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Abstract

A comparison theorem is stated for Markov processes in polish state
spaces. We consider a general class of stochastic orderings induced by a cone
of real functions. The main result states that stochastic monotonicity of one
process and comparability of the infinitesimal generators imply ordering of
the processes. Several applications to convex type and to dependence order-
ings are given. In particular Liggett’s theorem on the association of Markov
processes is a consequence of this comparison result.

1 Introduction

This paper is motivated by Liggett’s (1985) characterization of (positive) associa-
tion in Markov processes, which is a main tool to establish this strong dependence
notion. This result is the basis of many important applications and it has been
modified and extended in various ways. For its role in connection with several
interesting models in applied probability see in particular Szekli (1995).

Liggett’s theorem is based on the notion of stochastic monotonicity and on the
infinitesimal generator A of the Markov process X. The main result in our paper
is on the comparison of two Markov processes X,Y with respect to a general class
of stochastic orderings ≺F , induced by some cone F of real functions on the state
space E. Stochastic monotonicity and ordering of the infinitesimal generators A,B
are the basic ingredients of the comparison result.

Positive dependence of a random vector Z = (Z1, . . . , Yd) is typically defined
by a comparison with its copy Z⊥ with independent components with respect to
some class of (positive) dependence functions. Therefore, as a consequence of the
comparison result we obtain also several results on positive dependence orderings.
In particular Liggett’s association theorem is a consequence of this comparison
result.

Ordering conditions for Markov processes in terms of infinitesimal generators
have been given in several papers. Massey (1987), Herbst and Pitt (1991), Chen
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and Wang (1993), Chen (2004), and Daduna and Szekli (2006) describe stochas-
tic ordering for discrete state spaces, for diffusions and for diffusions with jumps
in terms of generators. For bounded generators and in the case of discrete state
spaces Daduna and Szekli (2006) give a comparison result for the stochastic order-
ing in terms of comparison of the generators. For an infinite dimensional system
of interacting diffusions a comparison result for the directionally convex ordering
has been established in Cox, Fleischmann, and Greven (1996) and Greven, Klenke,
and Wakolbinger (2002) under the condition that the diffusion coefficients are com-
parable. For Lévy processes in Bäuerle, Müller, and Blatter (2006) as well as in
Bergenthum and Rüschendorf (2007) comparison of the supermodular as well as of
further orderings has been derived in terms of the corresponding ordering of the
infinitesimal generator.

The proof of the main comparison result in the present paper is given in the
same framework as in Liggett’s result and uses a similar idea as in Liggett’s proof of
the characterization of association (see Szekli (1995, chapter 3.7)). The same idea
of proof has also been used before in the paper of Cox et al. (1996) and Greven
et al. (2002) mentioned above, for the directionally convex ordering of interacting
diffusions. The author of this paper is grateful to a reviewer for a hint to these
papers.

Motivated by comparison results for option prices there has been developed an
alternative approach to comparison theorems based on stochastic analysis (Itô’s
formula and Kolmogorov’s backward equation) which allows even to go beyond the
frame of Markov processes to semimartingales (see Bergenthum and Rüschendorf
(2007) for recent developments on this approach). For the case of Markov processes
the results of Bergenthum and Rüschendorf (2007) are comparable to the results
in this paper. In comparison the approach via generators in this paper is however
more direct and simple.

2 The comparison result

For a homogeneous Markov process X = (Xt)t≥0 with values in a compact partially
ordered set E Liggett (1985) established an important criterion for the positive
dependence notion of association of Xt, t ≥ 0. Let X be a strongly continuous
Feller process with corresponding semigroup S = (St)t≥0 of transition operators
on Cb(E). Let A denote the infinitesimal generator of S with domain DA. Then
DA∩F+

i is dense in F+
i the class of bounded non-decreasing nonnegative functions

on E (see Szekli (1995)).

X is called associated in time if for all 0 ≤ t1 < · · · < tk the vector (Xt1 , . . . , Xtk)
is associated, i.e.

E

k∏
i=1

fi(Xti) ≥
k∏

i=1

Efi(Xti) (2.1)
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for all fi ∈ F+
i . If (2.1) holds for all t1 ≤ · · · ≤ tk then we call X associated in time

and space which combine association in time with the association of Xt in space.

Theorem 2.1 (Liggett (1985)) Assume that

1.) Xis stochastically monotone, i.e. f ∈ F+
i implies Ttf ∈ F+

i

2.) Afg ≥ fAg + gAf for all f ∈ DA ∩ F+
i (2.2)

3.) µ = PX0 is associated,

then X is associated in time and space; in particular µt = PXt is associated for
all t ≥ 0.

Theorem 2.1 was stated in Liggett (1985) for compact partially ordered metric
spaces and in Szekli (1995) for products of normally ordered polish spaces. Stochas-
tic monotonicity in the finite discrete case has been characterized by Harris (1977)
and Cox (1984). The proof of Liggett’s result is essentially based on a representa-
tion of a solution of a Cauchy problem for F : [0,∞) → C(E) with F (t) ∈ DA,
∀t ≥ 0 and

F ′(t) = AF (t), F (0) = f ∈ DA. (2.3)

In the following we derive in a similar framework as in Liggett’s theorem a com-
parison theorem between two Markov processes with values in a polish space E.
The ordering on the set of probability measures M1(E) on E is defined by a cone
F of real valued functions on E by

µ ≤F ν if

∫
fdµ ≤

∫
fdν, ∀f ∈ F .

Similarly we define X ≤F Y for random variables X, Y in E. The order gen-
erating class is not uniquely defined and typically there are many bounded or
smooth and bounded order generating classes. Typical examples of orderings de-
scribed in this way are the usual stochastic ordering, various convex orderings, and
dependence orderings like the concordance, the supermodular and the directionally
convex ordering (for definitions and properties see Müller and Stoyan (2002)).

Let X, Y be homogeneous strongly continuous Markov processes with values
in a polish space E which have the Feller property. Denote the corresponding
semigroups by S = (St), T = (Tt), and the infinitesimal generators by A, B with
domains DA, DB. Let F ⊂ Cb(E) be a cone of bounded, continuous, real functions
on E and denote by <F the corresponding ‘stochastic’ order on M1(E). We assume
that

F ⊂ DA ∩DB. (2.4)



4 Markov processes

Theorem 2.2 (Conditional ordering result) Let X, Y be homogeneous Mar-
kov processes such that

1.) X is stochastically monotone, i.e. Stf ∈ F for all f ∈ F and

2.) Af ≤ Bf [PX0 ] for all f ∈ F (2.5)

then

Stf ≤ Ttf [PXo ], f ∈ F . (2.6)

Proof: Define for f ∈ F , F : [0,∞) → Cb(E) by F (t) := Ttf − Stf. Then F (t)
satisfies the differential equation

F ′(t) = BTtf − AStf

= B(Ttf − Stf) + (B − A)(Stf).
(2.7)

Note that by assumption Stf ∈ F and thus H(t) := (B − A)(Stf) is well defined
and H(t) ≥ 0 by assumption (2.5). Thus F solves the Cauchy problem

F ′(t) = BF (t) + H(t), F (0) = 0 (2.8)

The solution of (2.8) is uniquely determined and is given by (see Liggett (1985,
Th. 2.15) and Szekli (1995, pg. 157))

F (t) = TtF (0) +

∫ t

0

Tt−sH(s) ds (2.9)

=

∫ t

0

Tt−sH(s) ds as F (0) = 0.

H(s) ≥ 0 implies that F (t) ≥ 0, for all t and thus the statement in (2.6). 2

Remark 2.3 a) As mentioned in the introduction the same idea of proof was used
before for the case of directionally convex ordering of certain interacting diffu-
sions in Cox, Fleischmann, and Greven (1996) and Greven, Klenke, and Wakol-
binger (2002). Theorem 2.2 can be considered as a general formulation of this
comparison argument.

b) The notion of generator can be generalized to extended generators allowing for
a larger class of not necessarily bounded continuous functions in their domain
DA. This is defined by the property that f ∈ DA if

M f
t := f(Xt)− f(X0)−

∫ t

0

Af(Xs) ds ∈M, (2.10)

where M is the class of martingales (see Jacod (1979, Chapter 13)). This prop-
erty is closely connected with the strong Markov property of X. It leads nat-
urally to considering similar ordering properties for the more general class of
semimartingales (see Bergenthum and Rüschendorf (2007)).
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c) For several classes of examples in particular for Lévy processes, diffusion pro-
cesses, and jump processes the propagation of ordering condition has been studied
(see Bergenthum and Rüschendorf (2007)).

Define the componentwise (resp. product) ordering of processes X, Y by

(X) ≤F (Y ) if Eh(Xt1 , . . . , Xtk) ≤ Eh(Yt1 , . . . , Ytk) (2.11)

for all functions h that are componentwise in F . In particular (X) ≤F (Y ) implies
that

Xt ≤F Yt for all t ≥ 0. (2.12)

As consequence of the conditional ordering result in Theorem 2.2 and the separa-
tion theorem for the ordering Markov processes (see Bergenthum and Rüschendorf
(2007, Proposition 3.1)) we obtain the following ordering result for the processes:

Corollary 2.4 (Comparison result) If the conditions of Theorem 2.2 hold true
and if additionally X0 ≤F Y0, then the componentwise ordering (X) ≤F (Y ) of the
processes X, Y holds.

3 Association and applications

We next derive Liggett’s association result (2.5) as consequence of Theorem 2.2
and Corollary 2.4 in Section 2. Let E = Rd and X = (Xt) be a Markov process
with values in E as in the introduction. Then µt = PXt is associated if and only if

(Xt, Yt) ≤F (Xt, Xt), (3.1)

where Y is a conditionally independent copy of X, i.e. Y0 = X0, Y,X are condi-
tionally independent given X0 and Y |Y0 = x, X|X0 = x are identically distributed.
Further, F is defined by F =

{
f ⊗ g; f, g ∈ F+

i

}
, f⊗g(x, y) = f(x)g(y). Let (St), A

denote the semigroup resp. infinitesimal generator of X (denoted by X ∼ ((St), A).

Then (Xt, Xt) ∼ ((S̃t), Ã), (Xt, Yt) ∼ ((T̃t), B̃), where

T̃tf ⊗ g(x, y) = Stf(x)Stg(y), (3.2)

S̃tf ⊗ g(x, y) = Stfg(x), (3.3)

B̃f ⊗ g(x, y) = Af(x)g(y) + f(x)Ag(y) (3.4)

and

Ãf ⊗ g(x, y) = Afg(x). (3.5)

For (3.4), (3.5) we use the assumption that X0 = Y0.
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Corollary 3.1 (Association, Liggett (1985)) Under the conditions 1)–3) of
Theorem 2.1 holds that X is associated in time and space.

Proof: By condition 1) X is stochastically monotone w.r.t. F+
i and therefore for f⊗

g ∈ F we obtain from (3.2), (3.3) that (Xt, Xt) and (Xt, Yt) both are stochastically
monotone w.r.t. F = F+

i ⊗F+
i . Further Liggett’s condition Afg ≥ fAg + gAf for

f, g ∈ F+
i implies that

Ãf ⊗ g ≥ B̃f ⊗ g
[
P (X0,Y0)

]
(3.6)

Thus by the conditional comparison Theorem 2.2, we obtain S̃tf ⊗ g ≥ T̃tf ⊗
g

[
P (X0,Y0)

]
, which is equivalent to

Stfg ≥ StfStg
[
PX0

]
(3.7)

Thus Xt is conditionally associated given X0. Assumption 3 and Corollary 2.4
imply that X is associated in time and space. 2

Remark 3.2 a) Bäuerle, Müller, and Blatter (2006) show that the Liggett condi-
tion (2.5) yields in the case of Lévy processes the characterization of association
of Lévy processes by Samorodnitsky (1995), stating that association of a Lévy
process is equivalent to the property that the support of the Lévy measure is con-
tained in the union of the positive and negative orthant of Rd, i.e. all jumps are
in the same direction.

b) Condition 2) in Theorem 2.2 is also a necessary condition for stochastic ordering
since for f ∈ F , Stf ≤ Ttf , implies that

Af(x) = lim
t↓0

Stf(x)− f(x)

t
≤ lim

t↓0
Ttf(x)− f(x)

t
= Bf(x).

Condition 1) is in general not a necessary condition.

Example 3.3 In several cases the local comparison condition for the infinitesimal
generators is easy to characterize explicitly.

a) For pure diffusion processes X, Y in Rd with diffusion matrices (aij) =
(aij(x)), (bij) = (bij(x)) the infinitesimal generators are given by

Af(x) =
1

2

∑
ij

aij(x)
∂2f

∂xi∂xj

(3.8)

Bf(x) =
1

2

∑
ij

bij(x)
∂2f

∂xi∂xj

.
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Thus for convex ordering the comparison condition Af(x) ≥ Bf(x), f ∈
Fcx ∩ C2 is equivalent to

C := A−B ≥psd 0 (3.9)

in the sense of positive semidefiniteness. The stochastic monotonicity needs
some strong conditions in dimension d ≥ 2 while in d = 1 it is satisfied
generally (see Bergenthum and Rüschendorf (2007) for details). Note that
the application to convex ordering needs an extension to unbounded functions
if the space is not compact. For the directionally convex ordering ≥dcx the
corresponding ordering of the infinitesimal generator is given by the more
simple comparison

aij(x) ≤ bij(x), ∀i, j, ∀x. (3.10)

Cox, Fleischmann, and Greven (1996) and Greven, Klenke, and Wakolbinger
(2002) establish for some class of (infinite dimensional) interacting diffusions
that the stochastic monotonicity condition (as defined in Theorem 2.2) is
fulfilled for the case that F = Fdcx the class of directionally convex functions.

b) For integrable Lévy processes without drift and diffusion X ∼ (0, 0, ν), Y ∼
(0, 0, ν∗), where ν, ν∗ are the corresponding Lévy measures, the infinitesimal
generator is given by

Af(x) =

∫

Rd

Λf(x, y)dν(y)resp. (3.11)

A∗f(x) =

∫

Rd

Λf(x, y)dν∗(y),

where Λf(x, y) = f(x+y)−f(x)−y ·∇f(x). For the convex resp. directionally
convex orderings ≤cx,≤dcx with generating functions Fcx,Fdcx the stochastic
monotonicity condition is satisfied as Stf(x) =

∫
f(Xt + x)dP . Thus we

obtain that the conditions

X0 ≤cx Y0 (X0 ≤dcx Y0) (3.12)

ν ≤cx ν∗ (ν ≤dcx ν∗)

imply that X ≤cx Y (X≤dcx
Y ). A similar result holds for the supermodular or-

dering ≤sm. For (3.12) note that one has to pose some integrability condition
on f . As consequence of Remark 3.2 this implies that the convex, direction-
ally convex, and the supermodular orderings ≤cx, ≤dcx, and ≤sm of two Lévy
processes X and Y are equivalent to the corresponding orderings of the Lévy
measures µ and ν.

A similar conclusion holds true also for the stochastic order ≤st and the
upper orthant resp. lower orthant orderings ≤uo, ≤`o. Note that the upper
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orthant ordering is generated by the class F∆ of ∆-monotone functions (see
Rüschendorf (1980)) and thus the stochastic monotonicity condition is satis-
fied for Lévy processes. This is similarly true for the lower orthant ordering
≤`o and thus for the combination of both orderings, the concordance order-
ing ≤c. For the case of supermodular and concordance orderings this result
is stated in Bäuerle, Müller, and Blatter (2006), as well as Bergenthum and
Rüschendorf (2007).

The proof of Corollary 3.1 extends to further positive dependence orderings.
Let F+

ism ⊂ F+
i denote the class of increasing, nonnegative supermodular functions

on Rd. Define a random vector Z = (Z1, . . . , Zd) to be positive supermodular
associated (PSA) if

Ef(Z)Eg(Z) ≤ Ef(Z)g(Z) (3.13)

for all f, g ∈ F+
ism. PSA is a weakening of the notion of association. By Christofides

and Vaggelatou (2004) association of Z implies positive supermodular dependence
(PSMD) i.e.

Z⊥ ≤sm Z (3.14)

where Z⊥ is a copy of Z with independent components Z⊥
i , such that Z⊥

i
d
= Zi.

Obviously PSA of Z implies positive upper orthant dependence (PUOD) and pos-
itive concordance dependence (PCD), the combination of positive upper and lower
orthant dependence.

Let F s denote the cone

F s = {f ⊗ g; f, g ∈ F+
ism} (3.15)

Then f, g ∈ F+
ism implies that fg ∈ F+

ism. Thus by the representation of the semi-
groups and generators as in the case of association (see (3.2)–(3.5)) we get the
following variant of Corollary 3.1.

Corollary 3.4 (Positive supermodular association) Let X be a Markov pro-
cess as in Section 2 and assume that

1. X is stochastically monotone w.r.t. F+
ism (3.16)

2. Afg ≥ fAg + gAf for all f ∈ DA ∩ F+
ism (3.17)

3. µ = PX0 is PSA,

then X is PSA in time and space; in particular µt = PXt is PSA for all t ≥ 0.
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Remark 3.5 a) A similar result as in Corollary 3.4 also holds if we replace the
class F+

ism by the classes F+
idcx of nonnegative, increasing directionally convex

functions or by F+
∆ the class of (increasing) ∆-monotone functions. As conse-

quence we obtain sufficient conditions for positive increasing directionally convex
dependence (PDCD) and for positive upper orthant dependence (PUOD). For
this conclusion note that f, g ∈ F+

∆ implies that fg ∈ F+
∆ as can be seen for dif-

ferentiable f, g by considering k-th derivatives. In a similar way we get sufficient
conditions for positive lower orthant dependence (PLOD) in space. As conse-
quence we get sufficient conditions for positive concordance dependence (PCD).
For a discussion of these dependence and ordering concepts we refer to Müller
and Stoyan (2002, Chapter 3.8).

b) As particular consequence of Liggett’s theorem and Corollary 3.4 consider a Lévy

process Xt with X1
d
= N(0, Σ) starting in X0 = 0. Then Af(x) = 1

2
Σi,jσij

∂2f
∂xi∂xj

,

where Σ = (σij). Liggett’s condition (2.5)
Afg ≥ (Af)g + fAg for f, g ∈ F+

i is equivalent to

∑
i,j

σij

[
∂f

∂xi

∂g

∂xj

+
∂f

∂xj

∂g

∂xi

]
≥ 0 for all f, g ∈ F+

i ∩ C2
b (3.18)

and thus to σij ≥ 0 for all i, j, which is the well-known characterization of
association of normal vectors (due to Pitt (1982)). The same condition also
holds for the PSA condition (3.17). Thus for a normally distributed random
vector X ∼ N(0, Σ),

X is associated ⇔ X is PSA (3.19)

⇔ σij ≥ 0 for all i, j.

Since the PSA dependence is between the association concept and the PLOD this
conclusion os however obvious.
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