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On a Class of Extremal Problems in Statisties

N. Garrge! and L. RUSCHENDORF!

Summary: Let m denote the infimumn of the integral of a function ¢ w.r. t. all probability
measures with given marginals. The determination of m is of interest for a series of sto-
chastic problems. In the present paper we prove a duality theorem for the determination
of m and give some examples for its application. We consider especially the problem of
extremal variance of sums of random variables and prove a theorem fcr the existence of
random variables with given marginal distributions, such that their sum has variance zero.

1. Introduction

A basic problem of dealing with dependent random variables is the following one.
Let ¢ be a function of n variables and let Py, ..., P, be n one-dimensional
probability measures; then determine the minimum and the maximum of the
integral of ¢ w.r.t.all probability measures with marginals Py, ..., P.. . By
means of results of this type one can describe the influence of dependence on
a stochastic problem which is defined by the function ¢.

Solutions for this stochastic optimization problem are known only in very few
special cases. A very nice solution in the case ¢(xy, . .., x,)=max {;| 1=i=n}
has been given in recent papers by Lar and Rossins [10], [11]. Their result is
that max {z; | 1 =i =n} is for arbitrary dependent random variables not much
larger than for independent random variables. So they are able to prove limit
theorems for the maximum of a sequence of arbitrary dependent random va-
riables.

In section two of this paper we prove a duality theorem for the general opti-
mization problem and give some examples where solutions are found by an
application of this theorem. A useful aspect of this duality theorem is that on
one hand it allows to give bounds for the minimum and on the other hand it
describes the support of an ‘optimal measure’.

In section three we consider the problem of extremal variance of sums of
random variables which is of the type described above. For some cases we are
able to give a solution of this problem. We isolate the more special question for
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the existence of » random variables with constant sum and with given marginals,
prove a duality theorem for this question, and get solutions in some special
cases.

2. A Duality Theorem

Let ¢: [0, 1]"~R! be a continuous function and let P, ..., P, be n probability
measures on [0, 1] B!, where B! is the Borel o-Algebra on R!. Define

O(Py, ..., P,):={P | P is a probability measure on [0, 1]* B"
with marginals Py,..., P,}.
9(Py, ..., P,)is a convex set of probability measures which

is compact w.r.t. the vague topology.

The ‘primal’ problem we want to consider is to determine

m:=inf {f(de|P€$ P o s Bylt. (1)
It is clear from the note above that there exists @ P*¢c§ Pl, . ony Py) with
m—-fqrdP* The problem of determining sup {fq/dP | PEH(Py, ..., P,)} is includ-

ed in this formulation of the optimization problem by taking — ¢ mstead of ¢.

For a topological space X we denote by C(X) the set of all continuous, real
functions on X. In the following duality theorem we give an optimization problem
which is ‘dual’ to the primal optimization problem.

Theorem 1:

m = sup {Zn' ff,idPi | f;€C[0,1], 1=i=n, & (2)
]

D ) sg@s, ..., 2), Vo=@, ..., )€, 1]"}.

=1

Proof: The proof of Theorem 1 is based on the following duality theorem of
Istt [8], [9], Th. 2.3, in topological vectorspaces (cf. also DIETER [2], GOLSTEIN
[5], Kapitel 2, 3). Let X be a convex cone with vertex 0 in a real vectorspace, let
Z be a topological vectorspace, z,€Z and let a pseudoorder be induced on Z by
a convex cone € with vertex 0. Let F': X - R!, y: X ~Z be linear functions such

that (Sf + 0 and 0€p(X)—E+2,, where A denotes the interior of 4. Then,
sup {F(x) | 2€ X, p(x) +2o= 0} =inf {2*(z;); (3)
2* €Z*, 2* =0, 2*(y(x)) + F(x) =0,V2€ X}

where Z* is the topological dual of Z.
We define: X :=C"[0, 1], Z:=C[o0, 11",

Flfu- - fi= 3 [1dPu vlfu- . - 3 fite)



On a Class of Extremal Problems in Statistics 125

for x=(y, ..., x,),20:=¢ and the cone €:={fc ([0, 1]" | f=0}. The topology on
Z=Cl0, 1]" is given by the norm |[|f||: =sup {|f(x)| | 2€[0, 1]*}. The left side of (3)
is identical to our dual problem

g

n n
M, :=sup {Z ff.idPi | };€C[0,1], 1=i=n, J}fom,
i=1 ' i=1
where 7; denotes the projection on the i-th component, 1 =i =n.

By Rigsz’ representation theorem (cf. Duxrorp, ScHwARTzZ [3], Th. 3, pg. 265)
the dual space of C[0, 1]" is the space of signed measures on [0, 1]* 8" and hence
{z*€Z* | z* =0} equals the set of measures on [0, 1]". Therefore, the right hand
side of (3) is identical to

[IA

M,: =inf {fquy] @ is a measure on [0, 1]" B" and

—foio:rzid‘u:—: ———fo.,;dPi,VfﬂeC[O, 1},:1 6:113‘::'71‘}.
i=1 i=1
Since f;€C[0, 1] implies —f;€C[0, 1], we get

My:=inf {f«pdy | 118 a measure with f ZfionidM:Z'ff;dPi,
i=1 i=1
vfi€C[o, 1], lézén}

Taking f;=1,1=i=n we get that admissible u are normalized on 1. With
f;=0 for i=j we obtain further that admissible u have as j-th marginal P;, since
by Theorem 1.3 of BrLuinGsLey [1] continuous functions are measure determining.
Therefore, the right hand side of (3) is equal to our primal problem

My=inf {[ @dp | p€H(Py, . .., Pp)}.

We have to check the regularity conditions. Obviously it holds & +0. Tt remains
to show that 0 is an interior point of yp(X)—E+z,, i.e. for f€C[0, 17" with |[f| =& -
there exist g€ C"[0, 1] and heC[0, 1]*, h=0 such that f=y(g) —h+¢. Since ¢ is

1
continuous, it is bounded, [¢|=K. With g;:= _ (K+¢),1=i=n and ¢g:=
=(gy - - - ¢y) We have that
h:=— ) giom—f+9=0.
i =1

Therefore, by Istr’s Theorem M= M, which is identical to (2). |

The following proposition shows that there exists a solution of the dual problem
in (2) if one enlarges the space C[0, 1].

Let B[0, 1] be the set of all BorEL-measurable, real, bounded functions on [0, 1].

Proposition 2:

== pup {Z.ffa:dPi | ;€ Blo, 1], 1 =i =n, Zfz-on,-:_sq)},
L i=1

and the supremum is attained.
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Proof. For f;€ B[0, 1], 1 =i=n, with i’ fiom;=¢ and for PeQ(Py, ..., P,)
we obtain o
é’ ff,dP,-:ié’ ffionidP::f(i‘i’fioni) dP=[¢dP,
and hence
m= sup {Zi’ ffidP,- | f;€ B[0, 1], 1 =i=mn, 4‘? fion,;écp}.
i= i
Since C[0, 1] B[0, 1] Theorem 1 implies equality.

Tor the existence of functions f¥, . . ., f, for which the supremum is attained,
we first note that there exists a K€ R', such that

m= sup {;:ff.idl’@-lf.-GB[O, 1], Ifil =K, 1=i=n, gfiométp}- (4)

n
Let fy, ..., f.€B[0, 1] with Y fom;=¢ be given and let b;:=sup f;, 1=i=n,
i=1
and let a:=inf ¢, A:=sup ¢. Defining

o .
gi:=fi+;2b,-~bi, 1=i=n,
i=1

we obtain

48

n n
giom =9, szgidpa':.zszidPi
§= i=

-

=

and

1 n
sup g,-:;;? b;=b, l=i=n.
=

A
1t follows that b == In the next step define %,(z):=max {g,(x), ¢} with

nr
Then
;: ht(xl)=217 gi(xz) E(P(xb ] w”) ’
if g,(x;) =¢, 1 =i =n. Let now g,(x;) <c for exactly r indices i, 1 =r =n, then
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A
With K:=max {fc],l—h—l} we obtain (4). Now let (f*,...,f®), k€N, be a se-
quence such that .
n
fPeBg[0, 1]:={fe B[0, 1] | If =K}, 1si=n, } fPom=
=1

and
n

lim 3] [fPdP,=m .
1

ke (S

n
Then since ® Bg[0, 1] is a sequentially compact subset of
i=1 i

2 L1(P;) supplied
=1

n n & n
with the weak topology o ( ® LY{(P), ® L“‘(Pi)) there exist (fy, ..., f.)€ ® By
§=1 §=1 i=1

[0,1] and a subsequence of (f, ..., f®), .y converging to (fi. ..., f,) w.r.t. the
weak topology. Now one can proceed as in LaNpERs, Rocer [12]. I

Corollary 3: Let P*c$H(Py, ..., P,). Then P* is a solution of (1) if and only
n n
if there exist f¥, ..., f*€ B[0, 1] with Y] ffom;=q¢ and 3] ffom;=g[P*].
i=1 i=1

Proof: Let ff, ..., f*¢B[0,1] with Y ffom;=¢ and }) [ffdP;=m.Then
i=1 t=1
n
P*cH(Py, ..., P,) is a solution of (1) if and only iff((p—Z’fg“oni)dP*:O
t=1

n
which is equivalent to ) ffom;=¢[P*]. |
i=1

Remark 1: Clearly Theorem 1, Proposition 2, and Corollary- 3 remain true if
the interval [0, 1] is replaced by an arbitrary compact metric space £. Then gis
a continuous real function on E" P, ..., P, are probability measures on
(E, B(E)), B(E)=BoreL o-Algebra on E, and H(Py, ..., P,) is the set of all
probability measures on (E", B(£")) with marginals Py, ..., P,. As a special
case let Py, ..., P, be probability measures on (R!, B1). By P,{+c}=P{—c}=
=0, 1=i=n, the P, are extended on (R1, 55‘1). Taking £= R! and observing that
C(R"™) can be identified with the set of functions

C'(R"):={fcC(R") | lim f(x) exists and is finite for each x,€ R"\R"}
Z€RM

we have by Theorem 1 and Proposition 2 for ¢ C'(R")
inf {[@dP | PEH(Py, ..., P,)}

n n
=sup {);17 ffidPi | f,eC"(RY), 1=i=n, _;:fion,-éq)}

—sup {i)z;l’fffdpi | fi€ BRY), 1=i=n, gnomém},

where H(Py, . .., P,)=set of all probability measures P on (R", ¥") with margi-
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nals Py, ..., P, and B(R!) is the set of real, bounded measurable functions
on R1i,

Example 1: a) Let P;=P,=@ be the uniform distribution on [0, 1] B! and
Py, ) =@y(24) - @a(@s), where ¢, and @, are continuous increasing functions on
[0, 1]. We consider the primal problem of minimizing

f‘h(‘ﬁ) Pa(@y) dP(zy, 25), PEHQ, Q).

This includes the well-known problem of finding random variables X, and X,
with prescribed distribution functions ¥, and F,, such that #X X, gets a mini-
mum, where the F; are continuous, strictly increasing on a compact interval
[a;, b;], and F#t)=0 for t=a, F,(t)=1 for ¢=b;,4=1,2. Then EX X,=
=f1¢’1“1(x1) F;(x,) dP, where P is the distribution of (F(X,), Fy(X,)), and hence
PeH@, Q).

Since the ¢; are increasing functions we get by an heuristic argument that
¢4(x4) and @y(x,) must be ordered in opposite senses on the support of an optimal
measure P*c$(Q, Q). Hence P* must be the distribution of (U, 1 —U), where
Uis a R(0, 1)-distributed random variable. To prove this by Corollary 3 we have
to look for functions fy, f,€ B[0, 1] such that

F1(@g) +fo(@a) =@a(@y) @alas), 2y, 22€[0, 1], (5)
with equality for y=1—2,. Assuming the existence of the derivatives f;, ¢; for
the moment and putting H(x,, x,):=f(2,) + fo(xs) — @4(2) @o(2,) we get from (5):

7} el

— H(zy, @ =0, — H(xy, 2, =)

axy (@1, @) 2y =1-2, oy (@1 2,) Zy=1=m; ¥
and hence

fil@)=i(@) @2 (1—2y), fo(1—a)=g4(x,) g5 (1 —2y)
or

fl(x1)=ci+of ga (1—) dopy(t) . (6)

f2(3?2)262+0f2¢'1 (1—1) dea(?) .

Now let the functions f,, f,€C[0, 1] be given by (6) in terms of STIELTJES
integrals (which do not require the differentiability conditions on the ¢;), where
the constants ¢, will be chosen according to (5). By partial integration we get

Zy

1
[ @2 (1—8) dgy(t) = py(y) @y (1—21) —@s(0) a(1)+ [ @y (1—2) deps(t)

0 11—z
and hence

f1(@q) +fa(xs) =1+ o+ @) o (1 —24) — @4(0) pa(1)

3 £
+ [ @i (1—1t) dgo(t) + J‘ @1 (1—1) dga(t) .

11—z
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1
Choosing  ¢;4cy=q;(0) @y(1) — f<P1 (1—t) dga(t) we have fy(x)) +fy (1 —2))=
=q@y(xy) @, (1 —2,), and for x,>1 —; (the case x,<1—2, is analogue):

f1(@1) + fol@s) = py(y) @o (1 —20) + f @1 (1—1) dopy(t) — f @y (1—t) doy(t)

1—z

P g2 (=20 + [ 92 (1-1) daf
P1(@1) @2 (1 —20) + @y(y) (@ol@s) — @y (1 —2,))
=@y() al,).

b) Let Pi— .= P, =@ be the uniform distribution on [0, 1] B! and ey, . .

=

z,)= wntpz (x;) with ¢;€C[0, 1], ¢; increasing, ¢;=0, 1 =i=n, and ¢,(0)=0 for

at lea.st one i€{1,...,n}. Again an heuristic approach to the primal problem

inf {—f (L vw)ape,. ... 20 Pes, . ,Q>}

leads to a solution P* which orders ¢,(,), . . ., @,(x,) in the same sense on its
support. Hence P* must be the distribution of (U, ..., U), where U is R(0, 1)
distributed. By Corollary 3 we have to determine functlom B L BV 1
with

> filz)=— [](p2 z;) forall "=,...,z,€][0,1], (7)
i=1 K

with equality for #;=...=a,. Assuming the existence of the derivatives fi @:
for the moment we get f10m (7)

5:;,; H{g, » vci00 %) log=mzy=u=0, 1=i=mn
where
n n
Hl@y . vivy xn)3=2,:fi(xi)+12?’i(xf) )
and hence
n
fiw)=~giw) [] g)w) ,
e
or
filw)=¢; —f(lY% )dw(t), l=i=n. (8)
E

Now we define the functions f;€ C[0, 1] by (8) (without differentiability con-
ditions on the ¢,), where the constants ¢; will be determined according to (7).
9 optimization, Vol. 12, No. 1
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We get from (8):

Sn=51e= 3 [ ([0 an0=F e [T i

and consequently

n n n
é: filw)=— ]_z ¢{u) by choosing g 6=10

Then the inequality (7) for @y, . .., x,€[0, 1] becomes
2 (17 il t)) dg,(t) IY gil)
i=10 ]$1
e

which is an extension of Youna’s inequality due to OppENHEIM (cf. [13], pg. 50).
For n=2 the assumptions “g;=0,1=i=2, and ¢[0)=0 for at least one
i€{1,2}” can be omitted. Choosing c;+cy= —q4(0) ¢(0) the functions fy, f,
given by (8) satisfy
fi@y) + fal@s) = — @a(@y) @alas)

with equality for #;=a, which can be proved as in Example 1. a).
¢) For g(xy, ..., a,)=—max {r;| 1=i=n}, x=(2y,...,%,)€[0,1]", and P\=
=Py=...=P, define
fit):= —%_(t_an)+, te R\, 1=i=n,

where a, € R!. Then,

n n
- Y fi@)=a,+ ) (x;—a,), = max z;.
i=1 i=1

1=i=n
Therefore, if there exist a, eRl and random variables X[, ..., X,, with distri-
butions P, such that a,+ 2 a,) ., = max X/, then (X[, ..., X,) yields an
i=1 =1=n

optimal solution for the problem: £ 1ma,x X,;=max! under the condition that X,
=1=N

have distributions P,, 1 =i =n. This condition is equal to condition 2.4 of Lar
and RoBBINS [11], who construct random variables satisfying this condition. |

Remark 2: If P,=...=P,=Q and ¢ is a symmetric function, i.e. ¢(z,q,. - -,
Tomy) = P&y - - -, @) for all x=(2y, ..., 2, )€[0, 1]* and for all permutations o,
then the dual problem (2) is equivalent to

sup {nffdQ | feCfo, 1], é’foméw} :

This can be seen as follows: For fy, ..., [,€C[0,1] with 3] fom;=¢ we put
i=1
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)=~ 37/(t). Then f€Clo, 1],
i=1

1 n7 n 1 n n
)_’f(x TR 2 fil; 5,2 .ij(x,,i(,.))
t=17j=1 =1 j=1
1 n
§;— 2 (p(xai(l)’ # kI ’xai(n)):q)(xl' Sl aiy éb'") ’

1l
-

n
where the ¢; are the cyclic permutations o j)=j+1 (modn). So we have 2 fom,=

n % i=1
=g, and nffdQ:f(é__,:f,-)dQ'—:gffﬂPr

3. Extremal Variance of Sum Variables

A problem which stems from Monte Carlo theory is the problem of variance
reduction. Let Py, ..., P, be n probability measures on (R!, 8!). The question
is to construct a random variable X = (X, . . ., X,) with distribution in §(P,, . .

P,) such that the variance of }' X, is as large or as small as possible.
i=1
The background of this question is that one looks for estimators of a parameter
which depend on the sum of random variables and which should be unbiased

and have smallest Varia.nce The first method which leads to the question of

largest variance of 2 X, is called the method of antithetic variates. The second
i=1

method concerning the smallest variance is called the method of control variates
(cf. HaAmMERSLEY, HANDSCOMB [6], pg. 59, FisaMaN [4], Haxpscoms [7], WHITT
[15]).

From Example 1a) it follows that (F;*(U), F;' (1—U)) is a solution of the
problem of minimum variance in the case n=2. This result is already known in
the literature. From example 1b) (applied on each pair of components separately)
we obtain that (F;'(U), F3'(U), ..., F,"(U)), where F; is the distribution
function of P, is a solution of the problem of maximum variance. For general
n and ¥; we are not able to solve problem (1) of Sec. 1 in the case of minimum

variance i.e. p(zy, . . ., Z & ;.
i<j
We want to isolate the followmg more special question: For which P, ..., P,
does there exist a random variable X=(X,, ..., X,) with distribution in
H(Py, ..., P,) such that
n n
) Xi=c, o= Y HX,. (9)
i=1 i=1

For n=2 it is necessary and sufficient that
Ft)=1—F, ((c—t)—), VieRL

O*
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For continuous distribution functions F;, 1 =i =n, question (9) can be reduced
to the question of the existence of an uniform distribution with support in

{an' e h c} . The proof of the following lemma is immediate.
=

Lemma 4: Let Py, ..., P, be probability measures on (R', B1) with continuous
distribution functions Fy, ..., F,. Then it holds: There exists a random variable
X with distribution in H(Py, . . . , Py) such that 2 X,;=c if and only if there exists
a mndom variable U= (U, . .., U,) with d@stmbutwn in O(Py, . . . , Py) such that
Z’ F;YU;)=c, where Py is the uniform distribution on [0, 1] B

Lemma, 4 can be used to give a negative answer to (9) in some cases.

Example 2: Let P=...=P, be the exponential distribution with distribution
funetion
F(x)=(1—e7") 1jg (@), @€R.
Assume that there exists a random variable X with distribution in PPy

such that -‘Z?Xiznznfxdl’,. Since
—F;‘(t)z —In (1—#), te[o0,1], 1=i=n,
by Lemma 4 there would exist R(0, 1)-distributed U;, 1 =i =n with —‘ﬁ’ In (1—
—U,)=n. Therefore, 1’? (1 =U;)=e~™" which implies e
-

t=Ugz=e™ or Ui=1—e™

This is a contradiction to the assumption that U; are R(0, 1)-distributed. So
there does not exist a random variable X with distribution in $(Py, . . ., P,) and

SX—n

A characterization of (9) gives the followmg theorem.
Theorem 5: There exists a random variable X =(X,, . . ., X,,) with distribution

in O(Py, ..., P,) and }) X;=c if and only if
]

n n n
EffﬂPiésup {Zfi(xi) |24 ..., 2, €RY, .Zx%‘:c} (10)
i=1 i=1 i=1
for all continuous bounded functions fy, . . ., fn, on R

Proof: Define

n
A::{P | P is a probability measure on { xi:c}}.
i=1
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Then we get

sup {f i’fion,-dl’ 1 P€A}=sup {Z"Ifi(xi) | Z’Z,xi=c}: (11)
§ol e i

where 7, is the projection on the i-th coordinate. Clearly the left hand side of (11)
is smaller than or equal to the right hand side of (11). On the other hand there

are (z,...,x,) with Y] a;=c such that
i=1

Z:fi(xz) =sup {2{]‘;(1}) | 2 x,-—:.c} —&.
e i= i=1

Taking as P the one point measure concentrated in (¥, . . . , @) we also get the
other inequality in (11). Now (10) follows from Theorem 7 of STRASSEN [14] (resp.
his generalization of Theorem 7 on pg. 437). 1

Example 3: We give a solution to question (9) in the case that P;, 1=i=n,
are uniform distributions on [0, 1]. For n=2 the distribution of (U, 1-U), where
U is R(0, 1)-distributed, solves this question.

For n=3 a solution is given by the distribution of (Vy, Vi, Vs), where

I”l: _ U 3
Var=Ugt 1 (D)=aety AT)
9:= —_ L &
2 03] 2 [31]
and ;
Vy:=—-2U+1 (H+2-1 U). a
[o.3] [51]
For general n we obtain a solution by combination of the cases n=2, 3.
Z
\\ /" \\
\d // \'\‘3 /
W - o
A\ e 7
L S -
\Z
AN N
/ a
7
”
e 4
¥
/ oy b
a -ZZ /2

Fig. 1
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From Example 3 and Theorem 5 we get the following corollary.

Corollary 6: Let f: [0, 1]—R! be continuous. Then

to| 3
N

1 n n
j f(x) dz =sup {71; 3 fm) | wgo e €[0: 1) 3w
0 i=1 i=1

for all n=2.
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Zusammenfassung

Sei m das Infimum der Integrale einer Funktion ¢ bzgl. aller Wahrscheinlichkeitsmafe mit
vorgegebenen Randverteilungen. Die Bestimmung von m ist von Interesse fiir eine Reihe
von stochastischen Problemen. Wir beweisen in der vorliegenden Arbeit einen Dualitits-
satz fiir die Bestimmung von m und geben einige Beispiele fiir seine Anwendung an. Wir
betrachten insbesondere das Problem der extremalen Varianz von Summen von Zufalls-
variablen und beweisen einen Satz iiber die Existenz von Zufallsvariablen mit vorgegebe-
nen Randverteilungen und konstanter Summe.
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Résumé

Soit m I'infimum des intégrales d’une fonction @ concernant tous les probabilités avec des
marginals préscrits. La détermination de m est importante pour beaucoup des problemes
stochastiques d’optimization. Dans ce travail nous prouvons une théoréme dual pour la
détermination de m avec quelques examples de son application. Nous traitons spécialement
le probléme de la variance extremale des sommes de fonctions aléatoires et nous donnons
une théoréme d’existence de variables aléatoires avec de marginals préscrits et de somme
constante.
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Book Review

J. RosENxmMULLER: Extreme Games and Their Solutions. Vol. 145. Springer-Verlag Berlin-
Heidelberg-New York 1977, 126 S., DM 18,—.

The paper concerns the theory of cooperative games with contvex (Chapter I) and super-
additive (Chapter IT) characteristic functions. The main problem discussed in the paper is
the description of solution concepts, the core and stable sets for convex and superadditive
games, respectively. First, some representations for convex and superadditive characte-
ristic functions are obtained. A convex characteristic function is represented as an envelope
of affine set functions (Sec. 1, Chpt. I). A superadditive characteristic function is represent-
ed as an envelope of step functions (Sec. 1, Chpt. II). For both respresentations some
game-theoretical interpretations are given. If the normalization condition on a characte-
ristic function is required then we have bases for cones of convex and superadditive games.
The second problem studied in the paper is to characterize the extreme points of the bases
(Sec. 2, Chpt. I and IT). The representation theory developed in previous sections is applied.
The extremality conditions for the convex and superadditive functions are essentially
different. In the first case ‘nondegeneracy’ of measures w.r.t. constants appearing in the
representation is involved and in the second case ‘homogeneity’ of measures and ‘linearity’
of the step functions in the representation are needed. Now, the most interesting problem
is the discussion of the nature of the core for extreme convex games and the main simple
solution for extreme superadditive games. Thus, an extreme social situation described by
the core is a division of the players in several classes (Sec. 3, Chpt. I). In case of a specific
superadditive game a similar description is obtained. Nevertheless it seems that the study
on extreme superadditive functions should be continued.

The cooperative game theory requires the insight in the structure of games. The paper is
an interesting step in that direction. One could relate the results obtained by the author
with some experimental data observed in social behaviour. The examples presented in
Chapter III and concerning the so-called production games and selling goods in minimal
quantities reveal the nature of extreme games.
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