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Abstract

Exponential tail bounds are derived for solutions of max-recursive equa-
tions and for max-recursive random sequences, which typically arise as func-
tionals of recursive structures, of random trees or in recursive algorithms. In
particular they arise in the worst case analysis of divide and conquer algo-
rithms, in parallel search algorithms or in the height of random tree models.
For the proof we determine asymptotic bounds for the moments or for the
Laplace transforms and apply a characterization of exponential tail bounds
due to Kasahara (1978).

1 Introduction

Stochastic recursive equations of max-type arise in a great variety of problems
with a recursive stochastic component as in the probabilistic analysis of algorithms
or in combinatorial optimization problems. For a list of examples in this area see
the survey paper of Aldous and Bandyopadhyay (2005). We consider in this paper
random sequences (Xn), satisfying recurrences of the type

Xn
d
=

K∨
r=1

(
Ar(n)X

(r)

I
(n)
r

+ br(n)
)

, n ≥ n0, (1.1)

which fit with the general divide and conquer paradigma. The I
(n)
r ∈{0,. . . ,n−1}

are subgroup sizes of the K subproblems in which a problem of size n is split, br(n)
are random toll terms arising from the splitting process, Ar(n) is a random weight-

ing term for subproblem r and (X
(r)
n ) are independent copies of (Xn) describing the

parameter of the r-th subproblem. It is assumed that (X
(1)
n ), . . . , (X

(K)
n ), (A(n) =

(A1(n), . . . , AK(n)), I(n) = (I
(n)
1 , . . . , I

(n)
K ), b(n) = (b1(n), . . . , br(n))) are indepen-

dent while the coefficients and subgroup sizes A(n), I(n), b(n) may be dependent.
d
=

denotes equality in distribution. Xn coincides with the maximum (worst case) of
the weighted parameters of the subproblems 1, . . . , K in distribution.

A general distributional limit theorem for this type of max-recurrences was given
in Neininger and Rüschendorf (2005) , see also [9], [10] by means of the contraction
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method. The limit of Xn after normalization is characterized as unique solution of
a fixpoint equation of the form

X
d
=

K∨
r=1

(ArXr + br) , (1.2)

where (Ar, b) are limits in L2 of the coefficients (Ar(n), br(n)) and Xr are indepen-
dent copies of X.

In the present paper we study some conditions on the coefficients such that the
normalized recursive sequences

Yn =
Xn − EXn

sn

(1.3)

for some scaling sequences sn have exponential tails. We also give conditions which
imply exponential tails of solutions of the fixpoint equation (1.2). In section 2 we
consider the case of solutions X of the max-recursive equation in (1.2). For this case
some existence and uniqueness results have been obtained in [8], [10]. Some results
on tail bounds in particular for the worst case of FIND equation have been given
in Grübel and Rösler (1996), Devroye (2001) and Janson (2004). We derive bounds
for the moments of X and obtain by Kasahara’s theorem (1978) exponential tail
bounds for X. In section 3 we consider the case of max recursive sequences (Xn). We
establish various conditions which imply bounds for the asymptotics of moments
and Laplace transforms which again lead by Kasahara’s theorem to exponential tail
bounds for max-recurrences (Xn). As example we discuss the worst case of FIND
sequence.

2 Exponential tail bounds for max-recursive

equations

Exponential tail bounds are not easily directly accessible for max-recursive se-
quences (Xn) as in (1.1) or for solutions of max-recursive equations in (1.2). It will
however turn out to be possible to get suitable bounds on the moments or on the
Laplace transforms of (Xn) resp. X. These imply exponential tail bounds by the
following lemma, which is a consequence of a more general theorem of Kasahara
(1978).

We define for functions f, g on R+ → R+

f(x) ≤as g(x) if lim
x→∞

f(x)

g(x)
≤ 1 (2.1)

and

f(x) ∼as g(x) if lim
x→∞

f(x)

g(x)
= 1. (2.2)
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Lemma 2.1 (Kasahara (1978)) Let X be a random variable p, a > 0

and b :=
(

1
pea

)1/p

1) For X ≥ 0 are equivalent:

a) − ln P (X > x) ≤as axp (2.3)

and

b) ‖X‖q ≤as bq1/p for q →∞, q ∈ 2N (2.4)

2) For general X and p ≥ 1 a) is further equivalent to:

c) ln EetX ≤as ctq (2.5)

where c = q−1(pa)−(q−1) and 1
p

+ 1
q

= 1,

3) The statements in 1),2) remain valid also if ≤as is replaced by asymptotic equiv-
alence ∼as.

Remark: In the paper of Kasahara (1978) the statement of Lemma 2.1 was given
for the asymptotic equivalence case (as in part 3)). The method of proof in that
paper however also allows to cover the ≤as-bounds as in parts 1), 2) of Lemma 2.1. 2

Theorem 2.2 Consider the max recursive equation (1.2) and assume that
E

∑K
r=1 Aq

r < 1 for q ≥ q0. If for some p > 0

f(q) :=
‖∨

br‖q

1− (E
∑K

r=1 Aq
r)1/q

≤as bq1/p, (2.6)

then (1.2) has a unique solution X in Mq
0
, the class of all distributions with finite

moments of order q0. Further X has moments of any order and

P (X > x) ≤as e−axp

where a = 1
pebp .

Proof: The existence and uniqueness of a solution X (in distribution) of the max
recursive equation (1.2) follows from Neininger and Rüschendorf (2005), Theorem
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5. For the proof of (2.6) we establish bounds for the moments of X:

‖X‖q = ‖
K∨

r=1

(ArXr + br)‖q

≤ ‖
K∨

r=1

ArXr‖q + ‖
K∨

r=1

br‖q

=

(
E

K∨
r=1

(ArXr)
q

)1/q

+ ‖
K∨

r=1

br‖q

≤
(

K∑
r=1

EAq
rEXq

r

)1/q

+ ‖
K∨

r=1

br‖q

≤
(

K∑
r=1

EAq
r

)1/q

‖X‖q + ‖
K∨

r=1

br‖q.

This implies that

‖X‖q ≤ ‖∨
br‖q

1−
(∑K

r=1 EAq
r

)1/q = f(q) ≤as bq1/p. (2.7)

Thus the tail estimate follows from an application of Lemma 2.1. 2

Remark: Condition (2.6) can arise in various different ways. Two typical of these
are

a) (2.6) holds if

b̃ := sup
q
‖

∨
br‖q = ‖

∨
br‖∞ < ∞ (2.8)

and (
k∑

r=1

EAq
r

)1/q

≤as

(
1− b̃

b
q−1/p

)
. (2.9)

Condition (2.9) implies in particular that sup
r≤K

‖Ar‖∞ ≤ 1.

b) If

δ := lim sup
q→∞

(
k∑

r=1

EAq
r

)1/q

< 1 (2.10)

and

‖
K∨

r=1

br‖q ≤as cq1/p (2.11)

then (2.7) holds with b = c
1−δ

and a =
(

1−δ
b

)p 1
pe

.
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Condition b) allows more general toll terms br but puts a stronger condition on
the weights Ar. 2

Example 2.1 Let X be the unique solution of the following max-recursive equation
with finite moments of any order

X
d
= UX1 ∨ (1− U)X2 + 1, (2.12)

where U
d
= U [0, 1] is uniformly distributed on [0, 1] (see [2], [4]). This fixpoint

equation characterizes the limit of the worst case of FIND. Then

‖U‖q = ‖1− U‖q =

(
1

q + 1

)1/q

and thus by Theorem 2.2, (see (2.7))

‖X‖q ≤ f(q) =
1

1− 21/q
(

1
q+1

)1/q
=

1

1− exp
(

1
q
ln 2

q+1

)1/q
∼ 1

1− exp
(
−1

q
ln q

) .

Using 1− e−x ≥ (1− 1
e
)x for x ∈ (0, 1) and 0 < 1

q
ln q < 1, this implies for q ≥ 3

E‖X‖q ≤ q

ln q

e

e−1
(1 + o(1)) ≤ q

e

e−1
(1 + o(1)).

Therefore, Lemma 2.1 implies the tail estimate

P (X ≥ x) ≤ exp(−ax(1 + o(1)))

with a = e−1
e2 .

Remark: Exponential tail bounds for the limit X of the normalized worst case
of FIND algorithm Xn = Tn

n
were established in Grübel and Rösler (1996) and in

Devroye (2001) and in a similar way as above in Janson (2004). Theorem 2.2 gen-
eralizes these bounds to a general class of max recursive equations. The normalized
worst case of FIND algorithm Xn is stochastically majorized by X i.e.

P

(
Tn

n
≥ t

)
≤ P (X ≥ t) (2.13)

(see Devroye (2001)). Therefore, the exponential tail bounds hold also for the
normalized worst case of FIND algorithm Xn = Tn

n
uniformly in n ∈ IN. 2
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3 Tail bounds for max-recursive sequences

In this section we establish tail bounds for max-recursive sequences (Xn) as in
(1.1). A central limit theorem for these kind of recursions has been given in a
recent paper of Neininger and Rüschendorf (2005). We assume in the following
version that equation (1.1) is already in stabilized form.

Theorem 3.1 (Limit theorem for max-recursive sequences, see [8]) Let
(Xn) be a max-recursive sequence as in (1.1) with Xn ∈ Ls, ∀n and assume the
following conditions:

1. stabilization:
(A1(n), . . . , AK(n), b1(n), . . . , bK(n)) → (A1, . . . , AK , b1, . . . , bK) in Ls.

2. contraction: E
∑K

r=1 |Ar|s < 1

3. nondegeneracy: E1{I(n)
r ≤l}|Ar(n)|s → 0 for all l∈N, r=1, . . . K.

Then (Xn) converges in distribution to a limit X∗. Further, ls(Xn, X∗) → 0
and X∗ is the unique solution of the recursive equation (1.2) in Ms, the class
of distributions with finite s-th moments.

In the following theorem we supplement this limit theorem by giving tail bounds
for (Xn). For the proof we establish uniformly in n ∈ N bounds on the asymptotics
of the moments and then obtain exponential tail bounds by Lemma 2.1. Let sn =
s(n) be a monotonically nondecreasing norming sequence of Xn and consider the
normalized sequence

Yn :=
Xn − EXn

sn

. (3.1)

Theorem 3.2 Let (Xn) be a max-recursive sequence as in (1.2), let p > 0 and let
‖Yi‖r ≤as cr1/p as r →∞ for i = 0, . . . , n0−1. Further we assume

a)

∥∥∥∥
1

sn

K∨
r=1

(br(n)− EXn + Ar(n)EX
I
(n)
r

)

∥∥∥∥
r

≤as br1/p (3.2)

and
1

η
+

K∑
r=1

s(I
(n)
r )

sn

|Ar(n)| ≤ 1, n ≥ n0, for some η > 1 (3.3)

or b)

∥∥∥∥
K∨

r=1

(br(n)− EXn + Ar(n)EX
I
(n)
r

)

∥∥∥∥
r

≤as br1/p (3.4)

and
1

sn

+
K∑

r=1

s(I
(n)
r )

sn

|Ar(n)| ≤ 1, n ≥ n0, (3.5)
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Then there exists some function h(x), such that

h(x) ≤as e−axp

(3.6)

and
P (Yn ≤ x) ≤ h(x), ∀n ∈ N0. (3.7)

where a = 1
2e(max{ηb, e})p in case a) and a = 1

2e(max{b, e})p in case b).

Thus we obtain exponential tail bounds of order p uniformly for all Yn.

Proof: We establish by induction uniformly in n ∈ N0 moment estimates for
(Yn) which by Lemma 2.1 correspond to the exponential tail bounds in (3.7). For
n = 0, . . . , n0−1 these bounds are given by assumption. The normalized sequence
(Yn) satisfies the modified recursive equation

Yn
d
=

K∨
r=1

(
Ar(n)

s(I
(n)
r )

sn

Y
I
(n)
r

+ b(n)
r

)
(3.8)

where

b(n)
r :=

1

sn

(br(n)− EXn + Ar(n)EX
I
(n)
r

). (3.9)

We denote by Υn the distribution of (A(n), I(n), b(n)) where

A(n) = (A1(n), . . . , AK(n)), I(n) = (I
(n)
1 , . . . , I

(n)
K ) and b(n) = (b

(n)
1 , . . . , b

(n)
K ).

Then conditioning by the vector (A(n), I(n), b(n)) we obtain in the induction step

with β :=
∨K

r=1 b
(n)
r

E|Yn|q = E

∣∣∣∣∣
K∨

r=1

(
Ar(n)

s(I
(n)
r )

sn

Y
(r)

I
(n)
r

+ b(n)
r

)∣∣∣∣∣

q

≤ E

(
K∑

r=1

|Ar(n)|s(I
(n)
r )

sn

|Y (r)

I
(n)
r

|+ |b(n)
r |

)q

=

∫ q∑

l=0

(
q

l

)
E

(
K∑

r=1

|ar|s(ir)
sn

|Y (r)
ir
|
)l

|β|q−ldΥn

(∗) ≤
∫ q∑

i=0

(
q

l

) (
cl

1
p (1 + o(1))

)l
(

K∑
r=1

s(ir)

sn

|ar|
)l

|β|q−ldΥn

Further in case a) we obtain

E|Yn|q ≤
(
max{ηb, c}q 1

p (1 + o(1))
)q

E
(

1
η

+ 1− 1
η

)q

=
(
max{ηb, c}q 1

p (1 + o(1))
)q

. (3.10)
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In case b) we obtain

E|Yn|q ≤
(
max{b, c}q 1

p (1 + o(1))
)q

E
(

1
sn

+1− 1
sn

)q

=
(
max{b, c}q 1

p (1 + o(1))
)q

. (3.11)

For the proof of (∗) we consider

E

(
K∑

r=1

s(ir)

sn

|ar||Y (r)
ir
|
)l

=
∑

j1+...+jK=l

(
l

j1 . . . jK

) K∏
r=1

(
s(ir)

sn

|ar|
)jr

E |Y (r)
ir
|jr

ir<n≤
∑

j1+...+jK=l

(
l

j1 . . . jK

) K∏
r=1

(
s(ir)

sn

|ar|
)jr

(
cj

1
p
r (1 + o(1))

)jr

≤
(
cl

1
p (1 + o(1))

)l ∑

j1+...+jK=l

(
l

j1 . . . jK

) K∏
r=1

(
s(ir)

sn

|ar|
)jr

=
(
cl

1
p (1 + o(1))

)l
( K∑

r=1

s(ir)

sn

|ar|
)l

.

The terms cl
1
p + o(1) as q → ∞ are independent of n ∈ No and thus we obtain

from Lemma 2.1 a tail bound uniformly in n ∈ N as in (3.7). 2

Remark: To estimate the crucial term in (3.2) one can use the bound

∣∣∣∣∣
K∨

r=1

(
br(n)−EXn+Ar(n)EX

I
(n)
r

)∣∣∣∣∣≤
∣∣∣∣∣

K∨
r=1

br(n)

∣∣∣∣∣+
∣∣∣∣∣

K∑
r=1

|Ar(n)EX
I
(n)
r
|−EXn

∣∣∣∣∣ .

(3.12)
Further, |∨ br(n)| ≤ ∑

r |br(n)| , which however is only a good estimate if one of
the |br(n)| is big while all other |br(n)| are small. 2

Without toll terms the following improved conditions yield subgaussian tail bounds.

Theorem 3.3 Let (Xn) be a max-recursive sequence as in (1.1) with zero toll
terms, br(n) = 0, r = 1, . . . , K and Xn ≥ 0, ∀n. We assume

a) − ln P (Xi > x) = ax2(1 + o(1)) as x →∞, for i = 0, . . . , n0−1, (3.13)

and

b) sup
r≤K,n≥n0

Ar(n) < 1. (3.14)

Then
− ln P (Xi > x) ≤as ax2 uniformly in i ∈ N0. (3.15)
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Proof: The proof is by induction. For i ≤n0−1 (3.15) holds by assumption (3.13).
For the induction step we obtain by conditioning as in section 2 for x ≥ 1

P




(
K∨

r=1

Ar(n)X
(r)

I
(n)
r

)2q

≤ x


 =

∫
P




(
K∨

r=1

arX
(r)
ir

)2q

≤ x


 dP (A(n),I(n))

=

∫ K∏
r=1

P

(
X

(r)
ir
≤ x

1
2q

ar

)
dP (A(n),I(n))

=

∫ K∏
r=1


1− e

−a

Ã
x

1
2q

ar

!2

(1+o(1))


 dP (A(n),I(n))

With Υn = P (A(n),I(n)) we thus obtain from majorized convergence

EX2q
n = EX2q

n 1{Xn<1} + EX2q
n 1{Xn≥1}

= E1{Xn≥1}

(
K∨

r=1

Ar(n)X
(r)

I
(n)
r

)2q

+ o(1)

≤
∫ ∫ ∞

1

(
1−

K∏
r=1

(
1− e

−a

Ã
x

1
2q

ar

!2

(1+o(1))
))

dx dΥn + o(1) + P (Xn ≥ 1)

=

∫ ∫ ∞

1

(
1−

K∏
r=1

(
1− e−ax2(1+o(1))

))
2q(arx)2q−1dx dΥn + O(1)

=

∫ ∫ ∞

1

(
K∑

j=1

(
K

j

)
(−1)j+1e−ajx2(1+o(1))

)
2q(ajx)2q−1dx dΥn + O(1)

By induction in q ≥ 1 and partial integration we obtain

∫ ∞

0

e−ajx2

x2q−1dx =
(q − 1)!

2(aj)q
, q ≥ 1.

To deal with the (1 + o(1)) term let

− ln P (Xj > x) = ax2(1 + o(1))

=: ax2(1 + gi(x), i ≤ n− 1, gi(x) → 0 as x →∞

and let g(x) := supi≤n−1 gi(x). Choosing K0 ≥ 1 such that g(x) ≤ 1− c for x ≥ K0,
0 < c < 1, we obtain by some calculation

∫ ∞

1

e(1+g(x))e−ajx2

x2i−1dx ≤ Cj

∫ ∞

0

e−ajcx2

x2i−1dx
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and thus we obtain

EX2q
n =

K∑
j=1

(
K
j

)
(−1)j+1E(Aj(n)2q−1)2q

∫∞
1

e−ajx2(1+o(1))x2q−1dx + O(1)

≤
K∑

j=1

(
K
j

)
Cj|E(Aj(n)2q−1)|2q (2q−2)(2q−4)···2

(2acj)q + O(1)

≤ sup
r≤K,n≥n0

E(Ar(n)2q−1)2qq!
1

(2ac)q

K∑
j=1

(
K
j

)
Cj + O(1)

≤ sup
r≤K,n≥n0

|E(Ar(n)2q−1)|
(

e(2 + ε)

c

)q

q!
1

((2 + ε)ae)q
(1 + C)K + O(1)

≤
(

1

((2 + ε)ae)
2q

) 2q
2+ε

((
1

(2 + ε)ae
2q

) 2+ε
2

(
(2 + ε)e

c2q

)q

.

sup
r≤K,n≥n0

E(Ar(n)2q−1)q!(1 + C)K

)
+ O(1)

≤
(

1

((2 + ε)ae)
(2q)

) 2q
2+ε

(1 + o(1)).

Lemma 2.1 implies

P (Xn > x) ≤ e−ax2+ε(1+o(1))

= e−ax2+ε+o(x2+ε) < e−ax2+ε+|ec|x2+ε

= e−ax2(xε(1+|ec|)) < e−ax2

for x ≥ 1.

Thus at the induction step it is possible to choose the same constants c, C. 2

The bounds in the following theorem are based on the Laplace transform and
allow unbounded toll terms.

Theorem 3.4 Let (Xn) be a max-recursive sequence as in (1.1) and let for some
nondecreasing sequence sn ≥ 1 and q > 1

EXn = µsq
n + rn, rn = o(sq

n). (3.16)

Let Yn = Xn−EXn

sn
denote the normalized sequence and assume

a) EeλYi ≤ ecλq
for some c > 0, i = 0, . . . , n0−1 as λ ≥ λ0

b) Eeλ
br(n)

sn ≤ eD1λqrn , λ ≥ 1, n ≥ n0, λ →∞, rn = max(rn, 1)
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c) Aq
r(n)s(I

(n)
r )q − sq

n ≤ −δ sq
n rn, r ≤ K, n ≥ n0, δ > 0

d) Ee
λ

sn
(Ar(n)EX

(r)

I
(n)
r

−EXn) ≤ eD2λqrn , λ ≥ λ1, n ≥ n0

Then there exists some constants L, λ2 such that for all n

E exp(λYn) ≤ exp(Lλq(1 + o(1))), for λ ≥ λ2,

and
P (Yn > x) ≤as e−axp

, (3.17)

where a = q−1
q

(
1

Lq

) 1
q−1

and 1
q

+ 1
p

= 1.

Proof: The scaled sequence (Yn) satisfies the recursive equation

Yn
d
=

K∨
r=1

(
Ar(n)

s(I
(n)
r )

sn

Y
(r)

I
(n)
r

+ b(n)
r

)
,

where b
(n)
r = 1

sn
(br(n)− EXn + Ar(n)EX

(r)

I
(n)
r

). By assumption we have

E exp(λYj) ≤ exp(cλq(1 + o(1)), λ →∞, 1 ≤ j ≤ no − 1

for some c > 0. We will prove by induction, that for some L ≥ c

E exp(λYj) ≤ exp Lλq(1 + o(1)), λ ≥ λ2, j ∈ N.

For the induction step let Υn denote the distribution of (I(n), b(n), A(n)). By con-
ditioning and using the induction hypothesis we obtain as in the proof of Theorem
3.2

E exp(λYn) = E exp

(
λ

K∨
r=1

(
s(I

(n)
r )

sn

Ar(n)Y
(r)

I
(n)
r

+ b(n)
r

))

≤
K∑

r=1

∫
E exp

(
λ

s(jr)

sn

arY
(r)
jr

+ λβ

)
dΥn(j, β, a)

= exp(Lλq(1 + o(1)))
K∑

r=1

E exp

(
Lλq

((
s(I

(n)
r )

sn

Ar(n)

)q

− 1

)

·(1 + o(1)) + λb(n)
r

)
.

Thus it remains to show that for λ ≥ λ2

A := sup
n≥no

E exp

[(
Lλq

((
s(I

(n)
r

sn

)
Ar(n)

)q

− 1

)
(1 + o(1)) + λb(n)

r )

]
≤ 1

K
.(3.18)
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By assumption we obtain from the Cauchy-Schwarz inequality

E exp(λb(n)
r ) = Ee

λ br(n)
sn

+ λ
sn

(Ar(n)EX
(r)

I
(n)
r

− EXn)

≤
(
Ee2λ

br(n)
sn

) 1
2

(
Ee

2 λ
sn

(Ar(n)EX
(r)

I
(n)
r

−EXn)
) 1

2

≤ eD1λqrn+D2λqrn = eDλqrn , D := D1 + D2.

This implies by assumption c)

A ≤ e−Lδλqrn(1 + o(1)) + Dλqrn

≤ e−(Lδ −D)λqrn(1 + o(1))

≤ e−(L δ
2

+ D)

≤ 1

K
for λ ≥ max(1, λ1, λ2)

if L ≥ 2 ln K+D
δ

using rn ≥ 1. The tail bound then follows from Lemma 2.1. 2
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[4] R. Grübel and U. Rösler. Asymptotic distribution theory for Hoare’s selection
algorithm. Adv. in Appl. Probab., 28(1):252–269, 1996.

[5] P. Jagers and U. Rösler. Stochastic fixed points for the maximum. In M. Dr-
mota et al., editor, Mathematics and computer science. III, Trends Math.,
pages 325–338. Birkhäuser, Basel, 2004.
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