈V(pb)

F
G
(p′b) = F

G
(pb). 2

The multicommodity flow F
G

yields good upper bounds for the mixing time
of Ms(G) if no transition of the Markov chain carries too much weight. The
following theorem shows that this holds for F

G
.

Theorem 3.2 Let B and B̄ be two spanning trees of a graph G = (V, E)
and let e ∈ B ⊕ B̄ be an edge. Define B := B(B, B̄, e) as the set of paths
p = (Bi)0≤i≤` ∈ P such that there exists j ∈ {0, . . . , `− 1} with

(a) B = Bj, i.e., p contains B

(b) B̄ = B0 ⊕B` ⊕B, i.e., the coding of B in p is B̄

(c) e ∈ Bj ⊕Bj+1, i.e., p leaves B by exchanging e

(d) F
G
(p) > 0

Then ∑
p∈B

F
G
(p) = 1.

Proof: We set M := (V, B ∪ B̄)/(B ∩ B̄) and again we proceed inductive over
|M |. For |M | = 2 the set B ⊕ B̄ contains exactly two edges. Thus B contains
only the path p = (Bi)0≤i≤1 with B0 = B and B1 = B̄. By definition F

G
(p) = 1.

Now let |M | = ` + 1 and D be the set of nodes in M of minimal degree
dmin. For each v ∈ D we construct a set Bv ⊂ P with

(i)
∑

p′∈Bv

F
G
(p′) = 1,

(ii)
∑
p∈B

F
G
(p) =

∑
v∈D

∑
p′∈Bv

1

|D|
F

G
(p′).

The theorem follows then easily, because∑
p∈B

F
G
(p) =

∑
v∈D

∑
p′∈Bv

1

|D|
F

G
(p′) =

1

|D|
·
∑
v∈D

1 = 1.

If dmin = 2, let b ∈ B and let a ∈ B̄ be the two edges at a fixed v ∈ D.
If e /∈ {a, b}, we define Bv := B and B̄v := (B̄ \ {a}) ∪ {b}. The graph
Mv := (V, Bv ∪ B̄v)/(Bv ∩ B̄v) has ` nodes. Therefore, the properties (a), (b),
(c), (d) and also (i) are satisfied by the set Bv := B(Bv, B̄v, e). If e ∈ {a, b},



J. Fehrenbach and L. Rüschendorf 13

we set Bv := (B \ {b}) ∪ {a} and B̄v := Bv. Then Bv := P
BvB̄v

satisfies (i) by
definition of F

G
. To ensure (ii), we show⋃

p∈B

V(p) =
⋃

w∈D

Bw. (3.5)

This gives immediately (ii):∑
p∈B

F
G
(p) =

∑
p∈B

∑
p′∈V(p)

1

|D|
F

G
(p′) =

∑
v∈D

∑
p′∈Bv

1

|D|
F

G
(p′).

While in (3.5)
⋃
V(p) ⊆

⋃
Bw is a consequence of the construction of F

G
,⋃

V(p) ⊇
⋃
Bw one obtains as follows: Take p ∈ B and p′ ∈ V(p), which is

based on p via a node w ∈ D. If e /∈ {a, b}, p′ is extended to p by adding the
exchange of a and b at the first step. By definition of B, p leaves the spanning
tree B = Bv by exchanging e. The same holds, therefore, for p′. But in p′ this
transition is coded by B̄′ := (B̄ \ {a}) ∪ {b} and so p′ ∈ B(Bv, B̄v, e) = Bv.
If e ∈ {a, b} we get p ∈ P

BB̄
, because a, b are exchanged first in p. Thus the

path p′ is a path from B′ := (B \ {b}) ∪ {a} = Bv to B̄ = Bv and hence
p′ ∈ Bv = P

BvB̄v
.

The case dmin = 3 we treat analogonsly. For v ∈ D let w.l.o.g. a, b ∈ B
and c ∈ B̄ be the tree edges at v in M . We further define Bv := B, B̄a

v :=
(B̄ \ {c}) ∪ {a} and B̄b

v := (B̄ \ {c}) ∪ {b}. Let X, Y ∈ ST(G) be the start
and end node of a path p ∈ B that is based on p′ ∈ V(p) via a node w ∈ D.
We consider at first e /∈ {a, b, c} and again w.l.o.g. a, b ∈ X, c ∈ Y . According
to the construction of F

G
, the edges a, b, and c are exchanged in p in two

consecutive transitions. Because a, b ∈ B, both edges are either in X or in
Y . The only circle in X ∪ {c} contains either a or b. If it contains a then
p′ ∈ Ba := (Bv, B̄

a
v , e), else p′ ∈ Bb := B(Bv, B̄

b
v, e). For p′ = (Bi)0≤i≤` ∈ Ba,

we define p′′ = (Ai)0≤i≤` ∈ Bb by

Ai :=

{
Bi, 0 ≤ i ≤ j

Bi ⊕ {a, b}, j < i ≤ `

with j ∈ {0, . . . , `−1} such that b ∈ Bj⊕Bj+1. These paths p′, p′′, the spanning
trees X, Y and the node w of degree 3 satisfy the prerequisite of Lemma 3.1
and hence F

G
(p′) = F

G
(p′′). Furthermore, p′′ cannot be in any other V(p̃). If

this would be the case, then p ∈ P
XY

and so p̃ = p. For any p ∈ B, the path
p′ ∈ V(p) according to w ∈ D is contained either in Ba or in Bb, while the
corresponding p′′ cannot be in another set V(p̃). Thus F

G
(p′) = F

G
(p′′) and by

the induction hypothesis∑
p′∈Ba

F
G
(p′) =

∑
p′∈Bb

F
G
(p′) = 1.

The set

Bv := {p′ ∈ Ba ∪ Bb | ∃p̃ ∈ B : p′ ∈ V(p̃)}, (3.6)
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satisfies (i)∑
p′∈Bv

F
G
(p′) =

∑
p′∈Ba

F
G
(p′) =

∑
p′∈Bb

F
G
(p′) = 1.

If e ∈ {a, b, c}, then we set Ba := B(Bv, B̄
a
v , b) and Bb := B(Bv, B̄

b
v, a) and

proceed as above. We also get in this case a set Bv with property (i). The
definition (3.6) of Bv ensures that⋃

p∈B

V(p) =
⋃
v∈D

Bv.

holds, and, therefore, Bv satisfies (ii). Now the theorem follows as in the case
dmin = 2. 2

It is not difficult to see that Theorem 3.2 guarantees (1.11). All preparations
are made now to obtain an efficient upper bound on the mixing time of Ms(G).

Theorem 3.3 For a graph G = (V, E) the mixing time τs of the Markov chain
Ms(G) is bounded by

τs(ε) ≤ 2n2m · (n log m + log ε−1)

for all ε ∈ (0, 1) with n := |V | and m := |E|.

Proof: In Proposition 2.1 we have seen, that the Markov chain Ms(G) meets
the prerequisites of the result of Diaconis and Stroock (1991) mentioned in
(1.6) and its extension of Sinclair (1992) in (1.12). Hence we already have

τs(ε) ≤ %(F
G
) · (log π̂−1 + log ε−1) (3.7)

with π̂ := minx∈ST(G) π(x), and

%(F
G
) := max

v,w∈Ω
Ps (v,w)>0

1

π(v) · Ps(v, w)
·

∑
pxy∈P(v,w)

π(x)π(y) · fxy(pxy) · |pxy |,

where P(v, w) as set of paths p, that contain the transition (v, w) and F
G
(p) >

0. By construction the length of path p with positive weight in F
G

is at most in
n−1, because two spanning trees differ in at most 2(n− 1) edges. Furthermore
the stationary distribution of Ms(G) is the uniform distribution on ST(G) and
the transition probabilities are either 1

2m(n−1)
or 0.

This gives

%(F
G
) ≤ 2n2m

| ST(G)|
· max

v,w∈Ω
Ps (v,w)>0

∑
p∈P(v,w)

F
G
(p). (3.8)

We now use Theorem 2.2 to bound the second factor of this estimate: For an
arbitrary transition (v, w) of Ms(G) and p = (Bi)0≤i≤1 ∈ P(v, w) there is some
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j ∈ {0, . . . , `− 1} with v = Bj. Let this v be encoded by v̄. As v \ w contains
exactly one edge e we obtain p ∈ B(v, v̄, e) and hence

P(v, w) ⊂
⋃

v̄∈ST(G)

B(v, v̄, e).

We deduce with Theorem 2.2∑
p∈P(v,w)

F
G
(p) ≤

∑
v̄∈ST(G)

∑
p∈B(v,v̄,e)

F
G
(p) = |Ω|,

and with (3.8)

%(F
G
) ≤ 2n2m

| ST(G)|
· | ST(G)| = 2n2m.

Together with the rough bound | ST(G)| ≤ mn in (3.7) we finally get for all
ε ∈ (0, 1)

τs(ε) ≤ 2n2m · (n log m + log ε−1).
2

4 Canonical paths for Ms

For the construction of canonical paths for Ms(G) we shall make use of the
multicommodity flow F

G
in section 3. For X, Y ∈ ST(G) for the construction

of a 1-flow f
XY

for any node v of minimal degree in the contracted graph M =
(V, X ∪ Y )

/
(X ∩ Y ) we used by induction a 1-flow f

XvYv
already constructed.

If in this recursion this node v is always uniquely determined, then f
XY

is in
fact a 1-flow along some path in Ms(G) since the construction begins with a
simple transition between neighbours. To obtain canonical paths for Ms(G)
we have to determine which of the nodes of minimal degree has to be chosen
in the recursion step. We call this node in the following the starting node in
M .

To construct the starting node in M we assume w.l.g. that M has at least
three nodes. If there is exactly one node of minimal degree we call it the starting
node. In the other case we numerate the nodes in V by indices 1, . . . , n and
consider the subgraph M ′ := (V, X ∪ Y ). Each node with minimal degree in
M we map injectively to the index of a node in V and choose as starting
node of M that of minimal index. A node w in M corresponds to a connected
component of X ∩ Y and thus to a subtree tw of M ′. A node of tw is called
boundary node if it is an endnode of edges in M ′ which are not in X ∩ Y but
in X⊕Y . These edges we call boundary edges. In the tree tw any pair of nodes
is connected by exactly one path in tw. By sw we denote the subgraph of M ′

consisting of the paths which connect boundary node pairs supplemented by
boundary edges. A node in tw is called internal node if its degree in sw is ≥ 3.
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Figure 4: Boundary nodes in tw = 0, boundary edges = – – –, internal nodeecq is of degree 3 in sw.

If w in M has minimal degree dmin = 3, then tw has exactly one internal
node whose index we attach to w. This can be seen as follows. If tw has only
one boundary node p, then the boundary edges are the only edges in sw and
so p is the only node from tw in sw of degree 3. If there are 2 boundary nodes
p and q, then sw consists of the path between p and q and the three boundary
edges. In sw thus only one boundary node of degree 3 exists with 2 boundary
edges. In case tw has 3 different boundary nodes p, q and r in the first case the
path in tw between two of these nodes might contain the third one. If e.g. r is
in the path from p to q, then only r can have degree 3 in sw induced by the
boundary edge at this node. If no boundary node is on the path between the
two others, then the final segments of the path from q to p and from r to p
coincide. Let u besides p denote the other end node of this segment, then sw

consists of three disjoint paths to the boundary nodes starting in u and u is
the only node from tw in sw of degree 3 (see figure 4). Since w is attached this
way the index of a node in tw, this mapping to the index is injective.

If in M the minimal degree dmin = 2, then for no node w of degree 2
the corresponding subtree tw in M ′ has an inner node since it has at most
two boundary nodes. Further, those w are not neighbours to further nodes of
degree 2 as M is the union of two disjoint spanning trees. We now attach to
both edges at w in M a node in V and then choose as partner of w the smaller
of these two indices. The following procedure is demonstrated in Figure 5,6:
Let e be an edge in M connecting w with a node v. e is also in M ′ and connects
there a boundary node w′ of tw with a boundary node v′ in tv. If v′ is an inner
node of tv then we attach to e the node w′. In the other case we consider the
subgraph sv where v′ has degree 2 since it is a boundary node of tv but it is
not an inner node. Therefore, by construction all other boundary nodes are
connected by a path in sv with v′ and coincide on the initial segment from v′

to some inner point v′′. We attach to e not the inner node v′′ but its neighbour
in this segment. As a result our mapping is injective.
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After this involved determination of the starting point we can follow the
construction of multicommodity flows in section 3 and construct canonical
paths for the Markov chain Ms.

Construction of canonical paths in Ms(G): For X, Y ∈ ST(G) and M :=
(V, X∪Y )

/
(X∩Y ) let F

G
be the multi-commodity flow of Ms(G) as in section

3. The canonical path γ
XY

form X to Y in Ms(G) is defined by induction
on |M |: If |M | = 2 then X and Y are neighbours and the canonical path
is γ

XY
= (Bi)0≤i≤1

, B0 := X, B1 = Y . Since FG(γ
XY

) = 1 we choose the
corresponding coding B̄0 := Y , B̄1 := X. For the induction step |M | = l + 1
we proceed as in the construction of FG. There however we determined for any
node v the set D of G all nodes of minimal degree in M , Xv, Yv ∈ ST(G),
constructed for any path p′ ∈ PXvYv

with FG(p′) > 0 a path p ∈ PXY and
determined fXY (p) as sum of all fXvYv

(p′) over all v ∈ D and p′ ∈ PXvYv
normed

by 1
|D| . Now by induction hypothesis we have for the starting node v0 of M

and the corresponding X ′ := Xv0 , Y ′ := Yv0 that there exists already exactly
one canonical path γ

X′Y ′. Like the construction of p ∈ PXY from p′ ∈ PXvYv
we

obtain a canonical path γ
XY

from γ
X′Y ′ and the coding of a transition (Bi, Bi+1)

in γ
XY

is given in the same way by B̄i := X ⊕ Y ⊕Bi. The set of all canonical
paths in Ms(G) we denote by ΓG.

We next obtain results analogously to Lemma 3.1 and Theorem 3.2. The
canonical path γ

XY
and γ

X′Y ′ are similar if the pairs X,Y and X ′, Y ′ are close.

Lemma 4.1 Let X, Y ∈ ST(G) and w a node of degree 3 in M . If a, b ∈ Y
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and c ∈ X are edges to w in M , then Xa := (X − {c}) ∪ {a} and Xb :=
(X−{c})∪{b} are in ST(G) and for the canonical paths γ

XaY
:= (Ai)0≤i≤l

and
γ

XbY
:= (Bi)0≤i≤l

holds

Ai =

{
Bi ⊕ {a, b}, 0 ≤ i ≤ k
Bi, k < i ≤ l

where k is the place in γ
XaY

where the edge b is added, i.e. b ∈ Ak ⊕ Ak+1.
Similarly for γ

Y Xa := (A′
i)0≤i≤l

, γ
Y Xb

:= (B′
i)0≤i≤l

holds

A′
i =

{
B′

i, 0 ≤ i ≤ k with k ∈ {0, . . . , l − 1}
Bi ⊕ {a, b}, k < i ≤ l

such that b ∈ A′
k ⊕ A′

k+1.

The injectivity of the coding is needed to prove that no transitions are
used in to many of the canonical paths. This is a consequence of the following
theorem which is parallel to Theorem 3.2.

Theorem 4.2 For B, B̄ ∈ ST(G) and edge e ∈ B⊕ B̄ there exists exactly one
canonical path γ

X,Y
:= (Bi)1≤i≤l and some j ∈ {0, . . . , l − 1} such that

a) B = Bj, i.e. γ
XY

contains B

b) B̄ = X ⊕ Y ⊕B, i.e. B is coded in γ
XY

by B̄

c) e ∈ Bj ⊕Bj+1, i.e. in γ
XY

directly after B the edge e is replaced.

Detailed proofs of Lemma 4.1 and Theorem 4.2 are given in Fehrenbach (2003).
As consequence we obtain a proof of the mixing time bound in Theorem 3.3
by canonical paths:

Proof of Theorem 3.3 by canonical paths:
We have for the mixing time τ = τ(ε) by (1.5)

τ(ε) ≤ %(ΓG)(log π̂ + log ε−1) (4.1)

where π is the stationary distribution, π̂ := minx∈Ω π(x) and

%(ΓG) := max
(B,C)∈Ω2

Ps(B,C)>0

1

π(B) Ps(B, C)

∑
γ

XY
∈P(B,C)

π(X)π(Y )|γ
XY
|, (4.2)

P(B, C) the set of canonical paths which contain the transition (B, C). The
maximal length of a canonical path in ΓG is n− 1 since at most 2(n− 1) edges
are exchanged. Further Ps(B, C) = 1

2(n−1)m
, m = |E|. Thus we get for the

congestion measure

%(ΓG) ≤ 2n2m

|Ω|
max

(B,C)∈Ω2

Ps(B,C)>0

|P(B, C)|. (4.3)
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The max expression can be estimated using Theorem 4.2. For a transistion
(B, C) of Ms(G) let e be the unique edge in B\C. In any canonical path
γ

XY
∈ P(B, C) the transition (B, C) is coded by some B̄ ∈ Ω. By Theorem 4.2

there exists exactly one canonical path in ΓG with these properties. Since this
path not necessarily contains (B, C) we conclude that |P(B, C)| ≤ |Ω|. This
implies

%(ΓG) ≤ 2n2m

|Ω|
· |Ω| = 2n2m. (4.4)

With |Ω| ≤ mn we thus obtain

τs(ε) ≤ 2n2m(n log m + log ε−1). (4.5)

5 Forests with roots

In this section we apply the multi-commodity flows resp. canonical paths to
the analysis of the mixing time of some Markov chains on forests. The Markov
chain Ms introduced in sections 2, 3 on the set of spanning trees only uses
exchanges of two edges. These transitions can also be used on the class of
forests i.e. circle free subgraphs of G and the corresponding Markov chain
has an stationary distribution the uniform distribution. But sofar no efficient
bounds for the mixing time of this or related Markov chains are known and also
no randomized approximation schemes for the number of forests are known (see
Welsh and Merino (2000)). It seems that also the canonical paths of section 4
transfered to this problem do not lead to a polynomial bound for the mixing
time. In the following we consider the modified class of forests with roots Fr(G)
and show that for this modified space Ω = Fr(G) we obtain rapid mixing
results for various Markov chains by means of the corresponding canonical
paths constructed for the class of spanning trees.

Definition 5.1 (Forests with roots) Let G=(V, E) be an undirected graph.
A pair X := (RX, EX) with RX ⊂ V, EX ⊂ E is called forest with roots if

• the subgraph (V, EX) of G contains no circle

• any connected component Z of (V, EX) has exactly one node in RX, which
we call the root of Z.

Fr(G) denotes the set of all forests with roots.

Counting forests with roots corresponds to counting forests X with con-
nected components Z1, . . . , Zd which are weighted by the number of possibili-
ties to choose a root system i.e. by

∏d
i=1 |Zi|(n−|X|). The class Fr(G) of forests

with roots can be identified with the class of spanning trees of an extended
graph G′.

Lemma 5.2 For any undirected graph G = (V, E) there exists a graph G′ =
(V ′, E ′), such that there exists a bijection Sp : Fr(G)) −→ ST (G′).
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Proof: Let V ′ := V ∪ {r} and E ′ := E ∪ {{r, v} | v ∈ V } i.e. we add a node r
and all edges {r, v} to the new node to obtain G′ = (V ′, E ′). For X ∈ Fr(G) we
define Sp(X) := EX ∪ {{r, v} | v ∈ RX}. Thus Sp(X) is a spanning tree of G′

since EX is circlefree and also the addition of the edges {r, v}, v ∈ RX, does not
produce circles. Sp is a bijection since any X ′ ∈ ST (G′) has a unique origin
Sp−1(X ′) = (RX, EX) where RX := {v ∈ V | {r, v} ∈ X ′} and EX := X ′ ∩E. 2

The bijection of Lemma 5.2 implies that Ms(G
′) induces a rapidly mixing

Markov chain on Fr(G). We now introduce a more general class of Markov
chains on Fr(G) and investigate their mixing behaviour. We allow that the
transition behaviour of the Markov chains depends on the degree dX(r) =:
‖X‖, X ∈ ST (G′), of the newly added node r i.e. it depends on the number of
connected components of the forest corresponding to X ∈ SB(G′).

Definition 5.3 Let G = (V, E) be an undirected graph with extension G′ =
(V ′, E ′) as in Lemma 5.2. For any λ ∈ IR+ we define the Markov chain
M

λ

s (G′) = (Xt)t∈IN
on ST (G′) by the transition probabilities: If Xt = X ∈

ST (G′) is the state of Ms(G
′) at the time t ∈ IN, then we draw uniformly and

independent e ∈ X und f ∈ E ′ and set

1. Y := (X \ {e}) ∪ {f}

2. If Y ∈ ST (G′), then we set

Xt+1 =

{
Y, with probability p
X, with probability 1− p,

where p := 1
2
min

{
1, λ‖Y ‖−‖X‖

}
.

If Y /∈ ST (G′), then we set Xt+1 := X. We denote the transition matrix of
this chain by P

λ
.

In the Markov chain M
λ

s (G′) for 0 < λ < 1 transitions to forests with
smaller number of components are preferred, for 1 < λ transitions to forests
with bigger number of components are preferred while for λ = 1 we have the
chain of section 2 on G′, Mλ

s (G
′) = Ms(G

′). The consequence for the stationary
distribution is the following.

Theorem 5.4 For any λ ∈ IR+ the Markov chain Mλ
s (G

′) is ergodic. The
stationary distribution π

λ
is given by

π
λ
(X) :=

λ
‖X‖

Z(λ)
(5.1)

with normalization Z(λ) :=
∑

X∈ST (G′) λ
‖X‖

.

Proof: Mλ
s (G

′) has the same transition graph as Ms(G
′) and thus is irreducible

and aperiodic by step 2 in the definition of Mλ
s (G

′). Further for X, Y ∈ ST (G′)
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with P
λ
(X, Y ) > 0 holds:

π
λ
(X) P

λ
(X, Y ) =

1

2m(n− 1)

λ
‖X‖

Z(λ)
min

{
1, λ‖Y ‖−‖X‖

}
=

1

2m(n− 1)

1

Z(λ)
min

{
λ
‖X‖

, λ
‖Y ‖

}
=

1

2m(n− 1)

λ
‖Y ‖

Z(λ)
min

{
λ‖X‖−‖Y ‖, 1

}
= π

λ
(Y ) P

λ
(Y,X),

with n := |V ′|, m := |E ′|. Thus π
λ

is the stationary distribution of Mλ
s (G

′). 2

In the next theorem we use the canonical paths of section 4 to estimate
the mixing time of Mλ

s (G
′) efficiently. In consequence we have a polynomial

sampling scheme for the set of forests of any graph G with weights proportional
to λd(X), d(X) the number of connected components of X.

Theorem 5.5 Let G′ = (V ′, E ′) be the extension of an undirected graph G =
(V, E) and λ ∈ IR+. Then the mixing time τλ of the Markov chain Mλ

s (G
′) is

bounded by

τλ(ε) ≤ 2n2m · λ′ · (n log(mλ′) + log ε−1), (5.2)

for all ε ∈ (0, 1), where λ′ := max{λ, λ−1}, n := |V ′| and m := |E ′|.

Proof: The Markov chains Mλ
s (G

′) and Ms(G
′) have the same transition

graph. Therefore we can use the canonical paths ΓG′ w.r.t. Ms(G
′) of section

4. We have to estimate the congestion measure

%
λ
(ΓG′) := max

(B,C)∈SB(G′)2
P

λ
(B,C)>0

1

π
λ
(B) P

λ
(B, C)

∑
γ

XY
∈P(B,C)

π
λ
(X)π

λ
(Y ) |γ

XY
|, (5.3)

where P(B, C) is the set of canonical paths in ΓG′ which use transition (B, C).
The length of each canonical path is bounded by n − 1 and for B 6= C holds
Pλ(B, C) ≥ 1

2m(n−1)λ′
. Thus from (5.3)

%
λ
(ΓG′) ≤ 2n2m λ′

Z(λ)
max

P
λ
(B,C)>0

∑
γ

XY
∈P(B,C)

λ
‖X‖+‖Y ‖

λ‖B‖ .

For any fixed transition (B, C) of Mλ
s (G

′) and γ
XY
∈ P(B, C), this transition

is coded by B̄ = X ⊕ Y ⊕ B. As B\C contains exactly one edge, say e ∈ E ′,
there is by Theorem 4.2 at most one canonical path which codes B by B̄ and
leads from B directly to C. Further, by construction of the paths and their
codings it holds that B ⊕ B̄ = X ⊕ Y as well as B ∩ B̄ = X ∩ Y . This implies
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that ‖B‖ + ‖B̄‖ = ‖X‖ + ‖Y ‖ and we obtain for all transitions (B, C) of
Mλ

s (G
′)

∑
γ

XY
∈P(B,C)

λ
‖X‖+‖Y ‖

λ‖B‖ ≤
∑

B̄∈ST (G′)

λ
‖B̄‖

= Z(λ).

As a result,

%
λ
(ΓG′) ≤ 2n2mλ′ (5.4)

and with π̂
λ

:= min
X∈SB(G′)

π
λ
(X)

τ
λ
(ε) ≤ 2n2m λ′ (log π̂−1

λ
+ log ε−1). (5.5)

For λ < 1 holds π̂−1
λ

≤ λ−n Z(λ) ≤ (λ′)n |ST (G′)| and for λ ≥ 1, π̂−1
λ

≤
Z(λ) ≤ (λ′)n |ST (G′)|. With |ST (G′)| ≤ mn this implies

τ
λ
(ε) ≤ 2n2m · λ′ (n log(mλ′) + log ε−1).

2

Remark: For the transition from Mλ
s (G

′) via the bijection Sp from Lemma 5.2
to the corresponding Markov chain on Fr(G) we have to note that |V | = |V ′|−1
and |E| = |E ′| − |V | which changes the bound only by a polynomical factor.
As a consequence we obtain a rapidly mixing Markov chain on the class of
forests with roots Fr(G) or equivalently on the class of spanning trees in a
rooted graph G′ with stationary distribution proportional to λd(X), d(X) the
degree of the root r. 2

6 Connected, spanning subgraphs

In this section we consider the class of connected, spanning subgraphs Sc(G)
of a graph G = (V, E). As any X ∈ Sc(G) has node set V we can identify
X with its node set and identify thus X ⊂ E with subsets of E which define
connected spanning subgraphs.

Also for Sc(G) no efficient randomized approximation scheme and no rapid-
ly mixing Markov chain with uniform distribution on Sc(G) as stationary dis-
tribution is known (see Welsh and Merino (2000)). We have the following
connection of Sc(G) to spanning trees.

Lemma 6.1 For an undirected graph G = (V, E) there exists a graph G′′ :=
(V ′′, E ′′) such that there exists a bijection between ST (G′′) and⋃

A∈Sc(G)

{
(A, T ) | T ∈ ST (A)

}
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Proof: Let VE := {ve | e ∈ E} be a set of new nodes and define G′′ := (V ′′, E ′′)
with V ′′ := V ∪ VE, E ′′ :=

⋃
e∈E

{
{v, ve} | v ∈ e

}
, i.e. the edge e = {v, w} is

replaced by two edges {v, ve} and {w, ve}. For each node e ∈ E we denote one
endnode by er as right endnode and one endnode by el as left endnode. For
X ∈ ST (G′′) the subset A :=

{
e ∈ E | {ve, er} ∈ X

}
is a connected spanning

subgraph of G. Further, T :=
{
e ∈ E | {ve, er} ∈ X and {ve, el} ∈ X

}
is a

spanning tree of G.
Conversely X can be reconstructed from A and T since

X =
{
{ve, er} | e ∈ A

}
∪

{
{ve, el} | e ∈ T ∪ (E\A)

}
.

Thus this mapping is bijective. 2

Thus any A ∈ Sc(G) corresponds to as many spanning trees of G′′ as A has
itself. We introduce as in section 5 a weighting on ST (G′′) by

‖X‖ := |A| (6.1)

where X ∈ ST (G′′) corresponds to (A, T ) in Lemma 6.1.

Definition 6.2 (Markov chain on ST (G′′)) We define for λ ∈ IR+ the
Markov chain Mλ

Sc
(G′′) = (Xt) on ST (G′′) as in Definition 5.3 where the

norm ‖X‖ is defined by (6.1).

Similarly to the argument in section 5 we obtain (for details of the argument
see Fehrenbach (2003))

Theorem 6.3 The Markov chain MSλ
c
(G′′) is ergodic for any λ ∈ IR+ with

stationary distribution

π
λ
(X) :=

λ
‖X‖

Z(λ)
with Z(λ) :=

∑
X∈ST (G′)

λ
‖X‖

(6.2)

for X ∈ ST (G′′). The mixing time τλ is bounded by

τλ(ε) ≤ 2n2mλ′(n log(mλ′) + log ε−1), (6.3)

for all ε ∈ (0, 1) with λ′ := max{λ, λ−1}, n := |V ′′| and m := |E ′′|.

Based on Lemma 6.1 we can transfer the Markov chain Mλ
Sc

(G′′) on the
basic space

⋃
A∈Sc(G){(A, T ); T ∈ ST (A)} and project it on Sc(G). Then we

obtain a Markov chain Mλ
Sc

(G) on Sc(G). The weight of a state A ∈ Sc(G)

w.r.t. its stationary distribution is given by λ
|A| |ST (A)|. The rapid mixing

property remains the same since the number of edges and nodes of G and G′′

only differ by a polynomial factor. Thus we obtain

Corollary 6.4 The Markov chain Mλ
Sc

(G) induced by Mλ
Sc

(G′′) on Sc(G) is
rapidly mixing with stationary distribution

πλ(A) = λ
|A| |ST (A)|, A ∈ Sc(G). (6.4)
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Remark: As consequnce of Corollary 6.4 we do not get a polynomial random-
ized approximation scheme for |Sc(G)| as πλ is not the uniform distribution. We
may however obtain such a scheme for some functionals like

∑
A∈Sc(G) |ST (A)|.

This however can also directly be obtained from |ST (G)| since∑
A∈Sc(G)

|ST (A)| = 2m−(n−1)|ST (G)|

since |E − T | = m− (n− 1) for all T ∈ ST (G). 2
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Birkhäuser. viii +146 p.

Welsh, D. and C. Merino (2000). The Potts model and the Tutte polynomial.
Math. Physics 41, 1127–1152.

Johannes Fehrenbach
Department of Mathematics
University of Freiburg
Eckerstr. 1
79104 Freiburg
Germany

Ludger Rüschendorf
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