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Inequalities for the Expectation of A-Monotone Functions

Ludger Riischendorf

Institut fiir Statistik, Technische Hochschule Aachen, Wiillnerstr. 3, D-5100 Aachen,
Federal Republic of Germany

Summary. For some subsets of the set of all 4-monotone functions on [0, 1]
we characterize distribution functions F, G such that E, f<E, f for all f
within these subsets. Furthermore, we determine sharp upper and lower
bounds of integrals of functions in these subsets w.r.t. all distributions with
fixed marginals and give some applications of these results.

1. Introduction
For functions f: [0,1]" — R' the multivariate difference operator 4 is defined by

Bf= Y (=DE"fley %y +(1—2) Yy, .ot &y xa+(1—2,) 1)

(81, ..., en)€{0, 1}

where x=(x,,...,x,), y=(y;, ..., »,)€[0,1]". fis called 4-monotone if 4% =0 for
all x<y. f is called 4-antitone if —f is 4-monotone.

If f is A-monotone and right continuous, then f determines a measure U on

[0,1]"#" by u((x,y])=42f. Examples of 4-monotone functions are absolutely
continuous functions f with

an

0x,, _”’5x"f;0a.s., (%5 “"x")=min{xi,1§i§n}

and for te[0,1]"
fi(x)= 1[:. 1](x)’

while for n>3
g(x)= 1[0,:1(")

is (in contrast to n=2) not 4-monotone.
We consider the following two subsets M,, M, of all 4-monotone functions.

M, =M,([0,1])={f:[0,1]">R";
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f right continuous, f(....t; ,....t;,...) is

A-monotone on [0,1]""*Vk<n—1,Vt,,...,t;, €[0,17}
M,={f:[0,1]"— R"'; f right continuous,

f A-monotone and f(x)=0 if there is an i <n with x;=0}.

M, contains the set of all n-dim. distribution functions. The elements of M, are
not necessarily nondecreasing.

In the present paper we prove characterizations of distributions F, G on
[0,1]" such that E. f<E;f for all feM, as well as for all feM,. Furthermore,
we derive bounds for the expectation of f in the class of all distributions with
fixed marginals. Similar questions have been considered in the case n=2 by
Cambanis, Simons and Stout (1976) for the class M of all 4-monotone functions.
In contrast to comparison of distributions w.r.t. M, M,, | fdF <[ fdG for all
feM implies, that F, G have the same marginal distribution functions (df’s).

2. Characterizations of M,

Let
G,=1{G,/2",...,i,/2™); 0=<i;<2" 1<j<n}

be the lattice with side length 2~™. For a nondecreasing function f: G,, —R*
with f(0)=0 define z,€G,, such that

a) f(zo)=min{f(2); zeG,, f(2)>0}
and (1)
b) z€G,,, z<z,, z+2z, implies f(z)=0.

Furthermore, define

M,(G)={f:G, =R f(....t; s..0rt;,...)
is 4-monotone for all ksn—1,t;, €{l/2"; 0=1=<2"}, 1<j<k},

where a function f:G,—R' is called 4-monotone if 42f=0 for all
x,y€G,,x=y.

Lemma 1. For feM(G,,) with f(0)=0 define

fl(z) =f(z)_f(zo) 1[20.1](2)7 ZEGm
where z, is defined as in (1). Then f, is an element of M (G,,).

Proof. To prove A-monotonicity of a function f on G,, it is sufficient to consider
points x, y with y,—x;e{0,1/2"} since all other A-differences can be composed
by A-differences of this type.
Defining G(z,) to be the set of all minimal elements of {zeG,;z,<z} we
have
A1, =1 for x,y with y,—x;€{0, 1/2"}
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if and only if [x, y] contains only the point y from G(z,). In all other cases we

have
a1, 4,=0

and, therefore, in these cases
Afi=A%f—f(z,) 42 1y, 1;=4%f20.

If [x,y] contains exactly one point from G(z,) we decrease successively those
components of y which are greater than the corresponding components of Z
and, simultaneously, the same components of x. In this way we get a sequence

YZy,2...2),=2,
and
xX2x,

v

2%, with x <z, x,3#z,.

Now by definition of M,(G,,) we have
LfZAf2... 242 =1(z,)
A f1=4—f(20)20.

We are now ready to prove the following characterization of M.

and, therefore,

Theorem 2. feM, if and only if there exist aeR", a; ;>0, t; €[0,11", 1<Zi<m;,
m;eN, jelN such that the sequence of functions

fix)=a+ _21 o 1y, 10 xe[0,17%, ®)

converges pointwise to f(x). Furthermore, f; can be chosen nonincreasing in j.

Proof. The elements f; defined in (2) are in M, ; so only one direction remains to
be shown since

lim 43 f;= A%(lim f)).

J— 0 J—
Let «=f(0)eR"' and denote the restriction of f on G, again by f. Then f'(x)
=f(x)—a, xeG,, is in M,(G,) and there exists at least one point xeG, with
S1(x)=0.1f f* %0, then let z,€G,, be a point with property (1) which exists since
elements of M, are nondecreasing. The function

F2O=11()=f"(20) Iz, 1)(x),  x€G,,

is by Lemma 1 in M,(G,) and has at least two points x in G,, with f?(x)=0.
Going on by induction we get a sequence f' of functions in M,(G,),
1=sI<m;+2 and z,€[0,1]", 0=<!/<m;—1 such that

a) =10 —fz_,) e (), x€G,, 1<Ism;+1
and

b) f"'”'ZEO‘
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This implies
fx)=oa+f l(x) = +f2(x) +f1(zo) I[zo, 1](x)

mj
=a+lz Fle- Vg, 1100 %EGC.
=1

Since f'(0)=0, we have f'(z,_,)=0. With «; ;=f"(z;_,) and t; j=2z; _, we get:
fo=fm+t s of type (2) and f(X)=fu(x), XEG,,.

By definition of f the lattice approximation f, is nonincreasing in m. Right
continuity of f implies that

f(x)= lim inf{f(y); y€G,,, yZx}.

m-—

So there exists a sequence y,, | X, ¥,,€G,, such that

f(x)=lim f(y,)= lim Jn(Y) = lim Jul):

m-— o

3. Inequalities for the Expectation of 4-Monotone Functions
For a df. F on [0,1]" define
hF(t) - PF([t’ 1]), te[o’ 1]"

where P; is the probability measure associated with F.

Theorem 3. Let F, G be df’s on [0,1]". Then

a) Epf<Egf for all feM, if and only if hg<hg
b) hp<hg implies that E; f <Ef holds for all feM,.

Proof. a) is immediate from Theorem 2, since it is sufficient to consider functions
of the type 1, ;,(x).

b) For the proof of b) we use the following integration by parts formula.

Let £, g be real functions on [0, 1]" such that [ (45 f)dg(x) exists (as weak net
integral) then | (4! g)df(x) exists and both integrals are equal.

For n=2 this formula has been proved by Hildenbrand (1963) pg. 127. The
proof for general n can be given along similar lines.

For feM, we have f(x)=4%f and, therefore,

Epf=[fdF=[(4%f)dF=[(ALF)df=[hpdf <[hgdf =Eg /.

Remark 1. a) For n=2 and when F, G have the same marginals the condition
hp<hg is equivalent to F<G so that the statement of Theorem 3 a) for this
special case is contained in Theorem 1 of Cambanis, Simons and Stout (1976).
b) The ordering of the survival functions hj can be managed in a number of
examples by means of Schur convex functions. Consider Nevius, Proschan and
Sethuraman (1977), Sect. 3.5 of Marshall and Olkin (1974) and Tong (1977).
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¢) By an approximation argument the statement of Theorem 3 holds true
also for functions f: R"—R' which have the properties of functions in M, and
which are integrable w.r.t. F, G.

Denote by #(F,,...,F,) the set of all n-dimensional df's F with marginals
Fy,...,F, and define

F9)= min Fx). Fo9= (3, Fx)-@-1). 3

for x=(x,, ..., x,) where a, =max{a,0} and

hy(x)=1— max F,(x;—)
15izn

and 4)
ha)=(1- 3 Fxi-))
i=1 +
Furthermore, define
z;=inf{x; F,(x)> 0}
and )
zi =sup{x; F(x)<1}.

The proof of the following lemma can be derived from Theorems 2, 3 of
Dall'Aglio (1972) which give a characterization of #(F,,...,F,) by F, F.

Lemma 4. a) Fe#(F,,...,F,) if and only if h,<hp<h,.
b) hy=hp and Fe#(F,,...,F,)). Fe#(F,,...,F,) if and only if
1) n=2

or (6)
2) n=3, at least three of the F, are non degenerate and

Y Fz—)zn—1 or Y F(z/—)<L.
i=1 i=1

If Fe#(F,,...,F), then hy=hg. In all cases distinct from (6) there is no He
H(F,,...,F,) with hy<hp, VFe#(F,, ..., F)).

From Theorem 3, Lemma 4 and Remark 1 we get immediately the following
result. For n=2 consider Cambanis, Simons and Stout (1976).

Theorem 5. a) E; f=sup{E; f; FE#(F,,...,F,)} for all feM,UM,.
b) Under condition (6) we have Epf=inf{E.f; FE#(F,,...,F,)} for all feM,.
¢) (hydf <inf{E.f; Fe#(F,,...,F,)}, for all feM,.

By Theorem 5 and Lemma 4 we get a sharp upper bound for {E.f; Fe
H(F,,...,F,)} for feM, UM, while a sharp lower bound for all fe M, UM, only
exists under condition (6).

We now want to derive sharp lower bounds for a subset of M,; the lower
bound depending on the elements of this subset.
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Define M2 to be the set of all functions f: [0,1]"— R with the following
properties a), b)

a) There exist f,eM([0,1]%), 1<i<n—1 such that

Sxy, -~~ax..)=f,._1(f,._z(---fz(fl(xlsxz)’xs)a wos)s Xy

for x,,...,x,€[0,1].
b) For two dfs F, G on [0,1]* hy<h; implies h pShy @ 1Sisn—1,
where f(F) is the df. of the image of F under f;.

An example for an element of M? is f(xy,...,x,)=min{x;, 1 Si<n}.

The following lemma can be proved by a modification of the proof of
Lemma 1, pg. 216 of Ferguson (1967). For a real df. F and a random variable X
with df. F define

F(x,)=P(X <x)+AP(X=x), xeR', 2e[0,1].

Lemma 6. Let X, U be real, independent random variables. Let X have df. F, and
let U be R(0, 1)-distributed. Let, furthermore, F, be a real df. and define

Y=F'(1-F/(X,U)).
Then the random variable (X, Y)has the df.
F(x,y)=(F(x)+F()—1),.

Now let F,,...,F, be n real dfs, let feM? with associated f;, I<i=n—1 and
let U,, ..., U,_, be stoch. independent R(0, 1)-distributed. Then define inductively
random variables V,,..., V, by

Vi=F7'(U), V,=F'(1-U)). (7
Let V,,...,V,, 1 <l<n be defined and let L, be the df of

H V... ) =fi_1(fi_ 2l (1(V1, V), Va), ) V)
then define

V= 111(1 —L(H\(V},...., V) Uy, 1)-

Theorem 7. Let f, U,, V., F. be defined as above, then

a) (V,,...,V,) is a random variable with df. Fye #(F,, ..., F,).
b) hpeoShyr, VFeH(F,....F).
¢) Ep f=inf{Epf; FeX(Fy,...,F)}.

Proof. a) By Lemma 1, pg. 216 of Ferguson (1967)
Wi=L,_H,_(V},..., Vi), U)

is R(0, 1)-distributed and, therefore, V,=F~'(1—W) has df. F.
b) We prove b) by induction in n. For n=2 b) follows from Theorem 5 since
(F7'(Uy), F;Y(1-U,) has df. F. Assume b) to be true for n and so by
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assumption hy, (Fn,_h,, « for all FeA#(F,,....F,). Let X; have df. F, 1Si=n+1
and denote the df’s of

W=(Hn(Vl’ ) V"), Vn+ 1)
and

Z=H(X,... X1 X, )

by F, G respectively. By the assumption of the induction H,(V),...,V,) is "
stochastically smaller than H, (X, ..., X,) and, therefore, by means of Lemma 1,
pg. 216 of Ferguson (1967) one can construct a Fe#(L,,F, + 1) with hg<h;. By
Lemma 4 we get h, <h; and so by property b) of elements in M? this 1mplies

hfn(F) é hfn(G)

which gives the induction step.
¢) is immediate from b.

4. Examples

a) Let X=(X,...,X,) be a n-dim. random variable and define
sp(x)=max{x;; 1Si<n}—min{x;; 1<Si<n},

the span of x. sp(x) is a 4-antitone function. So by Theorem 5 (generalized to R")
we have
Epsp=inf{Esp; Fe#(F,,...,F)}.

This result has been proved by Schaefer (1976). It has applications in dynamic
programming.
b) Let X,,..., X, be n real random variables, X;>0, with df’s F;, ..., F,. Let

o; >0, 1<i<n be real numbers with Z 1/o;=1. By Theorem 5 the best lower
bound for H | X, obtainable by Holders inequality is given by E H -1(U),

=1
where U 1s R(O 1)-distributed. Let especially (q; ;); <;<, be real numbers a; ;20

15k
such that a; | £...£a; ,, 1<i<n, and let F, be the discrete uniform distribution
on {a; ,,...,a; ,}, 1<i<n, then F(x)=j/k for a; ;<x<a; ;,,, 1 Sj<k(a;;, ,=0)

and, therefore,

k
= Z H a; ;-
Jj=li=1

= =

E ]_[ E~!
i=1
On the other hand,
n 1 n

M= I1 (% ) ™

i=1 i=1 =1

So Theorem 5 implies the following extension of Holders inequality (cf. Becken-
bach, Bellman (1965), pg. 20)

¥ fla,sTl(2a) ®
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c¢) Let q,eR,, 1<i<n be real numbers and let a;eR 1<j<n-—1 be real

numbers with Z 1/o;=1. Furthermore, let F,=...=F,_, be the discrete uni-

form df. on {al, ...,a,}. A distribution with marginals F,, ..., F,_, is given fe. by

0 if there are I, k<n—1, Ik and i,=i
P{(am ’ai,.-,)}= 1 K
— else
n!

Theorem 5 and Holder’s inequality imply

Y Tas 3 g sl (S e 0

i=1

By the second inequality in (9) the product of the a;-norms of F, is minimal for «;
1 . P

=7 1<j<n—1. This result is also implied by Theorem 1 of Tong (1977)

who proves his result by means of Schur-convex functions.

d) For F,=...=F, the df. of the R(0,1)-distribution Theorem 5 yields the
following lower bound

1nf{EFf[xi;Fef(Fl,...,Fn)}gj...j(1— i xi) dlﬂlxl
i=1 i=1 +  Sizl
[ 7 zd]l=
00

i=1 n+1)'

For n=3 we get:
H<EX,X,X;<%

for all X;, 1<i<3 which are R(0,1)- dlstrlbuted The author is not aware of
R(0, 1)-distributed X,, 1 <i<3 with EX, X, X ;<%. The value {5 is attained for:

X,=U, X,=1-U, X,=2|U-}%

where U is R(0,1)-distributed. (These are the random variables V;, V,, V; from
Theorem 7. The result of Theorem 7 is not applicable in this case).
e) Let X,,..., X, be real random variables with df’s F;, ..., F, and define

Z,=max X; and W,= min X,.

1<izn 1<isn
Then Theorem 7 is applicable for
filxys.-esx,)=min{x,,...,x,} T€SP.
T35 50 %) ==mAK{05 oy}
We obtain the following sharp upper and lower bounds for W,

min(V,, ..., V)< W, <, min{F," *(U),..., F, "(U)} (10)
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al where < is the stoch. ordering, U is R(0, 1)-distributed and Vi, 1<i<n are

_ constructed as in Theorem 7. We have by Lemma 6
-

y P(min(V,...,V,,)gt)=min{l,i E(t—)}. (11)

For Z, we obtain the following sharp bounds

1= min (1-F)~(t~)2 PZ,<p)> (z =) ~(n-1)) (12)

1<izn +
In the case of continuous df's the right inequality in (12) has been proved by Lai
! and Robbins (1978), (3.4). Lai and Robbins give in the case of Fi=...=F, - the

df. of a R(0, 1)-distribution - a nice geometric construction for random variables
Vi,..., ¥, such that max{V,,...,V,} has the df. given in the right hand side of
j (12). A similar construction is possible for the left hand side of (10), (11). It shows
' fe. that min{V,,...,V.,} <1/n for all nelN.
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