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Abstract

In this paper we review and extend some key results on the stochastic
ordering of risks and on bounding the influence of stochastic dependence on
risk functionals. The first part of the paper is concerned with a.s. construc-
tions of random vectors and with diffusion kernel type comparisons which are
of importance for various comparison results. In the second part we consider
generalizations of the classical Fréchet-bounds, in particular for the distribu-
tion of sums and maxima and for more general monotonic functionals of the
risk vector. In the final part we discuss three important orderings of risks
which arise from ∆-monotone, supermodular, and directionally convex func-
tions. We give some new criteria for these orderings. For the basic results we
also take care to give references to “original sources” of these results.

1 Introduction

It has been recognized in recent years that the methods and tools of stochastic
ordering and construction of probabilities with given marginals are of essential
relevance for the problem of modeling multivariate portfolios and bounding func-
tions of dependent risks like the value at risk, the expected excess of loss and
other financial derivatives and risk measures Even if many results on stochastic
ordering and dependent risks have been developed in early years, a new impetus
on reconsidering this field came recently from financial modelling and risk man-
agement and a lot of papers in economics and insurance journals is devoted to this
subject (see e.g. the recent article of Embrechts, Höing and Juri (2003) and the
references therein). Stochastic ordering and marginal modelling has a long history
and several books and conference proceedings to this subject have appeared. To
mention are in particular proceedings of conferences on marginal modelling and
stochastic ordering ([11], [41], [71], [3], [9]) as well as the comprehensive volumes
of Stoyan (1977), Marshall and Olkin (1979), Tong (1980), Mosler (1982), Shaked
and Shantikumar (1994), Joe (1997), Nelsen (1999), and Müller and Stoyan (2002).

The main purpose of this paper is to point out and partially extend some of
the orderings and results on orderings which seem to be of particular importance
for bounding risks and the influence of dependence on functionals. For several
of the key results we also want to give some of the early and original references.
The field of stochastic orders is very diversified. But some of the recent work
and results has already been stated and established in early papers on stochastic
ordering.
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We essentially restrict to “integral orders ≺F” on the probability measures
induced by some function class F and defined by

P ≺F Q if
∫

f dP ≤
∫

f dQ for all f ∈ F , (1.1)

such that f is integrable w.r.t. P and Q. Some natural questions for the analysis of
a stochastic order ≺ are to find simple and maximal generators F of ≺ such that
≺ and ≺F are equivalent orderings (or to find at least large classes F such that
P ≺ Q implies P ≺F Q). This aspect is discussed in most of the books mentioned
above. Additional particular references to the subject of integral stochastic orders
are Rüschendorf (1979), Reuter and Riedrich (1981), Mosler and Scarsini (1991b)
Marshall (1991), Müller (1997), and Denuit and Müller (2001).

The plan of this paper is to discuss at first a.s. construction of random vectors
which lie at the core of several ordering results. Related are kernel representation
results which give ‘pointwise’ characterization of stochastic orders by diffusion
kernels. Each ordering generates a notion of positive resp. negative dependence
by comparing a probability measure

P ∈ M(P1, . . . , Pn) (1.2)

– the class of all probability measures with marginals P1, . . . , Pn– to the product
⊗n

i=1Pi of its marginals. If ⊗n
i=1Pi ≺ P , then we speak of positive dependence of

P , if P ≺ ⊗n
i=1Pi, then of negative dependence. Related is the problem to describe

the maximal influence of dependence on a function f (or class of functionals F),

M(f) = sup
{∫

f dP ; P ∈ M(P1, . . . , Pn)
}

(1.3)

resp. m(f) = inf
{∫

f dP ; P ∈ M(P1, . . . , Pn)
}

which we call the problem of (generalized) Fréchet-bounds. One of the most
prominent results in stochastic ordering are the classical Fréchet-bounds due to
Hoeffding (1940) and Fréchet (1951),

a) For a n-dimensional df F holds: F ∈ F(F1, . . . , Fn) – the Fréchet class of
n-dimensional df ’s with marginals F1, . . . , Fn – if and only if

F− ≤ F ≤ F+, (1.4)

where F+(x) := min1≤i≤n{Fi(xi)} and F−(x) := max{0,
∑n

i=1 Fi(xi)
− (n− 1)} are the upper and lower Fréchet-bound.

b) Moreover, F+ ∈ Fn is a n-dimensional df , while F− ∈ Fn if and only ifn = 2
or

for n > 2 either
n∑

i=1

Fi(xi) ≤ 1 for all x with Fj(xj) < 1, ∀ j (1.5)

or
n∑

i=1

Fi(xi) ≥ n− 1 for all x with Fj(xj) > 0, ∀ j.
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The important characterization in b) of the cases where F− ∈ Fn is due
to Dall’Aglio (1972). For a review on various aspects of Fréchet-bounds see
Rüschendorf (1991b) (in the following abbreviated by Ru (1991b)). The most
important general technique to determine generalized Fréchet-bounds is duality
theory. A comprehensive survey of this theory and its applications is given in
Rachev and Ru (1998, Vol. I/II). We will describe some interesting aspects of the
problem of Fréchet-bounds on the influence of dependence in chapter 3.

For the application to the comparison of risks it has turned out (see the in-
teresting recent book of Müller and Stoyan (2002)) that of particular importance
are the classes of supermodular (quasi-monotone), directionally convex and ∆-
monotone functions Fsm, Fdcx, F∆ together with the induced orderings and some
variants like F idcx, the increasing directionally convex functions. In section four
we describe and extend some of the basic comparison criteria for these functions.

We use some standard notation throughout. X ∼ P means that the random
variable X has distribution P . We write for some ordering ≺, X ≺ Y synony-
mously for P ≺ Q or F ≺ G, where F , G are the dfs of X, Y and P , Q are
the distributions. ≤st denotes the usual stochastic order w.r.t. nondecreasing
functions.

2 Stochastic Ordering and A.S. Construction of Ran-
dom Variables

For the comparison of distributions P , Q w.r.t. some stochastic order it is in some
cases useful to compare explicit a.s. constructions of rv′s X, Y where X ∼ P and
Y ∼ Q. A general useful construction for P, Q ∈ M1(IRn), the set of probability
measures on IRn is the following ‘standard construction’ :

Let F ∈ Fn be a n-dimensional df and let V1, . . . , Vn be independent rv′s
uniformly distributed on [0, 1], independent of X ∼ F . Let V = (V1, . . . , Vn) and
let Fi|1,...,i−1(xi|x1, . . . , xi−1) denote the conditional df ′s of Xi given Xj = xj ,
j ≤ i− 1. We define τF : IRn × [0, 1]n → IRn by

τF (x, λ) = (F1(x1, λ1), F2|1(x2, λ2|x1), . . . , (2.1)
Fn|1,...,n−1(xn, λn|x1, . . . , xn−1))

where Fi|1,...,i−1(xi|x1, . . . , xi−1) = P (Xi < xi|Xj = xj , j ≤ i − 1) + λiP (Xi =
xi|Xj = xj , j ≤ i− 1). We define the ‘inverse’ transformation τ−1

F recursivly

τ−1
F (u) = z = (z1, . . . , zn), (2.2)

with z1 = F−1
1 (u1), z2 = inf{y : F2|1(y|z1) ≥ u2} = F−1

2|1 (u2|z1), . . ., zn =
F−1

n|1,...,n−1(un|z1, . . . , zn−1).

Theorem 2.1 (Regression construction) Let X be a n-dimensional random
vector with df F , then:

a) U := τF (X, V ) has independent components, uniformly distributed on [0, 1].

b) Z = τ−1
F (V ) is a rv with df F ; Z is called the “regression construction” of F .
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c)
X = τ−1

F (τF (X,U)) a.s. (2.3)

Remark 2.2 1) Part a) of (2.1) is due in the case of absolutely continuous con-
ditional df ’s to Rosenblatt (1952). a) and b) were stated in this form in Ru
(1981b). b) had been given before in an equivalent form in O’Brien (1975),
while c) is from Ru and de Valk (1993). The one dimensional case was used
since long time for the simulation of rv’s.

2) By the recursive definition in (2.2) one obtains Z also as a function of (V1, . . . , Vn)
which we denote by τ∗F

Z = τ∗F (V ) ∼ F (2.4)

where τ∗F (V ) = (h1(V1), h2(V1, V2), . . . , hn(V1, . . . , Vn)). In this functional form
the construction is called “standard representation” of F . It gives a construc-
tion of a random vector with df F as function of independent uniforms. The
functions hi represent conditional df ’s.

3) A “copula” of X (resp. F ) is any df C with uniform marginals such that

C(F1, . . . , Fn) = F (2.5)

where Fi are the marginal df ’s. If U is a random vector with U ∼ C then

(F−1
1 (U1), . . . , F−1

n (Un)) ∼ F. (2.6)

U represents some aspects of the dependence structure of F (resp.X). To obtain
a copula one can apply Theorem 2.1 in the one-dimensional case and consider
U := (τF1(X1, V1), . . . , τFn(Xn, Vn)). Then the df C of U is a copula and X =
(F−1

i (U i)) a.s.

We next give some applications of the standard resp. regression construction.

Corollary 2.3 (Stochastic ordering) If F, G ∈ Fn and V = (V1, . . . , Vn) is an
iid uniform sequence. Then

τ−1
F (U) ≤ τ−1

G (V ) implies F ≤st G, (2.7)

where ≤st denotes the usual stochastic ordering w.r.t. Fm the class of monotoni-
cally nondeceasing functions.

Remark 2.4 Condition (2.7) is stated in Ru (1981b). It implies various suffi-
cient conditions for stochastic ordering going back to classical results of Veinott
(1965), Kalmykov (1962) and Stoyan (1972) in the context of markov chains.
The regression and standard construction is used essentially in various papers on
stochastic ordering. The positive dependence ordering ‘conditional increasing in
sequence CIS’ just says that the components hi of τ∗F are monotonically nondecreas-
ing. This is used essentially in many papers e.g. in Müller and Scarsini (2001)
to state sufficient conditions for the supermodular ordering of positive dependent
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sequences (see also section 4). An application of the standard construction to con-
vex ordering analogously to (2.7) is given in Shaked and Shantikumar (1994). An
alternative application to positive regression dependence ordering of rank statistics
as well as to further statistical ordering results is given in Ru (1986).

As second application we consider the following optimal coupling problem: Deter-
mine for some P, Q ∈ M1(IRn) and with Sn(X) =

∑n
i=1 Xi:

inf
{
E|Sn(X)− Sn(Y )|2 : X ∼ P, Y ∼ Q

}
, (2.8)

i.e. the problem is to construct two n-dimensional random vectors X, Y with
distributions P , Q such that the sums Sn(X) =

∑n
i=1 Xi, Sn(Y ) =

∑n
i=1 Yi are as

close as possible in L2-distance. The answer to this problem is :

Corollary 2.5 (Optimal coupling of sums, Ru (1986))
For P,Q ∈ M1(IRn) let P1, P2 denote the distributions of the sums

∑
Xi,

∑
Yi

resp., then

inf



E

∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

Yi

∣∣∣∣∣
2

: Y ∼ P, Y ∼ Q



 = `2

2(P1, P2) (2.9)

where `2
2(P1, P2) =

∫ 1
0 (F−1

1 (u)− F−1
2 (u))2 du is the squared minimal `2-metric.

For the proof one applies the regression construction to the extended random
vectors (

∑n
i=1 Xi, X) resp. (

∑n
i=1 Yi, Y ) and obtains directly (2.9). Of course

similar results hold for the coupling of other functionals like
(
∑n

i=1 Xi, maxi≤n Xi) simultaneously to (
∑n

i=1 Yi, maxi≤n Yi) etc.
The standard construction does not in general give a pointwise a.s. construc-

tion of random vectors X ∼ P , Y ∼ Q such that X ≤ Y a.s. if P ≤st Q. But
Strassen’s comparison theorem implies the existence of such a.s. representations.
This result was extended to closed partial order’s ≺ on a polish space S. The
order ≺ on S induces the stochastic order ≺st on M1(S) the set of probability
measures on S for the corresponding class Fm of monotonically nondecreasing
functions w.r.t. ≺.

Theorem 2.6 (Strassen’s theorem) Let ≺ be a closed partial order on a polish
space S and P , Q probability measures on S. Then: P ≺st Q if and only if there
exist rv’s X ∼ P , Y ∼ Q (on some space (Ω,A, R)) such that

X ≺ Y a.s. (2.10)

Remark 2.7 (2.10) was introduced in Strassen (1965) and extended in various
ways in Kamae, Krengel and O’Brien (1978), Kellerer (1984) and Ramachandran
and Ru (1995). A proof by means of Strassen’s abstract set representation theorem
is given in Ru (1980b, Theorem 1) in the case of the Schur-ordering ≺S on IRn

defined by:

a ≺S b if
k∑

i=1

a(i) ≤
k∑

i=1

b(i), i ≤ k ≤ n− 1

and
n∑

i=1

ai =
n∑

i=1

bi,

(2.11)
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where a(1) ≥ . . . ≥ a(n) are the conponents arranged in decreasing order. The
monotone functions w.r.t. ≺S are the Schur-convex functions and (2.10) implies:

Corollary 2.8 (Schur-convex ordering) Let P, Q ∈ M1(IRn), then:

P ≺S Q ⇐⇒ There exist X ∼ P, Y ∼ Q with X ≺S Y (2.12)
⇐⇒ There exist X ∼ P and a random doubly stochastic

matrix Π, such that ΠX ∼ Q

A more general comparison result for integral stochastic orders ≺F is based on
≺F -diffusions.

Definition 2.9 (≺F -diffusions) Let F be a class of functions on some space
(E,A). A markov kernel K on E is called a F-diffusion if

εx ≺F K(x, .) for all x ∈ E. (2.13)

A ≺F -diffusion kernel K ‘diffuses’ locally in any point x mass w.r.t. ≺F . The
composition KP is defined by KP (A) =

∫
K(x,A) P (dx).

Proposition 2.10 Let K be a ≺F -diffusion then

P ≺F KP for all P ∈ M1(E). (2.14)

Proof: The proof is obvious from the idea of diffusions. For f ∈ F holds
∫

f dKP =
∫ (∫

f(y) K(x, dy)
)

dP (x)

≥
∫

f(x) d(P (x)

2

From a general kernel representation result in Strassen (1965) one can obtain
a converse of (2.14) and characterize several stochastic integral orders by corre-
sponding F-diffusions.A result of this type was stated in Ru (1980b) for several
examples including the stochastic order, the convex and convex increasing order
which were well established before and are related to famous results of Blackwell,
Stein, Sherman, Cartier, Meyer and Strassen. It also included the class of sym-
metric convex functions and the class of norm increasing functions. The list of
examples was further extended in Mosler and Scarsini (1991b). The proof in Ru
(1980b) uses an idea from the theory of balagage (Meyer (1966, Theorem 53))
and Strassen’s kernel representation theorem (Strassen (1965, Theorem 3)). For
a general formulation of this result we define

hf (x) = sup
{∫

f dP ; εx ≺F P

}
(2.15)

for f ∈ Cb(E) and assume that F ⊂ Cb(E) is some order generating class. Let F◦
denote the convex maximal generator of the order dual to ≺F such that P ≺F Q

is equivalent to Q ≺F◦ P . Let F◦P,Q be the set of all pointwise limits of sequences
in F◦ which are uniformly integrable w.r.t. P , Q.
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Theorem 2.11 (F-diffusions) Let E be a polish space, F ⊂ Cb(E) with dual
convex cone F◦ and P, Q ∈ M1(E). Assume that for f ∈ Cb(E), hf ∈ F◦P,Q.
Then P ≺F Q if and only if there exists a F-diffusion K such that

Q = KP. (2.16)

Proof: Define Πx := {P ∈ M1(E) : εx ≺F P}. Then Πx is convex, weakly closed
and hf (x) = sup{∫ f dP ; P ∈ Πx}. For f ∈ Cb(E) holds f(x) ≤ hf (x) and thus
since hf ∈ F◦P,Q

∫
f dQ ≤

∫
hf dQ ≤

∫
hf dP (2.17)

This implies by Strassens kernel representation theorem (Strassen (1965, Theorem
3)) the existence of a kernel K on E with Q = KP and K(x, .) ∈ Πx for all x ∈ E,
i.e. K is a F-diffusion. 2

Remark 2.12 a) The first general formulation of the diffusion characterization
theorem (2.16) is due to Meyer (1966, Theorem 53). It is formulated in the
context of integral stochastic orders ≺F in Müller and Stoyan (2002, Theorem
2.6.1): Suppose that for any f, g ∈ RF – the maximal generator of ≺F – holds

max(f, g) ∈ RF (2.18)

then the equivalence in (2.16) holds true.

b) We consider the following examples of applications of (2.16)

1) If F = Fsym,cx is the set of symmetric convex functions on IRn. Then hf is
symmetric and concave; so it lies in the closure of the dual cone F◦. From
(2.16) we obtain: P ≺sym,cx Q if and only if

∃X ∼ P, Y ∼ Q such that X ≺S E(Y( )|X), (2.19)

where ≺S is the Schur order, Y( ) is the ordered vector (see Ru (1981)).
It is interesting that there is a difference to the condition for stochastic
Schur-ordering in (2.12)

2) If F || || is the class of norm increasing functions f(x) = g(||x||) in Cb(IRn),
then εx ≺F P iff P has support in {y : ||y|| ≥ ||x||}. Further for any f ∈ Cb

holds hf (x) = sup {∫ f dP : εx ≺F || || P} is norm decreasing, ||x|| ≤ ||y||
implies hf (y) ≤ hf (x). So hf ∈ F◦P,Q and we obtain:

P ≺F || || Q iff there exist X ∼ P, Y ∼ Q (2.20)

such that ||X|| ≤ ||Y || a.s. (see Ru (1980b).
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3 Fréchet-Bounds – Extremal Risk

As mentioned in the introduction Fréchet-bounds deal with the basic problem in
risk theory to describe the maximal influence of stochastic dependence on the
expectation of a functional ϕ(x1, . . . , xn). Examples of interest are e.g. convex
functionals of the joint position x1 + · · ·+xn, where xi are risks with distributions
Pi. A typical case is ϕ(x) = (

∑n
i=1 xi − k)+, the excess of loss function. A

nonconvex function of interest is ϕt(x) = 1[t,∞)(
∑n

i=1 xi) which yields just the
inverse of the value at risk functional. Of interest is also the maximal risk of
the components maxi≤n xi and variants hereof. For a detailed introduction to
this kind of questions we refer to Embrechts et al. (2003). An extension of the
classical Fréchet-bounds in (1.4) is the following result which in particular implies
sharpness of the classical Fréchet-bounds.

Theorem 3.1 (Sharpness of Fréchet-bounds, Ru (1981a))
Let (Ei,Ai) be polish spaces, Pi ∈ M1(Ei,Ai) and Ai ∈ Ai, 1 ≤ i ≤ n, then for
any P ∈ M(P1, . . . , Pn) holds

(
n∑

i=1

Pi(Ai)− (n− 1)

)

+

≤ P (A1 × · · · ×An) ≤ min {Pi(Ai)} (3.1)

and the upper and lower bounds in (3.1) are attained.

As consequence we get sharp bounds for the influence of dependence. As a first
example we consider the maximal risk of the components. Let X = (X1, . . . , Xn)
be a random vector, with Xi ∼ Pi being real rv’s with df ’s Fi. Then with Ai =
(−∞, t] (3.1) implies sharp bounds for the maxima Mn = maxi≤i≤n Xi.

Corollary 3.2 (Maximally dependent rv ’s)

H−(t) =

(
n∑

i=1

Fi(t)− (n− 1)

)

+

≤ P

(
max
i≤n

Xi ≤ t

)
(3.2)

≤ min
1≤i≤n

Fi(t) = H+(t)

Remark 3.3 a) Corollary 3.2 is due for F1 = · · · = Fn to Lai and Robbins
(1976). The general case is from Lai and Robbins (1978) and by different
methods from Meilijson and Nadas (1979), Tchen (1980) and Ru (1980a).
Also a random vector X̃ = (X̃1, . . . , X̃n) is constructed with X̃i ∼ Fi and

Mn(X̃) = max
i≤n

X̃i ∼ H−. (3.3)

X̃ yields the lower bound in (3.2). It is called maximally dependent random
vector in Lai and Robbins (1976). The upper bound H+(t) is attained by the
comonotonic vector X∗ = (F−1

1 (U), . . . , F−1
n (U)), where U is uniform on [0, 1].

In stochastic ordering terms (3.2), is equivalent to

Mn(X∗) ≤st Mn(X) = max
i≤n

Xi ≤st Mn(X̃) (3.4)

Strongly positive dependent rv’s have in stochastic order small maxima i.e.
they have small maximal risks of the components.
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b) The most simple way to explain the upper bound in (3.4) is the following argu-
ment due to Lai and Robbins (1976). In fact this is a typical argument for the
duality approach to problems of this kind (see Rachev and Ru (1998)). Note
that for any real v ∈ IR :

Mn(X) = max
i≤n

Xi ≤ v +
n∑

i=1

(Xi − v)+ (3.5)

Equality holds in (3.5) iff for some ‘splitting point’ v∗ the sets {Xi ≥ v∗} are
pairwise disjoint and

⋃n
i=1{Xi ≥ v∗} = Ω. The maximally dependent random

vector X̃ is constructed such that there is a splitting point v∗ as above. In the
case F1 = · · · = Fn, Lai and Robbins (1976) proved the extremely interesting
result that the maximally dependent case is close to the independent case in the
following asymptotic sense under the usual domain of attraction conditions for
maxima (∼ denote here asymptotic equivalence).

EMn

(
X⊥

)
∼ EMn

(
X̃

)
∼ F−1

(
1− 1

n

)
, (3.6)

where X⊥ is an iid sequence with df F and an = F−1(1 − 1
n) is the usual

normalization for the maximum law.

There are many alternative applications of (3.1) e.g. to get sharp bounds for
the concentration probabilities or to get sharp multivariate Fréchet-bounds (see
Ru (2003)).

Corollary 3.4 a) Maximal concentration.

(
n∑

i=1

(Fi(bi)− Fi(ai))− (n− 1)

)

+

≤ P (Xi ∈ [ai, bi], 1 ≤ i ≤ n)

≤ min
i≤i≤n

(Fi(bi)− Fi(ai)) (3.7)

The bounds in (3.7) are sharp.

b) (Sharp) multivariate Fréchet-bounds. If Xi are ki-dimensional random
vectors with df ’s Fi, 1 ≤ i ≤ n and F is the df of X = (X1, . . . , Xn) then for
any xi ∈ IRki , 1 ≤ i ≤ n:

(
n∑

i=1

Fi(xi)− (n− 1)

)

+

≤ F (x1, . . . , xn) ≤ min
1≤i≤n

(Fi(xi)) (3.8)

and the multivariate Fréchet-bounds are sharp.

Of particular interest in risk theory is the distribution and risk of the combined
portfolio given by the sum Sn(X) =

∑n
i=1 Xi.

The following basic ordering result for the ordering of sums has been stated
first in Meilijson and Nadas (1979) for the convex increasing order and in Ru
(1983) for the convex order.
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Theorem 3.5 (Maximal sums w.r.t. convex order) Let X be a random vec-
tor with marginal df ’s F1, . . . , Fn, then:

a) Convex increasing order

E

(
n∑

i=1

Xi − t

)

+

≤

ψ+(t) := inf
v=(v1,...,vn)

{(∑
vi − t

)
+

+
n∑

i=1

E(Xi − vi)+

}
(3.9)

The bound in (3.9) is sharp.

b) Convex order

n∑

i=1

Xi ≺cx

n∑

i=1

F−1
i (U) (3.10)

and E(
∑n

i=1 F−1
i (U)− t)+ = ψ+(t)

Remark 3.6 1) The proof of a) was given by Meilijson and Nadas (1979) by a
duality argument similar to that in (3.5). Also a construction of a rv attaining
the upper bound is given there (for an even more general situation). The result
of Meilijson and Nadas (1979) describes a sharp upper bound for the ordering
≺icx w.r.t. increasing convex functions which is also called stopp-loss ordering,
≺sl (in particular in the economics and insurance literature). That the comono-
tone case yields the maximum w.r.t. the convex order in (3.10) was stated in
Ru (1983) as consequence of a more general result for supermodular functions
and based on the rearrangement method which in the discrete case goes back
to inequalities of Lorentz (1953). Implicitly this result is also contained in the
‘Lorentz Theorem’ of Tchen (1980, Theorem 5), observing that for ϕ convex,
ϕ(x1 + · · · + xn) is quasimonotone (in Tchens terminology) or supermodular
in the now more common terminology. This convex ordering result for sums
of random variables and also the simple duality proof have been detected and
rederived again several times in the literature.

2) The sharpness of the bound in (3.9) resp. in (3.10) also implies that

E

(
n∑

i=1

F−1
i (U)− t

)

+

= ψ+(t)

= inf

{
n∑

i=1

E(Xi − vi)+;
n∑

i=1

vi = t

}
. (3.11)

If X∗, v∗ attain the upper bound in (3.9) then

(
n∑

i=1

X∗
i − t

)

+

=
n∑

i=1

(X∗
i − v∗i )+ a.s. (3.12)
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This equality has a simple geometric meaning and is fulfilled only for the comon-
tonic vector (F−1

i (U))1≤i≤n (see Meilijson and Nadas (1979) or the recent paper
by Kaas, Dhaene, Vyncke, Goovaerts and Denuit (2001))

3) Meilijson and Nadas (1979) in fact gave sharp bounds for more general func-
tionals. Let Ij ⊂ {1, . . . , n}, 1 ≤ j ≤ k be subsets with

⋃k
j=1 Ij = {1, . . . , n}

and consider M = max1≤i≤k
∑

j∈Ii
Xj. Then for all x:

E(M − x)+ ≤

ψ̃+(x) := inf
v






 max

1≤i≤k

∑

j∈Ii

vj − x




+

+
n∑

i=1

E (Xi − vi)+



 (3.13)

and the upper bound in (3.13) is pointwise sharp. Furthermore for cyclic di-
rected networks the bound is attained stochastically for some
P ∈ M(P1, . . . , Pn).

4) Comonotonic vectors, multivariate marginals. While for one dimen-
sional marginals comonotonic vectors maximize the risk for many convex func-
tionals (like in (3.9), (3.10)) for ϕ(

∑n
i=1 xi), ϕ convex) this is no longer the

case for multivariate marginals, where they can even minimize the risk. For
some illustrative examples see Ru (2003). The reason for this is the possible
negative dependence in the components of the marginals.

In the recent paper of Denuit, Dhaene and Ribas (2001) the following interesting
result related to (3.9), (3.10) was proved by a simple induction argument:

Theorem 3.7 (Positive dependence increases risk) If X is associated then

n∑

i=1

X⊥
i ≤sl

n∑

i=1

Xi. (3.14)

Here X⊥ = (X⊥
1 , . . . , X⊥

n ) has independent components and X⊥
i ∼ Xi.

So positive dependence (association) leads to riskier portfolios. In Christofides
and Vaggelatou (2004) and Ru (2003) a general version of this result has been
given stating that positive dependence leads to higher risk for a general class of
proper risk functions f(X1, . . . , Xn).

Of particular interest in risk theory is to describe the influence of dependence
on the value at risk functional of the combined portfolio VaRα(X1 + · · · + Xn)
which is defined as the α-quantile of the combined portfolio X1 + · · · + Xn. For
the description of the maximal influence the following functionals are of interest:
Given n df ’s F1, . . . , Fn consider:

Mn(t) = sup

{
P

(
n∑

i=1

Xi ≤ t

)
; Xi ∼ Fi, 1 ≤ i ≤ n

}

mn(t) = inf

{
P

(
n∑

i=1

Xi < t

)
; Xi ∼ Fi, 1 ≤ i ≤ n

}
(3.15)
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Then

1−mn(t) = sup{P (
∑

Xi ≥ t); Xi ∼ Fi, 1 ≤ i ≤ n} (3.16)

and one obtains the sharp upper bound

VaRα(X1 + · · ·+ Xn) ≤ (1−mn)−1(α). (3.17)

For the case n = 2 the following bounds were first established in Sklar (1973) and
in more general form in Moynihan, Schweizer and Sklar (1978). The bounds and
also their sharpness were independently established in Makarov (1981) and Ru
(1982) (For the history of this result see also Schweizer (1991)).

Theorem 3.8 (Maximal sum risks, n=2, Makarov (1981), Ru (1982),
Sklar (1973)) Let X be a random vector with marginal df ’s F1, . . . , Fn, then for
n = 2 holds:

P (X1 + X2 ≤ t) ≤ M2(t) = F1 ∧ F2(t)
P (X1 + X2 < t) ≥ m2(t) = F1 ∨ F2(t)− 1, (3.18)

where F1 ∧ F2(t) = infx(F1(x−) + F2(t − x)) is the infimal convolution function
and F1 ∨ F2(t) = supx(F1(x−) + F2(t− x)) is the supremal convolution function.

(3.16) is derived in Ru (1982) as consequence of the following general represen-
tation of the upper Fréchet-bounds for ϕ = 1A, P1, P2 ∈ M1(IRn) and A ⊂ IR2n

closed:

M(A) = sup {P (A); P ∈ M(P1, P2)} (3.19)
= 1− sup {P2(O)− P1(π1(A ∩ (IRn ×O))); O ⊂ IRn open} ,

where π1 is the projection on the first component. (3.19) is a consequence of
Strassen (1965, Theorem 11) (see Ru (1982,1986)).

The type of bounds in (3.18) extends easily to n ≥ 3 (see Frank, Nelsen and
Schweizer (1987) and Denuit, Genest and Marceau (1999)).

Proposition 3.9 Let X be a random vector with marginal df ’s F1, . . . , Fn. Then
for any t ∈ IR1 holds:

(
n∨

i=1

Fi(t)− (n− 1)

)

+

≤ P

(
n∑

i=1

Xi ≤ t

)
≤ min

(
n∧

i=1

Fi(t), 1

)
(3.20)

where
n∧

i=1

Fi(t) := inf

{
n∑

i=1

Fi(ui);
n∑

i=1

ui = t

}

and
n∨

i=1

Fi(t) := sup

{
n∑

i=1

Fi(ui);
n∑

i=1

ui = t

}
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Proof: The proof of (3.20) follows by induction from the case n = 2; alternatively
by the following simple argument. For any u1, . . . , un with

∑n
i=1 ui = t holds:

P

(
n∑

i=1

Xi ≤ t

)
≤ P

(
n⋃

i=1

{Xi ≤ ui}
)

(3.21)

≤
n∑

i=1

Fi(ui),

which gives the upper bound. Similarly, using the Fréchet lower bound in (1.4)
we obtain

P

(
n∑

i=1

Xi ≤ t

)
≥ P (X1 ≤ u1, . . . , Xn ≤ un) (3.22)

≥
(

n∑

i=1

Fi(ui)− (n− 1)

)

+

.

2

Remark 3.10 The bounds in (3.17) are however in contrast to the case n = 2
not sharp. If n = 3, F1 = F2 = F3 are the df of the uniform distribution on [0, 1]
then

M3(t) =

{
2
3 t , 0 ≤ t ≤ 3

2
1 , t > 3

2

, m3(t) =

{
2
3 t− 1 , 0 ≤ t ≤ 3
1 , t ≥ 3

(3.23)

(see Ru (1982)). The bounds in (3.20),(3.21) are in this case more crude.

min

(
1,

3∧

i=1

Fi(t)

)
= min (1, t) and

(
3∨

i=1

Fi(t)− 2

)

+

= (t− 2)+ (3.24)

For some examples sharp bounds for n ≥ 3 have been given in Ru (1982) and
Rachev and Ru (1998).

The simple method of bounding the risk probability in (3.20) has been given
and extended in Frank, Nelsen and Schweizer (1987) to general monotonically
nondecreasing functions ψ(x1, . . . , xn). The resulting bounds are of interest and
markable relevance if further information on the underlying df ’s can be used.
The following is essentially a reformulation of corresponding results in Moynihan,
Schweizer and Sklar (1978), Frank, Nelsen and Schweizer (1987), Denuit, Genest
and Marceau (1999) and Embrechts Höing and Juri (2003). For a df H let H
denote the corresponding multivariate survival function H(x) = PH([x,∞)). For
t ∈ IR let A+

ψ (t) := {u = (u1, . . . , un) : u a maximal point in IRn with ψ(u) ≤ t}

Theorem 3.11 (Bounds for monotonic functionals)
Let X = (X1, . . . , Xn) be a random vector with df F ∈ F(F1, . . . , Fn) and let ψ(x)
be monotonically nondecreasing and lower semicontinuous. Then
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a) General bounds.


 sup

u∈A+
ψ

(t)

n∑

i=1

Fi(ui)− (n− 1)




+

≤ P (ψ(X) ≤ t) (3.25)

≤ inf
u∈A+

ψ
(t)

n∑

i=1

Fi(ui)

b) Improved bounds. If G,H are df ’s, then

1) F ≥ G implies

P (ψ(X) ≤ t) ≥ sup
u∈A+

ψ
(t)

G(u). (3.26)

2) If F ≥ H, then

P (ψ(X) < t) ≤ 1− sup
u∈A−

ψ
(t)

H(u), (3.27)

where A−ψ (t) := {u ∈ IRn : ψ(u) ≥ t}
Proof:

a) For any u ∈ A+
ψ (t) holds, using maximality of u,

P (ψ(X) ≤ t) ≤ P

(
n⋃

i=1

{Xi ≤ ui}
)
≤

n∑

i=1

Fi(ui).

This implies the upper bound in a). Further,

P (ψ(X) ≤ t) ≥ P (X1 ≤ u1, . . . , Xn ≤ un) (3.28)

≥
(

n∑

i=1

Fi(ui)− (n− 1)

)

+

by the lower Fréchet-bound.

b) If F ≥ G, then in (3.28) we get

P (ψ(X) ≤ t) ≥

 sup

u∈A+
ψ

(t)

G(u)− (n− 1)




+

.

If F ≥ H then for u ∈ A−ψ (t)

P (ψ(X) < t) = 1− P (ψ(X) ≥ t)
≤ 1− P (X1 ≥ u1, . . . , Xn ≥ un)
= 1− F (u) ≤ 1−H(u),

which implies 2).



Ordering of Risks 15

2

Remark 3.12 a) For the case n = 2 one gets sharp upper and lower bounds for
P (ψ(X) ≥ t) by applying (3.20) to the set A = {x = (x1, x2) :
ψ(x1, x2) ≥ t} for any function ψ, in particular for monotonically nondecreas-
ing functions.

b) Theorem 3.2 in Embrechts, Höing and Juri (2003) state sharpness of the bounds
in (3.26) and (3.27). In comparison to Embrechts, Höing and Juri (2003) we
omit some continuity assumption on ψ and omit the language of copulas which
is not necessary here. The corresponding bound for the value at risk functionals
are in consequence of the monotonicity of ψ easy to achieve (see Embrechts
et al. (2003, Theorem 4.1)). There is still a lot of open problems in this
area. In particular how to obtain applicable and good bounds under additional
information on the model.

c) An extension of the bounds in (3.14), (3.25) to increasing functions ψ(X, Y )
of k-dimensional vectors has been given in Li, Scarsini and Shaked (1996).
For n = 2 one gets sharpness by Strassens theorem as in (3.17). Also the
partial integration argument from Ru (1980a) can be applied to obtain bounds
for Eg(X + Y ) for increasing differentiable functions g (see Li, Scarsini and
Shaked (1996, Theorem 4.2)) and more general to any ∆-monotone functions
f(X1, . . . , Xn) for ki-dimensional random vectors Xi (see Ru (2003)). Sev-
eral further bounds and techniques for obtaining bounds are discussed in Ru
(1991a). One rich source of such bounds are Bonferroni inequalities which in
many cases can be proved by a general reduction principle to be sharp. Let e.g.
A1, . . . , An ∈ A where (E,A) is any measure space and Pi ∈ M1(E,A). Let
X = (X1, . . . , Xn) be a random vector with Xj ∼ Pj , 1 ≤ j ≤ n and define the
set that at least k of the events {Xj ∈ Aj} holde true,

Lk :=
⋃

J⊂{1,...,n}, |J |=k

{Xj ∈ Aj , j ∈ J} . (3.29)

Then

P (Lk) ≤ bk := min
0≤r≤k−1

(
1,

1
k − r

n−r∑

i=1

p(i)

)
(3.30)

P (Lk) ≥ ak := max


0,

n∑
i=r+1

p(i) − (k − 1)

n− r − (k − 1)




where pi = P (Xi ∈ Ai) and p(1) ≤ · · · ≤ p(n) (see Ru (1991a)).

The bounds in (3.30) are sharp. They are consequences of a Bonferroni type
result in Rüger (1979) and a general reduction principle (see Ru (1991a)). In
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particular for real random variables and Ai = [t,∞) one gets sharp upper and
lower bounds for the tail of the k-th order statistic

P
(
X(k) ≥ t

) {
≤ bk, with pi = P (Xi ≥ t)
≥ ak

. (3.31)

Also extensions to higher order Bonferroni bounds are given in Ru (1991) and
to improved bounds in the case that one can use some of the higher order joint
marginal distributions.

4 ∆-Monotone, Supermodular and Directionally
Convex Function Classes

In various applications of comparing risks it has turned out that ∆-monotone,
supermodular and directionally convex functions and variants of them play an
eminent role (see Müller and Stoyan (2002)). For the definition we introduce for
f : IRn → IR, ε > 0, the difference operator ∆ε

if by

∆ε
if(x) = f(x + εei)− f(x), 1 ≤ i ≤ n (4.1)

where ei is the i-th unit vector.

Definition 4.1 Let f : IRn → IR.

1) f is ∆-monotone if for every subset I = {i1, . . . , ik} ⊂ {1, . . . , n} and ε1, . . . , εk >
0 holds

∆ε1
i1

. . .∆εk
ik

f(x) ≥ 0 for all x. (4.2)

2) f is supermodular if for all 1 ≤ i < j ≤ n, ε, δ > 0 and all x

∆ε
i∆

δ
jf(x) ≥ 0. (4.3)

3) f is directionally convex if (4.3) holds for all i ≤ j.

Denote by F∆, Fsm, Fdcx the set of all ∆-monotone resp. supermodular resp.
directionally convex functions then F∆ ⊂ Fsm and Fdcx ⊂ Fsm.

Remark 4.2 The class of supermodular and directionally convex functions were
investigated in early papers of Lorentz (1953) and Ky Fan and Lorentz (1954) in
the context of functional inequalities (see also the extensive chapter in Marshall
and Olkin (1979)). In Cambanis, Simons and Stout (1976) and Tchen (1980)
supermodular functions are called quasimonotone. ∆-monotone functions were
introduced in Ru (1980). Twice differentiable functions f are supermodular (di-
rectionally convex) if

∂2

∂xi∂xj
f(x) ≥ 0 for all x and i < j (resp. for i ≤ j). (4.4)
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Differentiable functions f are ∆-monotone if for all i1 < i2 < · · · < ik,
1 ≤ k ≤ n

∂k

∂xi1 . . . ∂xik

f(x) ≥ 0. (4.5)

Definition 4.3 For P, Q ∈ M1(IRn) define

a) P ≤uo Q ‘upper orthant ordering’ if

P ([x,∞]) ≤ Q([x,∞]), ∀x ∈ IRn (4.6)

b) ≤sm, ≤dcx denote the supermodular ordering resp. directionally convex ordering
generated by Fsm resp. Fdcx.

There are corresponding positive/negative dependence notions.

Definition 4.4 1) P is positive (negative) upper orthant dependent
−P ∈ PUOD (resp. P ∈ NUOD) if

n⊗

i=1

Pi ≤uo P

(
resp. P ≤uo

n⊗

i=1

Pi

)
(4.7)

2) P is weakly associated if E
∏n

i=1 fi(Xi) ≥
∏n

i=1 Efi(Xi) for all nondecreasing
fi ≥ 0.

Remark 4.5 A similar notion also exists for lower orthants and is denoted by
≤lo resp. PLOD and NLOD. This notion was introduced in Lehmann (1966).
The following equivalence holds:

P ∈ PUOD if and only if P is weakly associated. (4.8)

(For n = 2 due to Lehmann (1966), for n ≥ 2 to Ru (1981c).) In fact more
generally it was shown in Bergmann (1978) that: P ≤uo Q if and only if for
X ∼ P , Y ∼ Q

E
n∏

i=1

fi(Xi) ≤ E
n∏

i=1

fi(Yi), (4.9)

for fi nondecreasing, fi ≥ 0.

The maximal generator of the upper orthant order is the set of ∆-monotone func-
tions.

Theorem 4.6 (∆-monotone functions, Ru (1980a)) If P, Q ∈ M1(IRn), then:
P ≤uo Q if and only if

∫
f dP ≤

∫
f dQ for all f ∈ F∆ (4.10)

which are integrable w.r.t. P and Q, i.e. ≤uo is equivalent to ≤F∆.
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A similar result of course also holds for the lower orthant order and can be com-
bined to characterize the ‘concordance ordering’; P ≤con Q if P ≤uo Q and P ≤lo

Q. A random vector X is called WA (weakly associated) if Cov(f(XJ), g(XI)) ≥ 0
for any disjoint subsets J, I of {1, . . . , n} and monotonically nondecreasing func-
tions f, g of these components. Concerning the supermodular ordering the analo-
gous result is the following.

Theorem 4.7 (Supermodular functions) Let P, Q ∈ M1(IRn),

a) n = 2 Cambanis, Simons and Stout (1976). For P, Q ∈ M(P1, P2) holds:

P ≤uo Q ⇐⇒ P ≤sm Q (4.11)

b) n ≥ 2 ‘The Lorentz Theorem’, Tchen (1980), Ru (1983). For
P ∈ M(P1, . . . , Pn) holds

P ≤sm P+, (4.12)

where P+ is the measure corresponding to the upper Fréchet-bound (the comono-
tonic measure).

c) Christofides and Vaggelatou (2003).
If X is a weakly associated random vector, then X has positive supermodular
dependence , i.e.

n⊗

i=1

PXi ≤sm PX . (4.13)

Remark 4.8 a) The interesting result in (4.13) can be stated in the form: Pos-
itive dependence implies increasing of the risk. This is of essential interest in
risk theory.

b) (4.12) was proved in Tchen (1980) by discrete approximation and reduction to
the Lorentz (1953) inequalities. In Ru (1979, 1983) the problem of generalized
Fréchet-bounds was identified with a rearrangement problem for functions and
then reduced to the Lorentz inequality.

c) For P and Q with identical (n-1)-dim. marginal distributions one obtains

P ≤uo Q ⇒ P ≤sm Q (4.14)

(Tchen (1980), Ru (1980a, Theorem 3b))

d) There are some useful composition rules which allow to use ≤sm for several
models of interest (see Müller and Stoyan (2002) for results and references).

e) From Tchens proof of b) it is clear that P− ≤sm P if the lower Fréchet-bound
P−, is a df (cf. also Müller and Stoyan (2002, p. 120)).
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f) Since for any ϕ convex the function ψ(x) = ϕ(x1 + · · · + xn) is supermodular
one obtains as consequence of (4.12) the statement of (3.9) that

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
i (U) (4.15)

i.e. the sums are maximal in convex order for the comonotone case, in other
words the comonotone positively dependent portfolio is the riskiest possible.

g) Comparison of P ∈ M(P1, . . . , Pn) and Q ∈ M(Q1, . . . , Qn) w.r.t. the super-
modular ordering ≤sm is only possible if the marginals are identical

P ≤sm Q implies Pi = Qi, 1 ≤ i ≤ n. (4.16)

So in comparison to ≤F∆=≤uo the ≤sm ordering is restricted to one marginal
class while ≤uo allows comparisons between P and Q if the marginals increase
stochastically:

P ≤uo Q implies Pi ≤st Qi, 1 ≤ i ≤ n. (4.17)

The comparison by F∆ is however for a smaller class of functions F∆ ⊂ Fsm.
On the other hand criteria for ≤sm are not as simple as those for ≤uo. The
directionally convex order ≤dcx is a ‘typical’ risk order. It allows comparisons
in cases where the marginals increase convexly:

P ≤dcx Q implies Pi ≤cx Qi, 1 ≤ i ≤ n. (4.18)

From the copula representation (2.7) of distributions with given marginals the
following is immediate: If P ∈ M(P1, . . . , Pn), Q ∈ M(Q1, . . . , Qn) have the same
copula C and Pi ≤st Qi, 1 ≤ i ≤ n, then

P ≤st Q. (4.19)

(≤st is the multivariate stochastic order w.r.t. increasing functions, see Ru (1981b,
Proposition 7).

The situation is more complicated if the marginals increase in convex order.
Here the analog of (4.19) is wrong, see Müller and Scarsini (2001). The reason
is that negative dependence can destroy this conclusion, as the following simple
example of that paper shows.

Example 4.9 Consider n = 2 and rv’s X=(W, -W), Y = (W,−EW ) for some
integrable random variable W . Then Yi ≤cx Xi, i = 1, 2, but X1+X2 = W−W = 0
while Y1 + Y2 = W − EW i.e. X1 + X2 ≤cx Y1 + Y2.

However in the positive direction Müller and Scarsini (2001) proved the interesting
result, that under a strong positive dependence assumption the analog of (4.19)
is true. Let F+ denote as usual the upper Fréchet-bound of F(F1, . . . , Fn).

Theorem 4.10 (Directionally convex ordering) Let Fi, Gi be one dimen-
sional df ’s, 1 ≤ i ≤ n.
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a) ’The Ky-Fan-Lorentz Theorem’
Ru (1983). If Fi ≤cx Gi, 1 ≤ i ≤ n then

F+ ≤dcx G+. (4.20)

b) Müller and Scarsini (2001). If F ∈ F(F1, . . . , Fn) and G ∈ F(G1, . . . , Gn) have
the same conditionally increasing (CI) copula C and if Fi ≤cx Gi, 1 ≤ i ≤ n,
then

F ≤dcx G. (4.21)

Remark 4.11 Müller and Scarsini (2001) give a proof of a) using mean pre-
serving spread (see Theorem 3.12.13 of their paper) while the proof in Ru (1983)
is based on the Ky Fan and Lorentz Theorem. The second main ingredient of
the proof of b) is the a.s. standard construction of random vectors in (2.4):
X = τ∗F (V ) = (h1(V1), . . . , hn(V1, . . . , Vn)), where the functions hi are monoton-
ically nondecreasing for CI distribution functions. (4.21) is not valid any more
under the weaker dependence assumption of association or of conditional increas-
ing in sequence CIS (see Müller and Scasini (2001)).

The following weakening of the WA-notion was introduced in Ru (2003):
X is smaller than Y in the weakly conditional in sequence order – X ≤WCS Y –
if for all t, 1 ≤ i ≤ n− 1 and f monotonically nondecreasing

Cov(1(Xi > t), f(X(i+1))) ≤ Cov(1(Yi > t), f(Y(i+1))) (4.22)

where X(i+1) = (Xi+1, . . . , Xn). X is called weakly associated in sequence (WAS)
if X∗ ≤WCS X, where X∗ is the corresponding version of X with independent
components; equivalently for all t

PX(i+1)|Xi>t ≥st PX(i+1) . (4.23)

The following result extends and unifies Theorem 4.7 and 4.10.

Theorem 4.12 (WCS-Theorem, Ru (2003)) Let X, Y be random vectors with
marginals Pi, Qi.

a) If Pi = Qi, 1 ≤ i ≤ n and X ≤WCS Y then X ≤sm Y

b) If Pi ≤cx Qi, 1 ≤ i ≤ n and X ≤WCS Y then X ≤dcx Y .

The ordering ≤WCS combines an increase in positive dependence with a convex
increase of the marginals. Some examples for this ordering are given in Ru (2003).
In particular one obtains as corollary:

Corollary 4.13 If F ∈ F(F1, . . . , Fn) and Fi ≤cx Gi, 1 ≤ i ≤ n, then

a)
F ≤dcx G+ (4.24)
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b) If X ∼ F , then

n∑

i=1

Xi ≤cx

n∑

i=1

G−1
i (U), (4.25)

where U is uniformly distributed on (0, 1).

Finally we state some new criteria for the ≤sm and ≤dcx ordering in functional
dependence models which are related to Bäuerle (1997, Theorem 3.1) and Bäuerle
and Müller (1998). For the proofs see Ru (2003). Let (Ui) be independent rv’s
and (Vi), V any random variables independent of (Ui). Further let

Xi = gi(Ui, Vi), Yi = gi(Ui, V ), Zi = g̃i(Ui, Vi), Wi = g̃i(Ui, V ) (4.26)

where Vi ∼ V and gi(u, ·), g̃i(u, ·) are monotonically nondecreasing. Let X =
(X1, . . . , Xn), Y = (Y1, . . . , Yn), Z, W denote the corresponding vectors and let
≤ccx denote the componentwise convex order. X, Y , Z, W describe functional
models where the dependence is obtained in functional form from some inner and
outer factors Ui resp. Vi. These type of models are of particular relevance in
various applications in insurance and in economics.

Theorem 4.14 For the X, Y , Z, W specified as in (4.26) holds:

a) Bäuerle (1997). X ≤sm Y , Z ≤sm W

b) If for all v, g̃i(Ui, v) ≤cx gi(Ui, v) then Z ≤ccx X, W ≤ccx Y and Z ≤dcx Y .

c) If gi(Ui, v) ≤cx g̃i(Ui, v) then X ≤ccx Z, Y ≤ccx W , and X ≤dcx W .

For the proofs of b) and c) see Ru (2003).

Remark 4.15 The random vectors Z, Y and X, W which are compared w.r.t.
≤dcx in Theorem 4.14 do not have the same dependence structure (copula), which
was a basic assumption for the proof of the ≤dcx ordering result in Theorem 4.10
b). Also the X and W vectors are not necessarily positive dependent. Since we
do not postulate any independence for the (Vi), we can describe any multivariate
df F by a random vector of the form as for X. Thus this comparison result
applies to many models. Similarly as in Bäuerle (1997) one could add in Theorem
4.14 a further random influence component W and consider models of the form
Xi = gi(Ui, Vi,W ), Yi = gi(Ui, Vi,W ) etc.
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63. Rüschendorf, L. (1982). Random variables with maximum sums, Advances
Applied Probability, 14, 623–632.
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