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Abstract. We establish various extensions of the comonotone improvement result of Lands-

berger and Meilijson (1994) which are of interest for the risk sharing problem. As a conse-

quence we obtain general results on the comonotonicity of Pareto-optimal risk allocations

using risk measures consistent with the stochastic convex order.

1. Introduction

With the ongoing development of convex risk measures (see e.g. Föllmer and Schied

(2002)) there has been renewed interest in the problem of optimal risk exchange between

economic agents. A key step in studying the structure of Pareto-optimal risk allocations is

the comonotonicity property. This result was originally obtained in Landsberger and Meil-

ijson (1994), who provided an algorithm to construct a convex order ≤cx-improvement of

any non-comonotone allocation. Since all law-invariant convex risk measures are consistent

with the convex order (see e.g. Bäuerle and Müller (2006)) it follows that a Pareto-optimal

risk allocation is necessarily comonotone. The improvement result in Landsberger and Meil-

ijson (1994) was only stated for discrete and bounded allocations; later Dana and Meilijson

(2003) constructed an extension to general bounded risks. In this note we establish various

extensions of this result to unbounded random variables, as well versions working for certain

classes of consistent risk measures. This is significant from a practical point of view where

risks are often modeled as unbounded random variables.

2. Preliminaries

Consider the collection of real-valued random variables L0(P) on a probability space

(Ω,F , P). As usual, we write L1 (resp. L∞
+ ) for the collection of all integrable (positive

bounded) random variables on (Ω, P).

Definition 1. Two random variables Y and Z ∈ L0(P) are said to be comonotone if

(Y (ω1)− Y (ω2))(Z(ω1)− Z(ω2)) ≥ 0, (1)
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P(dω1)× P(dω2)-almost surely. In other words, Y and Z move together.

An equivalent definition of comonotonicity is that there exist non-decreasing functions hY

and hZ such that hY (x) + hZ(x) = x, Y = hY (Y + Z), and Z = hZ(Y + Z) almost surely

(Denneberg 1994).

We next recall the stochastic convex order:

Definition 2. Y ∈ L1 is said to precede (or be preferred to) Z ∈ L1 in convex order if

E[f(Y )] ≤ E[f(Z)] for all convex functions f for which the expectations exist. We write

Y ≤cx Z.

Note that convex order is equivalent to ordering with respect to second stochastic domi-

nance with equal means, see Rothschild and Stiglitz (1970, 1971).

3. Main Results

Let X ∈ L1 and consider the collection of integrable allocations of X, namely A(X) ,

{Y := (Y1, Y2, . . . , Yn) : X =
∑n

i=1 Yi, Yi ∈ L1}.

Definition 3. An allocation Y ∈ A(X) is called comonotone if Yi, Yj are comonotone for

all 1 ≤ i ≤ j ≤ n.

We have trivially that if Y is a comonotone allocation then Yi and X are comonotone for

each i.

Theorem 1. Let Y ∈ A(X) be a discrete allocation taking on a countable number of values

and bounded from below. Then there exists a comonotone allocation Ȳ ∈ A(X) such that

Ȳi ≤cx Yi, i = 1, 2, . . . , n.

The idea is to apply a variant of the Landsberger and Meilijson (1994) algorithm and take

the limit using the properties of the basic single-crossing type improvement (Diamond and

Stiglitz 1974). Theorem 1 essentially appeared in Landsberger and Meilijson (1994), but

proof was only given in the case when X and Y take on finitely many values. By now the

result is part of the folklore, however no complete proof has been published and the extension

is not entirely trivial.

Proof. For completeness, we provide full details for the case n = 2, whence Y = (Y1, Y2).

Let y =
⋃n

i=1 yi be the union of the supports of Yi. Then y is an ordered countable set

in R, bounded from below by some y. Consider the partition Ω = ∪kCk such that (Y1, Y2)

are constant on each partition element Ck, and the Ck’s are ordered according to the values

of Y1 + Y2. Our goal is to have each of Y1, Y2 also ordered with respect to their values
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y1
1, y

1
2, . . ., y2

1, y
2
2, . . . on Ck. Let pk = P(Ck) > 0 be the weights of different pairs. If Y1 and

Y2 are not comonotone, there must be a minimal index k such that without loss of generality

y1
1 ≤ y1

2 ≤ . . . ≤ y1
k ≤ y1

k+1 and y2
1 ≤ y2

2 ≤ . . . ≤ y2
k, but y2

k+1 < y2
k. Let 1 ≤ j ≤ k be the

minimal index such that y2
j > y2

k+1, so that the (k +1)-st pair “violates” the comonotonicity

with all pairs between j and k.

Construct the update (Ỹ1, Ỹ2) which takes on the same values ỹ1
i ← y1

i , ỹ
2
i ← y2

i as (Y1, Y2)

except 

ỹ1
k+1 ← y1

k+1 − (y2
j − y2

k+1) · (
∑k

i=j pi)/(
∑k+1

i=j pi),

ỹ2
k+1 ← y2

k+1 + (y2
j − y2

k+1) · (
∑k

i=j pi)/(
∑k+1

i=j pi),

ỹ1
i ← y1

i + (y2
j − y2

k+1) · pk+1/(
∑k+1

i=j pi), j ≤ i ≤ k,

ỹ2
i ← y2

i − (y2
j − y2

k+1) · pk+1/(
∑k+1

i=j pi), j ≤ i ≤ k.

(2)

This change preserves Ỹ1 + Ỹ2 = Y1 + Y2, maintains EỸ1 = EY1 and EỸ2 = EY2 and is an

improvement of the single-crossing type (Diamond and Stiglitz 1974), also known as mean-

preserving spread (mps). It follows that Ỹ is a component-wise ≤cx and ≤mps improvement

of Y. Moreover, after the change, ỹ2
j = ỹ2

k+1 and ỹ1
j ≤ ỹ1

k+1 so that the j-th pair is now

comonotone with the k + 1-st pair. Therefore, the next violation index pair (k, j) will be

larger (in the lexicographic order) than the current one.

Iterate this argument to obtain an improvement sequence (Ỹ(m))m=1,2,... of allocations. We

now claim that this sequence converges almost surely and in L1 to some limit Ȳ. Indeed, let

(km, jm) be the violation index of the m-th update. Then km → ∞ and therefore pkm → 0.

On the other hand, on a fixed subset Ck, once km > k, the value y
i,(m)
k can change by at

most

|yi,(m+1)
k − y

i,(m)
k | ≤ max

i=1,2
|yi,(m)

k − y
i,(m)
km+1| · pkm+1/(

km+1∑
j=k

pj)

≤ max
i

(y
i,(m)
k − y) · pkm+1/pk

≤
(
(y1

k + y2
k − 2y)/pk

)
· pkm+1 ,

since y
1,(m)
k + y

2,(m)
k = y1

k + y2
k for all m.

Since pkm → 0, for any ε > 0 there is M large enough such that
∑

j>kM
pj < ε and the

respective tail sum is then bounded by
∑∞

n=M |y
i,(n)
k − y

i,(n+1)
k | ≤ ((y1

k + y2
k − 2y)/pk)ε. Thus,

(Y i,(m)) converges almost surely.

Moreover, (Y i,(m)) also converges in L1. This is obvious if Y i is bounded since sup Y i,(m+1) ≤
Y i,(m). Otherwise note that for a fixed threshold index k′, because of the mean-preserving
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spread the tail mass is non-increasing,∑
k≥k′

pk · yi,(m)
k ≤

∑
k≥k′

pk · yi
k. (3)

For a fixed level K, the tail expectation E[Y i,(m)1{Y i,(m)>K}] will increase only if a point

(yi
k, pk) is moved to the right of K as a result of e.g. the third line of (2). The algorithm of

(2) operates by sliding points towards their average with changes in distance proportional

to the weights. Thus, to slide an initial point yi
k with mass pk to level K requires an

“energy” of (K − yi
k) · pk. To do so, at least as much energy should be removed from

the right of K. However, total available energy beyond K is maxi E[Y i1{Y i>K}]. Thus, if

(K − yi
k)pk > E[Y i1{Y i>K}] then the k-th point will never contribute to E[Y i,(m)1{Y i,(m)>K}].

Let kK = min
{
k : (K − yi

k)pk < E[Y i1{Y i>K}]
}
, be the first index that can affect the above

tail expectation. Combining with (3) we obtain the uniform bound

E[Y i,(m)1{Y i,(m)>K}] ≤
∑

k≥kK

pky
i,(m)
k ≤

∑
k≥kK

pky
i
k.

Finally, as K →∞, kK →∞ and
∑

k≥kK
pky

i
k = E[Y i1{Y i>K}]→ 0, establishing the uniform

integrability of (Y i,(m))m.

The limiting Ȳ is comonotone, since there are no comonotonicity violation pairs left in

the limit and by (Müller and Stoyan 2002, Theorem 1.5.9), Ȳi ≤cx Yi, i = 1, 2, . . . , n.

�

When the probability space Ω is non-atomic, a more direct argument is available by

extending the construction in Dana and Meilijson (2003). Namely we have,

Theorem 2. Let Y ∈ A(X) be an allocation of X ∈ L1. Suppose Ω is non-atomic. Then

there exists a comonotone allocation Ȳ ∈ A(X) such that Ȳi ≤cx Yi, i = 1, 2, . . . , n.

Proof. Recall that Dana and Meilijson (2003) proved the ≤cx-improvement result for arbi-

trary X ∈ L∞
+ . Defining

Y
(m)
i , Yi · 1|Yi|≤m, Y (m) ,

n∑
i=1

Y
(m)
i , (4)

then Y (m) → X, Y
(m)
i → Yi, almost surely and in L1(P). Further, by Dana and Meilijson

(2003) there exists Z(m) comonotone, such that

Z
(m)
i ≤cx Y

(m)
i and

n∑
i=1

Z
(m)
i = Y (m). (5)
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Let Fi,m be the distribution function of Z
(m)
i . Since Z(m) is comonotone and Ω is non-atomic,

it follows that there exists a U ∼ Unif(0, 1) random variable such that Z
(m)
i

d
= F−1

i,m(U). Note

that for each 1 ≤ i ≤ n, (Z
(m)
i )m are tight since by the convex ordering

E|Z(m)
i | ≤ E|Y (m)

i | ≤ E|Yi| <∞.

Therefore there exist a subsequence, again labelled (m) ⊂ N along which the distribution

functions converge, Fi,m → Fi. This implies that F−1
i,m(U)

a.s.−→ F−1
i (U) =: Zi, and moreover

n∑
i=1

Z
(m)
i

d
=

n∑
i=1

F−1
i,m(U)→

n∑
i=1

Zi a.s. and in L1(P).

On the other hand, we already had
n∑

i=1

Z
(m)
i =

n∑
i=1

Y
(m)
i →

n∑
i=1

Yi a.s. and in L1(P).

Thus we obtain
n∑

i=1

Zi
d
=

n∑
i=1

Yi, Zi ≤cx Yi and in fact (Z
(m)
i )

d
= (F−1

i,m(U))→ (Zi) a.s.

In particular, the limit allocation Z is comonotone. Therefore, for some measure preserving

random variable U ′ it holds
n∑

i=1

Zi ◦ U ′ =
n∑

i=1

Yi = X a.s.

Obviously Ȳi , Zi ◦ U ′ satisfy

(Ȳi)
d
= (Zi),

n∑
i=1

Ȳi = X, and Ȳi ≤cx Yi.

�

Remark 1. As in Theorem 1, the ≤cx improvement in (5) is in fact a mean-preserving spread

improvement (Rothschild and Stiglitz 1970). However, the presence of ≤mps-improvements

in the above algorithm alone is not enough to establish tightness of (Z
(m)
i ).

As a counterexample, consider a non-integrable random variable X which has a tail of the

order P(X > x) ∼ cx−1/4 on the positive real line, as well as a point mass ε > 0 at zero.

Then there exists a sequence (Xn) of ≤mps improvements X = X1 ≥mps X2 ≥mps · · · , such

that (Xn) is not tight. For the construction, observe that on the interval (n4, (n + 1)4), X

has mass ∼ 1
n2 . We slide this mass n2 times one unit to the left in exchange for shifting the

point mass in zero one unit to the right (by formally splitting it into n2 point masses of size
ε

n2 and applying the single-crossing ≤mps-improvement). Thus, the interval mass is shifted

to the interval (n4 − n2, (n + 1)4 − n2). Next consider the interval ((n + 1)4, (n + 2)4) or a
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slight adjustment and repeat the procedure. The point mass in zero slides one unit to the

right at each step and is finally shifted to +∞, contradicting tightness.

The integrability assumption on X can be dropped if the initial allocation Y is bounded

from below. Indeed this is sufficient for (Z
(m)
i ) above to be tight; thus, we obtain the following

Corollary 1. Consider a non-atomic probability space Ω and let Y be an allocation of

X ∈ L0(P) bounded from below, Yi ≥ y > −∞. Define Y
(m)
i , Y (m) as in (4). Then there

exists a subsequence (m) ⊂ N of comonotone allocations Z(m) of Y (m) such that Z
(m)
i ≥ y

for 1 ≤ i ≤ n and

(1) Z
(m)
i ≤cx Y

(m)
i ,

(2) Z
(m)
i

a.s.−→ Zi, where Z is a comonotone allocation of X.

Proof. The proof uses the construction of Theorem 2. The only remaining step is to establish

tightness of the sequence (Z
(m)
i )m for each 1 ≤ i ≤ n. This however is a consequence of the

fact that the Landsberger-Meilijson algorithm described in the proof of Theorem 1 respects

lower and upper bounds of the initial allocation Y. Indeed in (2) we have ess inf Ỹi ≥
ess inf Yi, ess sup Ỹi ≤ ess sup Yi. Consequently, for Z

(m)
i obtained in (5) from the Dana and

Meilijson (2003) result based on same algorithm we also have y ≤ ess inf Z
(m)
i . Moreover,

Z
(m)
i = Y (m) −

∑
j 6=i

Z
(m)
j ≤ X − (n− 1)y.

Thus, we have uniform bounds on the lower and upper tails of the distribution of Z
(m)
i

and the tightness of (Z
(m)
i )m follows. Note that without L1-convergence we cannot claim

Zi ≤cx Yi.

�

4. Application to Risk Sharing

We now interpret X as the total exposure of the n agents, and use convex risk measures ρi

to define the subjective valuation (preference) functional of the i-th agent. Thus, ρi : L0(P)→
R ∪ {+∞}, are the numerical translation-invariant representations of risk-preferences of

agents with ρi(X) ≥ ρi(Y ) meaning that agent i finds X riskier than Y . We make the

following assumptions on ρi:

Assumption 1. ρi is consistent with the natural order of L0(P): if P(X ≥ Y ) = 1 then

ρi(X) ≥ ρi(Y ).

Assumption 2. ρi is consistent with the convex order: if X ≤cx Y then ρi(X) ≤ ρi(Y ).
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Assumption 3. ρi is continuous with respect to a.s. convergence: if Y (n) a.s.−→ Y and

supn ρi(Y
(n)) <∞ then ρi(Y

(n))→ ρi(Y ). In particular, ρi is continuous at −∞:

lim
d→−∞

ρi[max(Y, d)] = ρi(Y ), for all Y ∈ L0(P).

Assumption 3 implies that given Y ∈ L0(P) and ε > 0, there exists Ỹ taking on a countable

number of values and bounded from below such that |ρi(Ỹ )− ρi(Y )| ≤ ε. For instance, one

may take Ỹ = max(−d, 2−K(d2KY e)) for d,K large enough.

Remark 2. One usually defines risk measures on the space L∞(P), in which case an extensive

theory is available, see e.g. Föllmer and Schied (2002). When working with L0(P), one must

allow ρi(X) = +∞, i.e. positions X that are completely unacceptable and contain infinite

risk. We also do not directly require ρi to be convex; see (Burgert and Rüschendorf 2006,

Prop 2.2b) for relationship between convexity of ρ and its consistency with ≤cx.

The risk sharing problem (see Aase (2002) for a recent survey) consists in finding an

optimal allocation Y∗ ∈ A(X), namely an allocation such that Y∗ is Pareto optimal, that is,

no agent can be made strictly better off (in the sense of ρi-risk reduction) without another

agent being made strictly worse off. Formally, a Pareto optimal risk exchange is defined as

follows:

Definition 4. X∗ ∈ A(X) is called a Pareto optimal risk exchange or allocation if whenever

there exists an allocation Y ∈ A(X) such that ρi(Yi) ≤ ρi(X
∗
i ) for all i = 1, 2, . . . , n, then

ρi(Yi) = ρi(X
∗
i ) for all i = 1, 2, . . . , n.

To avoid trivialities we further restrict A(X) such that admissible allocations carry finite

risk for each agent and are integrable:

A(X) , {Y := (Y1, Y2, . . . , Yn) : X =
n∑

i=1

Yi, ρi(Yi) <∞, Yi ∈ L1},

and assume that the new A(X) is still non-empty.

The improvement results in this note show that in most situations Pareto-optimal al-

locations are necessarily comonotone, and so one may immediately restrict the attention

to comonotone allocations. The latter fact strongly simplifies the structure of the prob-

lem. For instance, in Jouini et al. (2005), Ludkovski and Young (2007) finding Pareto-

optimal allocations is reduced to minimizing the linear function f(Y) :=
∑n

i=1 αiρi(Yi) over

possible Lagrange multipliers αi ≥ 0. Knowing that the Y’s of interest are comonotone

allows one to work directly with the non-decreasing 1-Lipschitz functions hi that satisfy

hi(X) = Yi, h1(x) + . . . + hn(x) = x.
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Theorems 1 and 2 imply that once ρi satisfy Assumptions 1-3, then without loss of gen-

erality one can indeed perform this minimization just over the set C(X) , {Y ∈ A(X) :

Y comonotone} of comonotone allocations:

inf
Y∈A(X)

f(Y) = inf
Y∈C(X)

f(Y). (6)

When Ω is non-atomic, (6) follows immediately from Theorem 2 combined with Assumption

2. In general, one can use the improvement of Theorem 1 together with Assumption 3 to

obtain an ε-improvement with respect the risk measures:

Proposition 1. If Y ∈ A(X), then for any ε > 0 there is a comonotone allocation Ȳ ∈ C(X)

such that

ρi(Ȳi) ≤ ρi(Yi) + ε, (7)

for all i = 1, 2, . . . , n.

Clearly Proposition 1 is equivalent to (6). The proof is given in the Appendix. Note

that one cannot directly “take the limit” in the discretization of Theorem 1 since ≤cx is not

necessarily stable under a.s.-limits.

An example of a family satisfying the above assumptions are the distortion risk measures

(alternatively known as the law-invariant, comonotone-additive coherent risk measures). De-

note by SY the (decumulative) distribution function of Y , that is, SY (t) = P(Y > t), and

by S−1
Y the (pseudo-)inverse of SY , which is unique up to a countable set (Denneberg 1994).

For concreteness, take S−1
Y (p) = sup{t : SY (t) > p}; the inverse S−1

Y thus defined is right

continuous. Let g : [0, 1]→ [0, 1] be a non-decreasing, concave function such that g(0) = 0,

g(1) = 1. Take

ρ(Y ) = ρg(Y ) =

∫
Y d(g ◦ P) =

∫ 1

0

S−1
Y (p) dg(p) (8)

=

∫ 0

−∞
(g[SY (t)]− 1) dt +

∫ ∞

0

g[SY (t)] dt.

The function g is called a distortion because it modifies, or distorts, the tail probability SY

before calculating an expectation. Note that if g(p) = p, then ρg(Y ) = EY . For this reason,

ρg is sometimes referred to an expectation with respect to a distorted probability.

Recall that for concave g, ρg is monotone, continuous at −∞ and consistent with ≤cx

(Wang and Young 1998). Moreover, ρg is continuous with respect to a.s.-convergence. For

0 < p < 1, let δ(p, ε) > 0 be such that g(p + η) < g(p) + ε for all 0 < η < δ(p, ε) (since g is

uniformly continuous away from zero). Now define Ỹ ≥ Y such that Ỹ takes on countably

many values y = {yk}∞k=1, y1 > −∞ and

SY (t) ≤ SỸ (t) ≤ SY (t) + δ(SY (t), ε ∧ εt−2).
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Without loss of generality, assume also that SỸ (yk) = SY (yk) for all k. Because the distortion

function g is concave, it is uniformly Lipschitz on (η, 1] for any η > 0. Therefore, y forms a

discrete set, i.e. |yk′ − yk| > ε2 > 0 for any k′ 6= k. Finally,

ρg(Y ) ≤ ρg(Ỹ ) =

∫ 0

−∞
[g(SỸ (t))− 1] dt +

∫ ∞

0

g(SỸ (t)) dt

≤
∫ 0

−∞

[
g(SY (t)) + (ε ∧ εt−2)− 1

]
dt +

∫ ∞

0

[
g(SY (t)) + (ε ∧ εt−2)

]
dt

≤ ρg(Y ) + 4ε.

where the second line follows by definition of δ(·, ·).
Finally, Corollary 1 allows us to extend Proposition 1 to risk measures on L0(P) as long

as the allocations are lower-bounded.

Proposition 2. Let Ω be a non-atomic probability space and ρi be risk measures on L0(P)

satisfying Assumptions 1-3. Suppose X =
∑n

i=1 Yi, such that Yi ≥ y and ρi(Yi) < ∞ for

i = 1, 2, . . . , n. Then there exists a comonotone allocation Z,
∑n

i=1 Zi = X, such that

ρi(Zi) ≤ ρi(Yi), i = 1, 2, . . . , n.

Proof. Define Y (m) as in (4). By Corollary 1, there is a comonotone ≤cx-improvement se-

quence of allocations Z(m) of Y (m), such that Z
(m)
i ≥ y and Z

(m)
i

a.s.−→ Zi with Z comono-

tone. By Assumptions 1-2, for m large enough we have ρi(Z
(m)
i ) ≤ ρi(Y

(m)
i ) ≤ ρi(Yi) since

Y
(m)
i ≤ Yi once m > |y|. By Assumption 3, ρi(Z

(m)
i )→ ρi(Zi) ≤ ρi(Yi).

�

Appendix

Proof of Proposition 1. Consider a given integrable allocation Y, Yi ∈ L1. Fix ε > 0. Using

Assumption 3, construct a discrete Ỹi ≥ Yi such that

ρi(Yi) ≤ ρi(Ỹi) ≤ ρi(Yi) + ε.

Using Theorem 1, there is an ≤cx-improvement Yε of Ỹ. Unfortunately, Yε is not directly

comparable with Y since the sum of the risks is now too big, i.e. greater than X. The

remaining steps show that one can further minorize Yε such that the allocation remains

comonotone and the sum is simply X.

First, we construct a comonotone improvement Yc of Yε such that
∑

i Y
c
i is comonotone

with X. Let y be the support of
∑

i Y
ε
i . Order y = {. . . < yk < yk+1 < . . .}. Since Yε is

comonotone, each Y ε
i must be constant on an event {ω :

∑
i Y

ε
i = yk} , say Y ε

i = bi
k.

Define Bk , {ω : yk−1 < X(ω) ≤ yk}. Clearly, ∪kBk = Ω is a measurable partition.

Now set Yc
i (ω) = bi

k, whenever ω ∈ Bk. Then Yc is still comonotone and
∑

i Y
c
i ≥ X
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by construction. Moreover, Yc and X are comonotone: consider ω1 ∈ Bk1 and suppose

X(ω1) > X(ω2). If ω2 ∈ Bk2 then necessarily k2 ≤ k1 and
∑

i Y
c
i (ω1) = yk1 ≥ yk2 =∑

i Y
c
i (ω2). Finally, Yc ≤ Yε, since by construction Yc is the smallest random variable with

support in y that dominates X. For later use we also assume without loss of generality that

yk = ess supω∈Bk
X(ω).

The final step improves the allocation to Ȳ, such that
∑

i Ȳi = X. Let X ′ =
∑

i Y
c
i . Since

X and X ′ are comonotone, there exists a random variable Z such that X = h(Z), X ′ = h′(Z)

for some non-decreasing functions h, h′. Since a collection of comonotone random variables

is also comonotone with their sum, there exist continuous increasing functions f̃i such that∑
i f̃i(x) = x and Y c

i = f̃i(X
′). Set fi = f̃i ◦ h′, so that Y c

i = fi(Z). Recall that each Y c
i is

discrete, so that fi is piecewise constant and non-decreasing. The last step of the proof shows

that one can construct non-decreasing f̄i’s such that f̄i ≤ fi and
∑

i f̄i = h ≤ h′ =
∑

i fi,

which is geometrically intuitive.

Partition R into disjoint intervals Ck , (zk, zk+1) such that
∑

i fi is constant on each

interval. Then without loss of generality there is an increasing sequence (ak) such that on

each interval, ak ≤ h(z) ≤ ak+1, zk ≤ z ≤ zk+1. Take rk = sup{z ∈ Ck : h(z) ≤ (ak+ak+1)/2}
to be the lower “half” of each Ck. By construction,

∑
i b

i
k = supz∈Ck

h(z) = ak+1. Set

di
k = (bi

k+1 − bi
k) ≥ 0, so that

∑
i d

k
i = ak+1 − ak > 0. Define f̄i(z) = bi

k − ηi
k if ak ≤ z ≤ rk

and f̄i(z) = bi
k if rk < z ≤ ak+1. Observe that the new family f̄i is still non-decreasing,∑

i fi ≥
∑

i f̄i(z) ≥ h and ‖
∑

i f̄i − h‖∞ ≤ 1
2
‖

∑
i fi − h‖∞. This construction is illustrated

in Figure 1. By repeating the argument, we obtain a monotonically decreasing sequence

of comonotone allocations that converges pointwise. With a slight abuse of notation, let

Ȳ = f̄(Z) be the limiting allocation. Then the sum of f̄i is h (i.e.
∑

i Ȳi = X), and Ȳ is still

comonotone since each f̄i is non-decreasing.

To conclude the proof observe that Ȳ is a comonotone allocation of X, and

ρi(Ȳi) ≤ ρi(Y
ε
i ) ≤ ρi(Ỹi) ≤ ρi(Yi) + 4ε, (9)

for all i = 1, 2, . . . , n, matching (7). �
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