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Abstract

In this paper we consider some different techniques allowing to construct
asymptotically efficient estimators in point process models. In particular we
establish L2-differentiability for point processes with multiplicative intensities
and thus can apply Hadamard differentiability techniques for the i.i.d. case.
In the second part of the paper we extend some properties of differentiable
functionals known from the i.i.d. situation to general LAN models of point
processes. We establish the LAN condition for point processes with differen-
tiable intensities and as consequence obtain optimality of various estimators
in general intensity models.

1 Introduction

Let for n € IN, P, = {P,.; o € I} be a class of probability measures on (€, F,),
where F,, = (Fnt)ie[o,1] is a filtration generated by point processes N, = (Ny +)ie[o,1]-
Let N, have F,-predictable intensities A, , w.r.t. P,,, o € I, i.e. N, has the
Doob-Meyer decomposition

1
N, = Mn7a(t)—|-/ Ao ()ds, (1.1)
0

M, . a P, ,-martingale and A, (1) = IN Ana(8)ds the compensator. The likelihood
ratio on F,,; under suitable continuity conditions is given by

dPnozl t )\nozl ¢
= exp( [ og TN = [ (s (8) = A (s)ds) (12)
dP, ., " 0 Ao 0 ’ ’

for a,,aq € I (cf. Jacod (1975), Liptser, Shiryaev (1978) and Karr (1985)). For
general reference on point processes we refer to Bremaud (1981), Karr (1985) and
Kutoyants (1984). Aalen (1978) introduced models with multiplicative intensities.
Here [ is assumed to be a subset of the caglad functions « : [0,1] — [0, 00) (caglad
= left continuous, right hand limits) and A, , = aA,, where A, is a basic predictable

intensity and « is the (unknown) parameter. In iid models of point processes we
have n observed independent copies (N, A1) .. (N® X)) of the basic point



process (N, A). N, = X7, NO is a sufficient statistic with intensity \,, = a), =
a Y™, A9 in the multiplicative model, A, , = %, Al in the general case.

The problem of estimation of the compensator A, , (or the intensities «) has
been considered by Aalen (1978), Rebolledo (1978), Liptser and Shiryayev (1978).
For point processes on [0,1], t — oo cf. Kutoyants (1984); for point processes on a
fixed interval [0, 1] we refer to Greenwood and Wefelmeyer (1989) and Millar (1990),
while for the case of Poisson processes cf. Karr (1985), Riischendorf (1989), Liese
(1990), Kutoyants and Liese (1990). The aim of the present paper is twofold. On
one hand side we extend the relationship between differentiability and efficiency to
the estimation of functionals with values in general topological vector spaces in the
general LAN case. For the iid case cf. van der Vaart (1988) and Gill (1986), for
the estimation of real functionals cf. Pfanzagl and Wefelmeyer (1988) in the LAN
case. We apply this extension to establish asymptotically optimal estimators in the
multiplicative intensity model and in general LAN models. The consideration of
estimators in general topological spaces is of importance, since it allows to obtain as
immediate consequence the asymptotic efficiency of differentiable functionals ¢ o T,
of efficient estimators 7,,. In order that this idea is fruitful one should consider
efficient estimators T, with values in a function space (like D[0,1]). (We apply this
idea to the case where T), is either the point process N, itself or the Nelson-Aalen
estimator, both on D[0,1].)

In the second place we establish essentially two different methods of proof for the
asymptotic efficiency of estimators in point processes. As examples we use the point
process N, itself and the Nelson-Aalen estimator. One method of proof is the direct
way to asymptotic efficiency. We have to establish in the first step the (asymptotic)
differentiability of the functional x which we wish to estimate. Then in a second
step we prove that the model is LAN and in a third step that the estimator has
a stochastic expansion based on the canonical gradient. This approach is given in
Theorem 8 in the iid case and in Theorem 13 in the general LAN case. The second
method is to represent the functional which we want to estimate as Hadamard
differentiable functional of more simple functionals, where estimators are easy to
construct (cf. Proposition 4 and Theorem 5 in the iid case, Theorem 13 in the LAN
case). In iid models one obtains particular simple and flexible proofs of asymptotic
efficiency of estimators if the underlying model is L*-differentiable (cf. Theorem
5). We establish L*-differentiability of the multiplicative point process model in the
sense that differentiability of the intensities plus some regularity conditions imply
L2-differentiability of the probability measures. This implies, as is well known, the
LAN condition; it also implies the construction of locally most powerful tests and
Cramer Rao bounds. “Local” differentiability of point process models (and more
generally of semimartingale models) has been established in a recent paper by Jacod
(1990) under the sole condition of differentiability of the intensities (also in the case
of not multiplicative models). The potentially interesting statistical applications of
these results still have to be worked out.

In Section 2 we discuss a sufficient condition for L?-differentiability in terms of
loglikelihood functions. This is useful since for a large class of stochastic processes
the density process is an exponential martingale. In Section 3 we consider the es-



timation in iid models. The reason for treating iid models separately is two-fold.
On one hand side one can use the L*-differentiability property of the underlying
model and on the other hand in the case of iid models the relation between effi-
ciency and differentiability is well established in the literature. We establish the
L2-differentiability of the multiplicative point process model in Section 4. In gen-
eral non-multiplicative point process models we determine an efficient estimator for
the integrated expected intensity process. The Nelson—Aalen estimator can be re-
spresented as a Hadamard differentiable functional of this efficient estimator and
a further efficient estimator for the expected basis intensity process and, therefore,
itself is efficient. In Section 5 we discuss the estimation of asymptotically differ-
entiable functionals with values in topological vectorspaces in the LAN case. This
extends the discussion of the relation between efficiency and differentiability given
in the iid case by van der Vaart (1989). We consider applications to the estimation
of functionals of the intensity process in point process models and in particular give
a simple proof of the LAN condition for point process models with differentiable
intensities.

2 A Sufficient Condition for L’-Differentiability

Let P € M'(Q, A) be a family of probability measures on ({,.A) dominated by a
o-finite measure . A cone T(P) in L?(P) is called tangent cone in P € P if each

element g € T(P) is tangent vector of a L*-differentiable path in P, i.e. there exists
a path (Pi)o<i<i C P with P, = P and

Lodly gy dP 0 1 dP o
()" = (— — —g(— dp — 0. 2.1
R = G = 5o P (2.)
We assume for simplicity reasons that all distributions are pairwise equivalent and
denote by p; = Cil—];t, p= % densities w.r.t. g. Then (2.1) is equivalent to
L. pe 1/2 Lo
—[(=)""—=1—=tg]*"dP — 0. 2.2
J & Stol*dP — (2:2)
It is well known that (2.2) is equivalent to (cf. Witting (1985), p. 187)
1
[ ritpalddr — 0 (2.3)
and
1
| Sriltas(irddr — o, (2.4)

where r; 1= % — 1 —tg. Also the tangent cone T'(P) is known to be a subset of
L:(P)={h € L*(P);[hdP = 0}.

The aim of this section is to derive the following criterion for L2-differentiability
in terms of the log likelihood function.



Theorem 1 Let (P)o<i<i C P be a path of pairwise equivalent distributions with
log likelihood (, = log & and assume that for some g € L*(P)

p

1 2
and
: L, 2
limsup [ =0;dP, < /g dP. (2.6)
10 12

Then (P;)o<i<i s L*-differentiable in P with tangent vector g.

Proof: We establish conditions (2.3) and (2.4). Since by assumption (2.5) ry =
op(1),

1
/t—Q(eét —1—4)* Lo y(Irel) Loy (|0 — tgl)dP

1
< /t—z(eét — 1= 1) Loz (|4:])dP

o

< t_2[§(1 + ) 1|t dP

1
C/ t—zgf Liogy([e])d P.

IA

For any 0 <& < 3
1 1
/t—#? L ([6)dpP < 9/ 50 Leallb)dP — 0.

since the integral is uniformly integrable by (2.5) and ¢; = o,(1). By Lemma
19.1.1 of Pfanzagl and Wefelmeyer (1982) there exists a nullfunction v : (0,1] —
[0,00) with ft%ﬁf 1(U(t)73](|€t|)dP T 0 and, therefore, [ t%ﬁf 1(U(t)73](|€t|)dP m 0.

Since it is easy to see that [ 50! 1jo.)(|0])dP < v(t)* [ 5(3dP 0 0 we obtain
ft%ﬁf Lo,5)([4e])d P m 0 and, therefore, ft%rf Lioay(|rel) Loay(14e — tg|)dP W 0.

Since [ %17 Lioaj(|re]) Lia,eo)(|0e — tgl)dP < f(3y — g)*dP, (2.3) is implied by condi-
tion (2.5).

In order to establish (2.4) we obtain as in the first part a nullfunction v : (0,1] —
[0, 00) with

1
[ 1= tgll oI o1 = tg)dP —s 0.
Since for sufficiently small ¢ > 0
1
/ t—QI& - tg|1(1,oo)(|rt|) 1[o,u(t)](wt — lg|)dP
1
< [ Sl = 19l Lo Ie = 1= ) T (1 — tgl)dP

v(t) t
t—z/lu—v(t),oo)(leg — 1= L))dP

IA

4



v(t)
< tz/hmmMMMP
1 2
t)/éEQdP—Ego,

IA

we obtain [ |0, — tg|1 co)(|re|)dP e 0. Furthermore,

1
[ let =1 = 1y ()P

172

S t_2§(1‘|‘€ét)1(1700)(|7“t|)dp

= 5/;2@ La,0)([re])d P

11 ,p
+ 3 t—%,?;t (1.00) (|74]) AP

By (2.5) the integrand in the first term is uniformly integrable and converges stochas-
tically to zero; so the first term tends to zero. We next prove the uniform integrability
of the integrand of the second term. By Vitali’s theorem and (2.6) it is sufficient to
show that - 52— —¢* = 0,(1). We decompose 52— —g* = Flir+ 50— g* + Sy
Fore >0 holds

?
P(@zm AP 0.

M—oo

M

Since by (2.5) this holds uniformly in ¢, P(5(; > M(e)) < £ for all £ > 0 and some
M(e) > 0. Since ry = o,(1) this implies for small ¢ and any § > 0 : P(|&7r| >
§) < P(&E 2 M=)+ P(5E < M(z), 2In| > 6) < 5+ P(M()lnd > ) < =

Similarly, also the third term converges to zero stochastically. a

We shall need the following lemma to apply (2.5) in examples.

Lemma 2.1 In the situation of Theorem 1 let [{; dP, m 0, then H(P;, P) W

0, H the Hellinger distance. If, furthermore, f = (f(t))o<e<1 is a stochastic process
with ||Epf?|| < oo and lim sup, o |Ep, f*||co < 00, then ||Ep,f — Epf]|e W 0.

Proof: Note that [/;dP, = fptﬁn%d/,c = [I(P;, P) is the Kullback-Leibler I-
divergence. By Csiszar’s (1966) inequality holds ||P, — P|| < 2(I(P;, P))Y/?. On
the other hand by Lemma 2.15 in Strasser (1985) holds H*(P;, P) < 2||P, — P||.
Therefore, H(P;, P) < 2(I(P;, P))"/*. For the second part we use the inequalities

|/fsdﬂ—/fsdﬂ

_ bt 1/2 Ptyije
= [ IEE) 05— nap



IA

/fz pt 1/2_|_1 dP / pt 1/2 )QdP)l/Q

< (B S + I P H P P) w0

3 Efficient Estimation in i.i.d. Point Process Mod-
els

In i.i.d. models efficient estimation of differentiable functionals x : P — B with
values in general topological vector spaces B has been investitaged by several au-
thors; we refer in particular to Millar (1990), Strasser (1985), van der Vaart (1988)
and Le Cam (1987). For theorems of the type: efficiency of estimators (7,,) implies
that of (¢ o T,) for Hadamard differentiable functionals ¢ (tangentially to certain
supporting sets) cf. van der Vaart (1988) and Gill (1986).

Let (B,d) be a metric topological vector space with o-algebra B satisfying the
standard conditions:

1. Translation and scalar multiplication are measurable;
2. B contains the balls and is contained in the Borel o-algebra;

3. each separable probability measure L on (B, B) is uniquely determined by the
marginals (b*(L)), b* € B* = BI the dual w.r.t. topology 7 generated by
d, b* B-measurable.

These conditions are satisfied for B = D[0, 1] supplied with supremum metric and
B = o(m, 0 <t < 1) the o-algebra, generated by the projections. Let T(P) =
T(P,P) be a tangent cone in L*(P) and let x : P — B be a differentiable functional
i.e. Vg € T(P) there is a path (P;) in P with tangent vector g and ¢(k(P;)—r(P)) —
kp(g), where ’p : linT(P) — B is continuous linear and so can be extended to the
closure of lin T(P) in L*(P). iy (-, P) € L*(P) is called gradient in direction b* € B
if

/gﬁ;b* P)dP,Yg € T(P). (3.1)

The projection &y«(-, P) of a gradient (-, P) on inT(P) is called canonical gradi-
ent.

We assume the existence of a separable probability measure N on (B, B) with
b*(N) = N(0,]||&p= (-, P)||p) for all b* € Bz, then the convolution theorem and min-
imax theorem hold in the asymptotic iid model (P") (cf. van der Vaart (1988) or
in a different formulation Strasser (1985) and Millar (1988) and a regular estimator
sequence is efficient if it has (normalized) N as its asymptotic distribution. This is
equivalent to the condition that \/n(7T, — k(P)) is tight and b* o T,, is efficient for



b* ok, b* € BY, B-measurble (we assume the usual rate \/n at this place). The last
condition is known to be equivalent to a stochastic expansion:

V(b o T, —b* o k(P)) = n~1/? > Ry (3, P) + 0p(1). (3.2)
In (3.2) one can restrict to “generating” subsets B’ C B7; in the case B = DJ[0, 1]
one can restrict to b* = my, t € [0,1] (cf. Theorem 4.9 of van der Vaart (1988)).

Lemma 3.1 Let T(P) C L*(P) be a tangent cone with linT(P) = L*(P) and let
f = (ft)o<e<1 be a stochastic process in D[0,1] such that

(f:) is uniformly integrable (3.3)

and

supl [ f2dQ:Q € PLH(Q.P) < 2 s € [0.1]} < (3.4)

for some e >0, or
sup{ [ 2dQ:Q € P.V(Q.P) <2, s € [0,1]} < oc

for some ¢ > 0, V' the sup-metric. If (f(j)) is a sequence of i.i.d. copies of f, then
T, = %2?21 fY) is asymptotically efficient for x : P — D[0,1], k(P)s = [ fsdP, s €
[0,1] if (v/n(T, — (P))) is tight w.r.t. P.

Proof: The proof of Lemma (5.21) in van der Vaart (1988) and conditions (3.3),

(3.4) imply that  is differentiable with canonical gradient ., (f, P) = fi — [ f: dP.
Since

\/ﬁ(wt o™, —m ok(P))
= /ft

Wt(f(] 7P)7

%%*3\
Fg: ™

o
Il
—

(T,,) is asymptotically efficient. O

Since convergence in distribution w.r.t. the sup-norm is equivalent to conver-
gence w.r.t. the Skorohod topology if the limiting process is continuous (cf. Pollard
(1984), p. 137), it is sufficient that

VT, — k(P)) 25V, (3.5)

V' a process with continuous path’s.
For the application of Lemma 3 to the i.i.d. point process model (N, F) with
intensity A\, w.r.t. P,, a € I, we formulate the following conditions:

7



C.1 linT(P,) = L% P,);
C.2 sup{fy Eﬁ)\%(s)ds; pel, HPz P,) <e} < oo forsomee >0,1=1,2;

C.3 A, has caglad path’s and \/ﬁ(%)\ma — FE. ) 2, Y, a process with continuuos
path’s (convergence in ([0, 1], the class of caglad processes with Skorohod
topology).

Condition 1 will be established in Section 4 in the case of multiplicative intensi-

ties. The CLT in C.3 is a consequence of the conditions: 3o’ > %, # > 1, such that
for0<s<i<u<I:

!

EQa(u) = A1) < (Glu) = G(1)°
EXa(u) = Aa()*(Aa(t) = Aa(s)* < (F(u) = F(s))" (3.6)

for some continuous, monotonically nondecreasing functions F, GG on [0, 1] (cf. Hahn
(1978)). Consider next the estimation of the functional

IA A

ki(P)) = ELN = /(JEaAa(s)ds.

Proposition 2 Under conditions C.1, C.2, C.3 ry : P — (D[0,1], ]| ||=) s differ-
entiable in P, and Ty, = %Nn = %Z?:l N is asymptotically efficient for k.

Proof: By Lemma 3, we have to bound [ N2dPs uniformly in a neighbourhood of
P,. With Ag(t) = [y A\s(s)ds and Mg(t) = Ny — Ag(l) we obtain for s € [0,1]

[ N2aps < EgNE = [(Ms(1) + Ag(1))dPs (3.7)

< 2 [(Mp(1)dPs + [ (As(1))%aP)
// As(s dsdPﬁ—l—// s)ds)2dPs
2[/0 Eﬁxﬁ(s)ds+//o N2(s)ds dPp]

< ooby C2if H(Ps, P,) < e.
In the next step we have to establish tightness of (v/n(T1, — k1(P,))) w.r.t. P,.

VAT — w1 (P i O0) + [ VA Eudea(o)ds, (39

IA

%\

where A, .(s) = Y7, A0(s) is the intensity of N,. For the convergence of the
first term we apply the CLT of Rebolledo (cf. [10], [11], [21]). For the predictable

variation

\_/

1 e
— MZ = M .
\/_; ) >= nZ< (3.9)
= =3 [ a0 ds—/ gj
nl_l 0 0 n
t
= Anal8)ds



By the strong law of large numbers in L*[0,1] a.s.: A\, 0 — fOEa)\a(s)ds = k1(P,) in
L]0, 1], which implies that

/075 Anals)ds — /Ot Eo A (s)ds =: A(t).

Obviously, A € C]0, 1].
For the Lindeberg condition we consider
1

1 & :
A—S" MO AN,
| \/ﬁ ; o ( )| \/ﬁ St

and, therefore,

1 & :
EJY (A=Y MO 1, 1w vrdmon] (3.10)
ogzztg \/ﬁ; {lA—=3 70, My (B>}
1
= Ea[ (—ANNﬂg)zl 1 - 6]
ogzztg Vvn (5 AN e>e)
1
< Bl ) —AN, liaoy) (since AN, ;€ {0,1})
o<t<1 Vi
1
= 1{ﬁ>6}5EO‘Nn71

t
= 1{ﬁ>6}/0 Ea)\a(s)ds — 0.

Therefore, the CL'T of Rebolledo implies weak convergence of the first term in (3.8).
For the second term of (3.8) by assumption C.3 the integrand converges to a
process with continuous path’s on [0,1]. By the a.s. representation theorem of

Skorohod there exists a version Y,, of Y, := \/ﬁ(%)\na() — EX,(+)) and Y of Y
such that Hffn — Y/Hoo — 0 a.s. This implies that foffn(s)ds — fOY/(S)dS a.s. and,
therefore, weak convergence of the second term.

From the decomposition CLT of Hahn (1978) we therefore can conclude that
the sum of both terms (y/n(T1,, — k1(P,))) converges to a process with continuous
path’s (which is easy to identify by the finite dimensional distributions). a

Remark:

a) In the multiplicative intensity model A\, = @A the conditions can be modified.
If [\ € M < oo, then C.2 can be replaced by

C.2" sup{f, B(s)ds; 3 € I, H(Ps, P,) <} < oo.

b) In the case A\, = aA consider the estimation of ko( P, ) = F,A. Under condition

C.1,
C.2" sup{EsA?;s € [0,1], H(Ps, P,) < e} < oo and
C.3" n(Lh, — EN) 2, Y, where A, (s),

9



a process with continuous path’s,
1 ) ) .
T, = —X, is asymptotically efficient for &,. (3.11)
n

The proof is similar to that of Proposition 4.

c¢) Extensions of Proposition 4 to the a.s. efficiency of

%/()h(S)dNn,s for k(P,) = /(Jh(S)EaAa(S)dS

for a known function h are obvious.

a

We next give an application to the efficient estimation of the compensator in the
multiplicative intensity model

Theorem 3 Under assumptions C.1, C.2, C.2' C.5", and
C.4 ﬁ is of bounded variation

in the multiplicative intensity model, the functional k : P — (D[0,1],] |le),
( ) = fo (s)ds is differentiable in P, and the Nelson-Aalen estimator
fOA 1{A 5)>01d Ny, s s asymptotically efficient for k in P,.

Proof: With E,N; = [; a(s)E,\ds, we obtain

k(P,) = N )\ $)EaAsds

1
_ /OEQAS EaNS)_gb(m,EaN),

where ¢ : G[0,1] x D[0,1] — D[0,1] is defined by ¢(z,y) = fO:L' dy’, y' the least
monotonically nondecreasing majorant of y in D[0,1] and where G[0,1] are the
caglad functions, D[0, 1] (as usual) the cadlag functions. The proof follows from the
following steps:

1. For y € C[0,1] nondecreasing ¢ is Hadamard-differentiable in (x,y) tangen-
tially to G[0,1] x K,[0,1], where K,[0,1] = {k € C[0,1]; k is constant on in-
tervals where y is constant} and qb’ . ( k) = fO:L' dk + foh dy, h € G[0,1],k €
K,[0,1] (fo:zj dk defined by partial integratlon).

1 is an extension of Lemma 3 of Gill (1976), where some additional assumptions

are made. We omit the somewhat technical involved proof (cf. Holtrode
(1990)), which consists in the proof of the following four steps:

(a) T is Hadamard-differentiable in y tangentially to K0, 1].

10



(b) hn,h € G[0,1], hy — h, yu,y € D[0,1], y, — y and lim [ d(Vary,) <
oo implies [ohndy, — [ohdy in (D[0,1],] |le) (cf. Lemma 2 of Gill
(1986)).

(c) The conditions of (b) hold for y, = (y + t.k,)".
(d) If h, — hin G[0,1] and &k, — k in D[0,1], ¢, — 0, then

000+t F tak) = 6,

- /xdtk /th Ay

< !\t—[(y+tnkn) —y'] = Falloo |2l
/!

[+ k) = T = e |

+ H/h d(y + k)t /hdyHoo—u)

the first inequality follows from some calculations.

2. T, = %Nn is (by Proposition 4) asymptotically efficient in P, for r1(P,) =
E_N.

1
Ea )"

Proof. By Remark b, (3 11) (£X )is as. eﬂicient for ko(P,) = Eo X in P,. Since
H\/_ Lin,=01][ee £ = — 0 also T, = 1)\ +1 = 1{n,=0y is as. efficient. f(z) = %
is Hadamard- dlfferentlable in x on {z € G[O,l],x > 0} with fi(h) = —%&
if H%Hoo < 4. Therefore, by C.4 k3 is Hadamard-differentiable in P, with

derivative (k3)p (g) = i;‘(igz) and f(T),) is as. efficient for k, in P,. Since by

C.37 [[v/nn 1, =0t e RGN 0, this implies a.s. efficiency of T3 ,.

3. Ton =35 1,50 18 asymptotically efficient in P, for k3(P,) =

Since y = F,N is monotonically nondecreasing and ﬂ is of bounded vari-
ation, we obtain by 1 that ¢ is differentiable in (E 1. Eo V) tangentially to

G[0,1] x K,[0,1], y := E,N. So we next have to show that:
4. The limit Z of \/n(fN, — E,N) is concentrated on K,[0,1].

Proof. For s < ¢ : \/ﬁ(%Nm — BN — (AN, — BNy 25 Z, — Z,. 1t
y = FE,N is constant on [s,u), then for t € [s,u), Ny > Ns and E,N; = F, N,
ie. Ny = Ny as. and so, N,; = N, [P,] which implies Z, = Z,[P,]. Since
there are at most countable many constancy intervals, this implies that Z €

K,[0,1] a.s

5. E,gN € K,[0,1],Yg € T(P,).

11



Proof. If for g € T(P,), EoNy = E,N,, s <1, then 1}, y(u)a(u) = 0[A'] and

¢
E,gN; = Ea/ go(u) A, du
0

= /Ot a(u)Ey(ghy)du = /05 a(u)Ey(ghy,)du
= KE,gN;.

Therefore, E,gN € K,[0,1] a.s.

By Theorem 4.11 of van der Vaart (1988), therefore, T}, = (11, Ts,) is a.s.
efficient for k = ¢(kq, K1). O

Again we also can use the modified conditions as in the remark after Proposition
4.

In the following example we establish the conditions of Theorem 5; for some
different discussion of this example we refer to [24], [18], [5].

Example 3.1 (Censoring Model)

Let X be a real rv'e with df F, hazard rate h = ﬁ caglad on {F < 1}. Let
C be a positive censoring r.v. with continuous df G independent of X and 7 =
min{X,C}, F(1) <1, G(1) <1 and § = 1yx<cy known. Let Ny = 1iz<y5=1}, then
N has Py-intensity Ay (t) = h(t)1iz> =: h(t)As and My(1) = Ni—fy h(s)liz>sds is
a martingale. The Nelson-Aalen estimator estimates the cumulative hazard function

A = [yh(s)ds.

We next establish the conditions of Theorem 5.

C.1 hHT(Ph) = Lz(Ph) for Ph € P.
Proof. For g € L2(Py), ¢ = 1 [ ¢°dP, <1 define dP, = (5tg + V1 — t?c)*d D,
which is a L2-differentiable path in P with tangent vector ¢ if ¢ is caglad. So
{g € L2(P)); g caglad} C T(P,). By Lusin’s theorem the caglad elements are
dense in £?(P;,), which implies 1 (cf. also Wellner (1982)).

C.2" For any hazard rate h,

[ = [ 255 Eame
1 1

S 16 S1-rR0

4+ < oo if V(Pg, Pg)<ce.

C.2" is obvious, since A; = 1yz>4 is bounded.

C.3" Let Xy := lyzsyy — Pu(Z > t), then a(t,u) = Ey(X, — X;)? = Var, Lp<zcn
Pyt < Z < w) and for s <t < u, b(s,t,u) = Ep(X, — Xi)*( Xy — X;)?

IAINA
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2P (s < Z < t)P(t £ Z < u). So with A(t) = B(t) = =2P,(Z > 1), a =
4 =1 holds

a(t,u)

b(s,t,u)

(Au) = A@))"

<
< (B(u) = B@))"(B(t) - B(s))",

which implies the CLT for (A,) by Theorem 2 of Hahn (1978).

C.4 If H is the distribution function of 7, then 1— H = (1—F)(1—() is continuous.
Since 0 < F(1), G(1) < 1, ﬁ = 1_111(5) is monotonically nondecreasing and
bounded. L

Alltogether, by Theorem 5 the Nelson-Aalen estimator is a.s. efficient.

4 L?’-Differentiability of the Point Process Model
With Multiplicative Intensities

In this section we establish the L2-differentiability condition for the model with
multiplicative intensities, and, therefore, condition C.1 of Section 3 for these models.
Let o € [ be a fixed element and let oy = oy(s) be elements of [ with corresponding
probabilities (P,,)o<t<i C P, a path in P through P,. aN!' denotes the measure
with density a w.r.t. Lebesgue measure M.

Theorem 4 Let (P;) = (P,,) satisfy the following conditions:
1
/ a($)M(8)ds < K < 00, [[Er?e < oo, (4.1)
0

limsupHgHoo < 00, limsup H%Hoo < oo and limsup|[EA?]. <oo. (4.2)
O (&% 10

For some v € L*(aN') holds

/01[3(0""(3) — 1) — o(s)]Pa(s)ds —s 0. (4.3)

For some p > 1 holds:

— 1)]Pa(s)ds < oo, (4.4)

then (P)) is L*-differentiable in P, with tangent vector [y v(s)dM,(s).

Proof: For the proof we establish conditions (2.5), (2.6) of Theorem 1 in several
steps.
Step 1. There exist A, € IR', lim sup; o Ar < 00, such that for caglad functions

fio= fils)

E,f(/o1 LdN)? < At/ol P(s)a(s)ds. (4.5)

13



Proof. We shall omit integration variables if no problems arise. With M; = M,,,

Et(/ol fth)2 = Et[/ol fedM; + /01 fraw]

1 1
< 2Et(/0 ftht)2—|-2Et(/0 frouX)
1 1 1
< 2Et(/ ffozt)\ds)—l—QEt(/ ffozt)\ds)(/ aeAds)
0 0 0
o 1
< 22l | SRads)lIEA -0
(8% 0

a7 9 1 9 1
+ 2 RN EN [ Srads)( [ ads)
o 0 0

Similarly,

1 1
Ea(/ JdNY? < B/ Flads. (4.6)

0 0

Step 2.

1€ 1 dM,)*dP, 0 4.7
JGli= [ vaayar. o (47)

Proof. Let R(x) =log(l + ) —x, > —1, then
R()| < “’21%’ v 1. (4.8)

By Liptser, Shiryayev (1978), we obtain from (4.2) that P and P, are equivalent
for small ¢ with log likelihood function

1 a; 1
6 = /log —)dN—/(ozt—oz))\ds (4.9)
0 0
1 1
- /(——ldN—l— —t—l)dN—/(%—l)a)\ds
0 (8% (8% 0 8}
1
= [ (& 1nam, / % 1)an.
f, G~ nade+ [ RGE=D)

We have to consider the convergence to zero of the second term normalized by .

Ea[% /o1 R(% — ANy’ (4.10)
1
Ea[/o ;(%—1) ath]?
< B &y (S)ads by step 1
< B(/Olt%(%—l) ads)l/p(/ol(%_1)2q(o%)2qad5)1/q
< B(/O1 tip(ij —1)*a ds)l/p{H quH 1;\23—2/01(%_1)2@3}1@?07

by assumptions (4.1) - (4.4).

14



(4.7) is now a consequence of

Ea(%/ol(% ~)dM, — /01 vd M, )?
= Bl (G 1) - v

_ /01(1(% — 1) — )k, Ads

t «

1l o
< B [ HEE =1 = v)ads — 0

10
by (4.4).
2
Proof.

B[ 1A~ Dlany

Et(/ol l(ﬁ _ 1)2%dN)2

t oy «

1]
< At/ —(% — 1)4(2)20zd3 by Step 1

0o 12« o
which converges to zero by the proof of Step 2 and since lim sup, |, A; < oo.
With -/, = fol(a% — 1)dM, + [} R(z —1)dN, Step 3 follows from
I« I«
Et(/ (L 1)dM,)? = Et(/ (L 1)2ands)
0 0

Qy Qy

1
= / (% — 1)zgozEt)\d3
0

o O

£10

1
< S el Bl [ (2= 1)%ads — 0.
a 0 o
Step 4. limsup, o [ S3dP, < J(Jg vdM,,)*dP.
Proof. From Step 3 and Lemma 2,

|E:A — EsM]|co — 0.
£10

Furthermore,

/01[3(3 — D))o Eds

t oy
=[G = DPaads + [ G - DPa(EA - B
= /01[%(% — DP{aE N 4 (&= = 1)aE.A + ga(Et)\ — B, \)}ds

o O

= 1+ Cy+Chs.

15
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Here

1
|02|_|/ HEE DR = DaBds

oy
1 O

H—MM&MMA 1% 1Pads

< el EA et [ 3

which converges to zero as in the proof of Step 2. Since

IA

1 Oét

1
- 1)2pads}1/p{/0 % — 1|%ads)e,

1] a L
C :/ [?(— — DPab,  ds — vial,\ds and
0

a 110 Jo
Col < Il 22 — £ AHOO/ L 2ads — 0
t o t}0
we obtain - -
lim [ (5 = DPacEdds = [ 0%ali, s, (4.14)

With =6 = [5(£ = 1)dM; + f; R(% — 1)dN and Ei[fy |[R(£ — 1)[dN]? 0
from the proof of Step 3 we obtain Step 4 by

1l « 11l «
B (=DM = By [ (= 1)Pad 1.1
t[O t(at )dM,]* = E, O[t(at )] aids (4.15)
11 o 1
= [—(— — 1)2a;FiMds —>/ viaE,\ds.
t oy tlo Jo
From Theorem 1 we ﬁnally obtain from Steps 2 and 4 the L*-differentiability of (P;)
in P, with tangent vector fol vdM,,. O

The following corollary is immediate from Theorem 6.

Corollary 4.1 If M (w)| < K < o0, Vs €[0,1], w € Q and v € L2(aN') such that
for some (o) C 1

L.1 limsup; o ||2f = 1]|ee < 1 and

L.2 limsup,q 7 L1 [%(Mf)l — 1) — v(s)]*a(s)ds < oo for some & > 0,

then (P,,) is L*-differentiable in P, with tangent vector [y v(s)dM,/(s).

Remark: If oy = (1 +tv)a € [ for 0 <t <1, v caglad, ||v]l« < 1, then L.1, L.2
are fulfilled and so the closed linear hull of the tangent cone T'(P,) established in
Corollary 7 contains V = {f; v(s)dM,(s);v € L*(aA")}, since the caglad functions
are dense in L?[0, 1]. O

We next as consequence of Theorem 5 resp. Corollary 7 give more direct approach
to the asymptotic efficiency of the Nelson-Aalen estimator compared to the approach
in Theorem 5. The assumptions used here are technically somewhat different to the
assumptions in Theorem 5 (no set of assumptions is implied by the other) but are
close to each other in a practical sense.
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Theorem 5 Let [Ms(w)| < K < o0, Vs, Yw and assume:

El1V = {fol v(s)dM,(s); v € L*(aM')} is contained in the tangent cone estab-
lished in Corollary 7;

E.2 ﬁ is bounded;

E.8 H%)‘n — B\ |oo - 0 in P,-probability,

then k : P — (D[0,1],]| |leo), &(FPa) = fooz(s)d§ is differentiable in P, (w.r.t. the
cone V') and the Nelson-Aalen estimator T, = foﬁ(s) Lina(s)>00d Ny s is asymptoti-
cally efficient for k in P, (w.r.t. V).

Proof: Step 1. « is differentiable in P, w.r.t. V with canonical gradient

(4.16)

/fw

' E )\
Proof. Let [y vdM, € V and let a; € I satisfy [;[2(2 — 1) — v]*ads e 0 (which
exist by E.1 and L.1) such that (P,,) has tangent vector f; v(s)dM,(s) in P,. Then

IA

1
{(/ ads)/ (—(% ~ 1) — v)?ads}? — 0,
0 o t an
. :
i.e./i}a(/ vdM,) = /vads.
0 0
Furthermore,

1
T O Kp, (/ vdM,) (4.17)
0

¢ t ]

= /0 voads = Ea(/o Ea)\voz)\ds)
E t—l dM. t dM.

- “/o E\ “/o et

_ //%;m(Pa)(/otvdMa)dPa,

where i (Py) = [§ =~dM, is a gradient. By assumption £-5 € L?*(aA') and so

i (P)) = R (4.18)

= dM
0o F, A

is the canonical gradient.

Step 2. |[\/n(T, — k(P,)) — n_l/szE ~d M, aHOO 0 where M, , = >", M)
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Proof.

<

- . -
H\/ﬁ[/oE 150y dN, — /ads] B n—l/z/ﬂdMWHoo

i [
o2 [ (10500 - E}\)dMnaHoo—l—\/_/ 1 {rnzojads.

The second term converges to zero, since H%)\n — oMo Lo 0. From the Lenglart-
inequality we obtain for e, > 0

t n 1
Po( su n_1/2/ S dM,..| > = 4.19
(o 1 [ G L = Ml > 2 (@)

n Ll n I
< L il _
< —|—Pa(/0 n[An L) = 3] @heds > 1)

1
a5l > )

Il >

= —+P(!\a!\oo!\ = oo HA Lin,soy —

., 1
< Lt Pulllelle KI5 oo = 5% > 00

Since Hﬁ”oo < 00, E, s > 6 for all s € [0,1] and some § > 0. Therefore, for e > 0

IA

IA

IA

<

1 1
Poz —1 _—ooZ
(15 Lo = g oo 2 2)
n 1 A )
Poz __—oo>7 _n_Eoz)\oo a
(I = gk 2 e 15 = Bl < 3)

A 5
P2 = E M > =
+P(17 e > 3)

- - _n > o e
Pl o g o 1Bt = 22 2 122 = Eodoe < 5)
An )
P = Bl 2 5)
n

2 An An )
PuSIBA = e 2 &, |22 = B < 3)

A 5
P2 = E M > =
+P(17 e > 3)

A 1 A )
Po([Ead = —|loo = 56%) + Pulll = = Bl 2 5) =20,
n n

n—0oo

which implies Step 2 by (4.20). For a related derivation cf. Greenwood and We-
felmeyer (1989).

Step 3. \/n(T,, — x(P,)) N Y, a process with continuous path’s (w.r.t. P,).

Proof. By Step 2 it is enough to check convergence of (n‘l/zfoﬁdea) by the CLT
of Rebolledo. For the predictable variation

1 t o1 A
<n—1/2/0ﬂdMn,a S = /(E fattds (4.20)

=: A(t) cf. also (3.9)).

- d
o Jo BN
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The Lindeberg type condition

Al/tldM—l L AN, Py g
Vndo BT M EN) T e

is shown as in the proof of Proposition 4.
By Step 3 the sequence (v/n(T, — k(P,))) is tight (on (D[0,1],|| ||e)) and (7},)

is asymptotically linear as in (3.2) which implies asymptotic efficiency. O

5 LAN and Differentiability

In this section we extend the relation between differentiability and efficiency as used
in Section 3 in the case of i.i.d. models to the general case of LAN models.

Let P, = {P.g;0 € O} be an asymptotic model and let V' C H be a cone in
a Hilbert space H with norm || || = || |ls. For each v € V let (¥,,) C © be a
sequence in © with 9, — 9 (typically a,(¥,, —¥) — a, # 0 for some sequence
a, — o0). Then (P,) is LAN in ¢ (with rate (a,)) if for some linear process 7, on
lin V
dP,s,,
dP, s

log T2 = 7,(0) — Slloll* + o, (1) (51)
and P75 25 N(0, ||0]|2), ve V.

In the case of iid models V = T(Py) C L*(Py) = H and for g € T(Py), Z.(g) =
n~1/2 Y, g(X;). Let k : © — B be a differentiable functional, i.e. a,(k(V,, —
k(D)) — kh(v), v € V., where £}, : linV — B is continuous linear. While in iid
models (as in Section 3) it is natural to consider the estimation of functionals
defined directly on the basic model of underlying distributions, for the more general
case of LAN models it seems to be more natural to consider the functionals &
defined on a parameter space © (e.g. in the case of point processes with intensities
Ano as functionals of «). Note also that the differentiability postulated here is
an asymptotic form of differentiability. It is different from the differentiability of
a functional in a fixed model k as in Section 3 (in the situation of iid models).
For b* € BI (B: denotes the class of all continuous linear functionals w.r.t. the
underlying topology 7) let £+ (-, ) € V be a gradient in direction b*, i.e.

b o kly(v) =< v, kpn(+,0) >, v EV, (5.2)

and let #p(-,9) be the projection of fy«(+, %) on lin(V), the canonical gradient in

direction b*.
Assume the existence of a probability measure N € M'(B,B) with separable
support, such that for all B-measurable b* € B*, b*(N) = N(0, |[fp(-,9)]]?). An

estimator sequence (7),) is called asymptotically efficient for x in o if

pr=sPus)) 2y (5.3)
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or, equivalently,
(an(To = £(Pog))) (5.4)
is tight, and
an(b* 0 Ty — b™ 0 k(P,g)) = N(0, ||Fpe (-, 9)|%) (5.5)

for all B-measurable b* € BZ. In order to obtain a sharp bound for the as. variance of
estimators and the possibility of constructing efficient estimators one has to choose
a sufficiently large tangent cone.

(5.4) and (5.5) are equivalent to the condition that b* o T, is asymptotically
efficient for the real functional 6* o k, which in turn is wellknown to be equivalent to
a stochastic expansion

an(b" 0T, —=b" 0 k(P,y)) = Zu(Rys(-,9)) 4 op, ,(1). (5.6)
In the case that B = (D[0, 1], || ||le), (5.4), (5.5) are equivalent to:
w01, is asymptotically efficient for 7, 0 &, t € [0, 1]. (5.7)
An estimator sequence (7,) is called regular if for some L € M'(B,B)

Pb*(an(Tn—m(Pn,ﬁn,v )

77‘77971,1;

— LY, b* € B, b B — measurable. (5.8)

Again in the case of B = D[0,1] one can restrict to b* = m,, t € [0,1]. The
following version of the convolution theorem can be proved analogously to the proof
of Theorems 3.14, 3.7 in van der Vaart (1988). This theorem justifies the notion of
asymptotic efficiency in (5.3). Let for B’ C B*, R(B’) := Uicpr, 4 finite 74 denote
the cylinder o-algebra on B (04 the o-algebra generated by A).

Theorem 6 [fV is conver, k : © — B s differentiable in ¥ with canonical gradient
Rpx (-, ) in direction b* € B*, then:

a) For any limit point L of a regular estimator sequence (T,), L = N * M
is the convolution of two cylinder measures on (B, R(B*)) with b*(N) =
N(O, ||y (-, 9)])?), b € B

b) If L is 7(B*)-tight, then there exist extensions of N, M to probability measures
on (B,opx).

B* can be replaced by a separating subspace B’ C B*. The tightness condition
in b) is fulfilled generally, if (B, 7) is a polish top. vectorspace and B’ = B*, or if
B = (D[0,1],]| ||s) and B’ =< {m; t € [0,1]} > or if B = A*, (A,]| ||) a normed
space with B’ = A; so e.g. in the reflexive banach spaces, /., L.,. Similarly, also the
version of the minimax theorem (cf. Theorem 3.17 in [21]) extends to the general
case.

Let for B’ C B and N € M'(B,B), L(B’, N) denote the class of all measurable
loss functions £ : B — IR' such that for some sequence (£;) of cylinder functions
l, < 0 and { T ([N]. In particular if B is a metrisable, locally convex topological
vectorspace and { : B — IR' is subconvex (i.e. £(0) = 0 < £(b), ((b) = ((—b) and
{b€ B:{(b) <c}is convex and 7-closed for ¢ € R}), then ¢ € L(B*, N).
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Theorem 7 [fV is convex, k : © — B s differentiable in 0 and if there exists N €
MY(B,op/) with b'(N) = N(0, ||fy (-, 9)]|?),Vb € B, a point separating subspace of
B*, then for all { € L(B',N) and for all estimator sequences (T,,) holds:

lim lim sup By ((v/a(Th — g(9,))) > / ((b)dN (b), (5.9)

c—00 G €Bn(c)

where

Bu(c) = {n = dns o] < ¢

Define ¢ : By — Bs to be a Hadamard differentiable function, tangentially to S,
if for b € By, h, € By, h, — h € 5, t, — 0, there exists a continuous linear
function ¢}, : By — By such that

1
(S0 tuha) — ¢(b)) = G(h). (5.10)
The following result extends Theorem 4.11 of van der Vaart (1988). Let S denote
the separable support of N.

Theorem 8 [f k : © — By is differentiable in 0 and if ¢ : By — By is Hadamard-
differentiable in () tangentially to lin{ S, kly(V)} with By — Bz-measurable deriva-
tive, then ¢ ok is differentiable in 9. If (T,) is asymptotically efficient for r in ¥
and Pﬁ(Tn_ﬁ(ﬁ)) — N and ¢ o T, is By-measurable, then (¢ o T,) is asymptotically
efficient for ok in 9.

In the next step we apply these results to models with multiplicative intensities
(which are however not necessarily iid models). The following LAN theorem is due
to Dzapharidze (1985), for a simplified proof cf. also Greenwood and Wefelmeyer
(1989).

Theorem 9 Let for o € I there exist a bounded function A : [0,1] — IR' and
a, — oo, such that a%)\n — A uniformly in P, probability. Let v € L*(aX') and
oy, € I salisfy !

1
[ladCztohye 1y Loepageds o (5.11)
0 al(s) 2
then
dP, . 1 n 1 /!
I e —/ 0(8)dMpa(5) — —/ vX(s)a(s)A(s)ds +op,. (1) (5.12)
dP,, a, Jo 2 Jo
and ) .
pg Jo M) D [ () o(s)A(s)ds, (5.13)
0
i.e. we have LAN with central sequence
1 1
Z(v) = —/ 0(8)dMpa(5). (5.14)
a, Jo



Let V(a) :={v € L*(a); v is a tangent vector of a sequence in I} C L*(aA).

The following result extends Example 4.8 of Greenwood and Wefelmeyer (1988)
who considered the estimation of real functionals.

Let A, = fOA 7 L ns )>01d N, (s) be the Nelson-Aalen estimator for the inte-
grated intensity x, /i(oz)t = [y a(s)ds, and let ¢ : D[0,1] — B, be Hadamard-
differentiable with B — By-measurable derivative and assume that ¢ o An is measur-
able. We give here a direct proof of the efficiency of A, for the estimation of . The
method of this proof is the same as in the proof of Theorem 8. We, therefore, only
indicate the necessary changes due to the different assumptions and frame work.
Our functional version of this efficiency result then by Theorem 11 immediately
implies the efficiency of ¢ o A, for the functional ¢ oK.

Theorem 10 Additional to the assumptions in Theorem 12 assume that lin Vi) =
L*(a) and that § is bounded. Then ($(A,)) is asymptotically efficient for ¢ o k,
where k(o) = [ya(s)ds is the integrated intensity.

Proof: Step 1. k(o) = fooz(s)ds is differentiable in « with canonical gradient
/%Wt(‘,Oé) = 1[071]%.
Proof. For t € [0,1], v € V() holds:

1
|an(ﬁt(an,v) - /it(a))_ < v, 1[0,7,‘]_

A >aA |
¢ ¢
= || (an(an, — ) —va)ds| < / lan (v — a) — vd|ds
0
¢
= |an[(am)1/2 1% + 2a,|( m)l/z o — valds
a a
1 t nv t nv 1
< = [ a2 Emye 2ads +2/ lan[( 222 Z 1] = Zo]ads
a, Jo o 0 o 2
= o(1) by (5.10) uniformly in ¢.
Step 2. an[fg %1{An>0}dNn — fg ads] = aL fg 1de + 0pna(1).
Proof.

t ] t
an[/ A_l{An>0}dNn —/0 ads]
t ] t
= )\ 1{/\ >0}dMna — n/o Oél{/\n:()}dS
I 1t a? 1 t
= 107,‘ AdMna + — /(J()\_nl{An>0}X)dMna _an/o al{AnZO}dS

ay, Jo
1 st

Lo, de + op,. (1) uniformly in ¢.
an Jo i

The last equality can be proved as in the proof of Step 2 of Theorem 8 using
boundedness of %

Step 3. Cln(An —k(P,)) 24 ¥ a continuous Gaussian martingale. This follows from
Step 2 and the CLT of Rebolledo.
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Together from Steps 1 - 3, A, is efficient for k(). The asymptotic efficiency of
¢ o A, is a consequence of Theorem 11. O

We next consider general point process models which are not necessarily with
multiplicative intensities. Let for o € I, A, be the intensity of N, w.r.t. P,,. The
following LAN result is due to Dzapharidze (1985). We give a simplified proof of
this result which is a modification of the proof of Greenwood and Wefelmeyer (1989)
for the case of multiplicative intensities.

Theorem 11 Let for a € I there exist a bounded function A, : [0,1] — R' and
(a,) C R', a, — oo such that

1. a%)\m — Ao uniformly in P, -probability;

2. for some v € L*(A,ds) and (o) C I holds:

[tant ey ) L pa (5)ds = op, . (1),

Anals)
then
T R A l/1 02 (s)Au(s)ds + op, (1) (5.15)
dP, . a, Jo 2 Jo ’
and i
— [ o()dM,a(s) N(O,/vz(s)/\a(s)ds). (5.16)

Proof: Let R(x) =log(l +a) —a + ?, then by some calculations with a,, = o,

dP LA
log e =g [ ]dM,
o G i,

1A
o [y, s
Lo Xa ! Ao
— / [()\7 n)l/z_l]szn,a+2/ R((}\7 n)1/2_1)dNn
0 n,o 0 n,o

Step 1. For any ¢ > 0 :

1
/0 1{|(—>‘;2?;")1/2_1|>6})‘n,o¢d$ = or,.(1), (5.17)
1 A L
n,0n /2 . 2 _
/0 ( Ao ) 1 l{l(%)lﬂ—ux})‘nvads = op, . (1). (5.18)

Proof. Let A, := ((AA’;’—“;)I/Q — 1], then

1 1,
/0 1{|An|>s})‘n,ad5 < 5_2/0 An 1{|An|>s})\n,ad5

1 1

= 5—2 ) (ClnAn)2 1{|An|>6}AOZdS —|— OPn,a(l)
I

= 2/, 7V WansaAads +op,. (1)

= OPn,a(l)'
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Step 2.
— 1 1 !
2/ AndM, o — — | vdM, , = op, . (1).
0 ay JO

Proof. Consider the predictable variation

</(A CNaM >—1/1( A, — Loy d
0 n a, n,o 1— a% 0 Up Ay QU n,o S

i |
- / (anAn — §U)2Aad5 +op, . (1) = op, . (1).
0

Therefore, (5.18) follows from the Lenglart-inequality.
Step 3.

1 1 1
2/ A2\ ds — —/ v A\ods = op, (1),
0 2 Jo ’

Proof.
1 1 7t
|/ AN, ods — —/ oA ds|
0 4 Jo
! 2| Mna ! s 1,
< @A = Aulds + [ (a040)* = ot Aads
0 a; 0 4
= OPn,a(l)'
Step 4.

/01 R(A,)AN, = op, .(1).

Proof. By (5.16) with Lenglarts inequality
1
/0 1{|An|>5}dMn7a = OPn,a(l)'

With dN,, = dM,, o + A, ods, therefore, again using (5.16)

1
Pma( 1{|An|>5}dNn > 1) — 0.
0

This implies
1
/0 R(Au) L, p>e1dNa = op, . (1)

and, therefore, also for some sequence ¢,, — 0
/01 R(A) Laniseny AN, = o0, (1),
Since for |z| < %, R(z) < 2|z]?,
/01 R(An) 14,1223 d Ny
< 2, /01 Ljani<enyd My o

1
+ 25%/0 1{|An|§5n})\n7ad8 = OPn,a(l)
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(5.19)

(5.20)

(5.21)

(5.22)



by (5.16) and Lenglarts inequality.
Step 5.

1
/ A2dM,,., = op, .(1). (5.23)
0

Proof. From (5.21): [y A2 1{a,51dN, = op, . (1) and so by (5.18)
fol A2 1an>e3d M, 0 = op, . (1). On the other hand

< /AZ‘ 1{|A"|<5n}dMn7a >
0 <
1
— /0 Ai 1{|An|§5n})\n,ad8

1

< 5721/ A21{|An|<5n})\n7ad8
o <

= op,.(1) by (5.18).

Step 6.
1 1
L [Mvam,., = N, / 02 Ao ds). (5.24)

a, Jo 0

Proof. This follows from the CLT of Rebolledo, since the predictable variation con-
verges

|
<= vdMW>t_/ d5—>/ v2A.ds.

ay,Jo

Also the Lindeberg condition is satisfied

|/ L huads| = o, (1),

a

Again as consequence one obtains asymptotic optimality of martingale estimators

- .
T, = — [hdN, for Ea/h Auds = r(a)
0

ay,Jo

if the tangent cone V(o) is big enough (as in Theorem 13). By Theorem 11 this also
implies the asymptotic efficiency of differentiable functionals ¢(7),) as estimators of
¢ok. An interesting application is to kernel type estimators of a smoothed intensity
as considered by Ramlau-Hansen (1983). The intensity « itself is not a differentiable
functional of the integrated intensity x(a) = [, a(s)ds and so we cannot obtain an
efficient estimator for o as consequence of Theorems 11 and 14.
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