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Abstract

The class of all law invariant, convex risk measures for portfolio vectors
is characterized. The building blocks of this class are shown to be formed
by the maximal correlation risk measures. We introduce some classes
of multivariate distortion risk measures and relate them to multivariate
quantile functionals and to an extension of the average value at risk measure.

1 Introduction

This paper is concerned with an extension of representation results for one dimen-
sional law invariant, convex risk measures to the multivariate case. As reference
for one dimensional risk measures we refer to the unifying presentation in Föllmer
and Schied (2004) but several of the results go back to earlier and independent
sources. We mention in particular Delbaen (2000, 2002), Kusuoka (2001), Wang,
Young, and Panjer (1997), Wirch and Hardy (2000), Dhaene, Vanduffel, Tang,
Goovaerts, Kaas, and Vynke (2004), Carlier and Dana (2003), Dana (2005) which
include many further references.

Law invariant, convex risk measures on L∞(P ) have been characterized by a
Kusuoka type representation of the form

%(X) = sup
µ∈M1([0,1])

(∫

(0,1]

AV@Rλ(X)µ(dλ)− β(µ)

)
, (1.1)

where %λ(X) := AV@Rλ(X) is the average value at risk,

β(µ) = sup
X∈A%

∫

[0,1]

AV@Rλ(X)µ(dλ)

is the penalty function and A% = {X ∈ L∞(P ); %(X) ≤ 0} is the acceptance set of
% (see Föllmer and Schied (2004, Theorem 4.57), Jouini, Schachermayer, and Touzi
(2005), and Kusuoka (2001)). Thus in dimension d = 1 the average value at risk
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measures (%λ)0<λ≤1 are the basic building blocks of the class of all law invariant,
convex risk measures.

The class of law invariant, convex risk measures can also be represented by the
class of weighted quantiles q−X(t) = F−1

−X(t) of −X,

%(X) = sup
Q∈M(P )

(∫ 1

0

q−X(t)qϕ
Q
(t)dt− α(Q)

)
(1.2)

where M(P ) is the class of probability measures, continuons w.r.t. P ; ϕQ = dQ
dP

and qϕQ
, q−X are the quantiles of ϕQ, −X (see Föllmer and Schied (2004, Theorem

4.54)). A further equivalent representation is known in terms of concave distortion
risk measures or equivalently in terms of the Choquet expectation.

%(X) = sup
g

(
Ecg(−X)− γ(g)

)
, (1.3)

where the sup ist over the class of all concave distortion functions g and

EcgX =

∫ 0

−∞
(g ◦ P (X > x)− 1)dx+

∫ ∞

0

g ◦ P (X > x)dx (1.4)

is the Choquet integral, defined in terms of the distortion functional g ◦ F (x),
F (x) = P (X > x) the survival functional (see Föllmer and Schied (2004, Corollary
4.72)). As consequence this implies that the law invariant, convex, comonotone
additive risk measures are exactly those of the form

%(X) = Ecg(−X) =

∫ 1

0

AV@Rλ(X)dµ(λ) (1.5)

Risk measures are also naturally defined for portfolio vectors X =
(X1, . . . , Xd) ∈ L∞d (P ). The aim of risk measures on the class of portfolio vec-
tors is to measure not only the risk of the marginals separately but to quantify the
risk of X caused by the variation of the components and at the same time by their
possible dependence. The class of all convex risk measures on L∞d (P ) has been
characterized in Burgert and Rüschendorf (2005). In that paper also two concrete
and easy to interprete classes of multivariate risk measures have been introduced
and consistency w.r.t. various types of convex orderings has been studied.

In this paper we consider the question whether and in what form the basic
classes of one dimensional risk measures can be extended to the multivariate case.
What are analogs of the average value at risk measure, building the basic blocks
of the law invariant risk measures. Are there senseful analogs of the distortion risk
measures or of the weighted quantile representation? It will turn out however that
only partially and less explicit forms of analogous classes of risk measures can be
given in the multivariate case as there is no complete order, no obvious analog of
quantiles and of distortions.

In section 2 we establish that the maximal correlation risk measures play in
the multvariate case the role of basic building blocks of convex, law invariant risk
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measures. We then in section 3 introduce some natural extensions of multivariate
quantile type and distortion type risk measures.

We denote by (Ω,A, P ) the underlying probability space which we generally
assume to be non atomic (even if not always needed). M(P ) denotes the class
of P -continuous probability measures on (Ω,A), ba(P ) denotes the corresponding
class of finitely additive normed, P-continuous measures. L∞d (P ) denotes the set of

essentially bounded portfolio vectors X = (X1, . . . , Xd), i.e. L∞d (P ) =
∏d

i=1 L
∞(P )

and Md(P ) resp. bad(P ) denote the class of σ-additive resp. addive, P-continuous,
normed measures on L∞d (P ). Md(P ) can equivalently be described by the corre-
sponding class of P -densities

D := {Y = (Y1, . . . , Yd); Yi ≥ 0 [P ], EPYi = 1, 1 ≤ i ≤ d} . (1.6)

2 Law invariant, convex risk measures

A risk functional % : L∞d (P ) → R on the class of portfolio vectors X =
(X1, . . . , Xd) ∈ L∞d (P ) is called convex risk measure if

C1) X ≥ Y ⇒ %(X) ≤ %(Y ) (2.1)

C2) %(X +mei) = −m+ %(X), ∀m ∈ R and 1 ≤ i ≤ d

C3) %(αX + (1− α)Y ) ≤ α%(X) + (1− α)%(Y ) for all α ∈ (0, 1).

Here x ≥ y denotes the usual componentwise ordering on Rd and ei denotes the
i-th unit vector. We denote throughout this paper by

Ψ(X) = %(−X) (2.2)

the corresponding insurance risk functional, which is monotone in the usual order-
ing. For financial risk measures −X denotes the liability and therefore plays the
essential role. This class of convex risk measures was characterized in Burgert and
Rüschendorf (2005, Theorem 3.4), by a representation of the form

%(X) = sup
Q∈bad(P )

(EQ(−X)− α(Q)), (2.3)

where the penalty function α can be chosen as Legendre-Fenchel inverse of %,

α(Q) = sup
X∈L∞d (P )

(EQ(−X)− %(X)) = sup
X∈A%

EQ(−X).

For Fatou-continuous % the class bad(P ) can be replaced by the class Md(P ) of
probability measures on L∞(P ) or, equivalently, by the class D of corresponding
P−densities;

%(X) = sup
Y ∈D

(E(−X) · Y − α(Y )) (2.4)
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where

α(Y ) = sup
X∈L∞d (P )

(E(−X) · Y − %(X))

= sup
X∈A%

E(−X) · Y.

A similar representation result holds true also on Lp
d(P ) instead of L∞d (P ). Let for

X ∈ L∞d (P )

A(X) := {X̃ ∈ L∞d (P ) : X̃ ∼ X} (2.5)

be the class of all X̃ with the same distribution as X. A risk measure % is law
invariant if

%(X) = %(X̃), ∀X̃ ∈ A(X). (2.6)

Proposition 2.1 If % is a convex risk measure on L∞d (P ), then

%̂(X) := sup{%(X̃); X̃ ∈ A(X)} (2.7)

is a convex, law invariant risk measure and

% is law invariant ⇔ % = %̂ (2.8)

Proof: Obviously %̂ is law invariant. For X, Y ∈ L∞d (P ), α ∈ (0, 1) and with
Z := αX + (1− α)Y holds

%̂(αX + (1− α)Y ) = sup
eZ∼Z

%(Z̃).

Since Z̃ ∼ h(X,Y ), with h(x, y) := αx + (1 − α)y, by a result on solutions of

stochastic equations (see Rüschendorf (1985)) there exists rv′s (X̃, Ỹ ) ∼ (X, Y )

such that Z̃ = h(X̃, Ỹ ) [P ].

Therefore,

%̂(αX + (1− α)Y ) (2.9)

= sup{%(αX̃ + (1− α)Ỹ ); (X̃, Ỹ ) ∼ (X,Y ) and Z̃ := αX̃ + (1− α)Ỹ ∼ Z}
≤ sup{α%(X̃) + (1− α)%(Ỹ ); X̃ ∼ X, Ỹ ∼ Y and αX̃ + (1− α)Ỹ ∼ Z}
≤ α%̂(X) + (1− α)%̂(Y ),

i.e. %̂ is a convex, law invariant risk measure. (2.8) is obvious. 2

Thus for any risk measure % resp. Ψ we obtain by the process in (2.7) a law in-
variant risk measure and the mapping %→ %̂ from the class of convex risk measures
to the class of convex, law invariant risk measures is surjective.
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Example 2.2 maximal correlation risk meassure
For Y ∈ D define the risk measure

ΨY : L∞d (P ) → R,ΨY (X) = EX · Y (2.10)

ΨY (X) is (up to the normalization) the correlation coefficient of X, Y . ΨY is a
convex even coherent risk measure. The corresponding law invariant risk measure

Ψ̂Y (X) = sup
eX∼X

EX̃ · Y (2.11)

is called the maximal correlation risk measure in direction Y . Correspondingly,
%̂Y (X) := Ψ̂Y (−X) is the financial version of the maximal correlation risk measure.
Some properties of the maximal correlation risk measure are:

a) Ψ̂Y (X) = sup
eX∼X
eY∼Y

EX̃ · Ỹ = Ψ̂eY (X) for all Ỹ ∼ Y. (2.12)

b) Ψ̂Y is consistent w.r.t. increasing convex ordering ≤icx, i.e.

X1 ≤icx X2 implies Ψ̂Y (X1) ≤ Ψ̂Y (X2) (2.13)

This follows from Theorem 3.10 in Burgert and Rüschendorf (2005).

c) In dimension d = 1 an explicit representation of Ψ̂Y is known;

Ψ̂(X,Y ) = Ψ̂Y (X) =

∫ 1

0

F−1
X (U)F−1

Y (U)dP, (2.14)

where U ∼ U(0, 1) is uniformly distributed on (0, 1). In d ≥ 1 the basic result
for solutions X∗ ∼ X, Y ∗ ∼ Y of (2.12) which are called optimal couplings is
the following (see Rüschendorf and Rachev (1990)):

Ψ̂(X, Y ) = EX∗ · Y ∗ if and only if Y ∗ ∈ ∂f(X∗)[P ] (2.15)

for some convex, lower semicontinuous function f , where ∂f is the subgradient
of f . The typical case is, where Y ∗ = T (X∗) respectively X∗ = T ∗(Y ∗) for some
cyclycally monotone transformation T resp. T ∗.

d) The maximal correlation risk measure has the following interpretation. It de-

scribes the maximal possible risk over all possible distributional versions X̃ ∼ X
averaged over all directions y according to the scenario measure Q = P Y . This
interpretation results from the presentation

Ψ̂Y (X) = sup
eX∼X

∫
E(X̃|y) · y dP Y (y). (2.16)

Here E(X̃|y) · y is the conditional risk of X̃ in direction y ∈ Rd
+. Thus Ψ̂Y (X)

describes the risk of X in random direction Y .
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By a recent result of Jouini, Schachermayer, and Touzi (2005) law invariant, convex
risk measures in d = 1 are Fatou continuous. We make use in the following of an
extension of this result for d ≥ 1. We denote for a convex risk measure with penalty
function α by

D0 := {Y ∈ D; α(Y ) <∞} (2.17)

the set of all densities of scenario measures Q ∈ Md(P ). Then we obtain that the
maximal correlation risk measures in Example 2.2 are the basic building blocks of
convex law invariant risk measures.

Theorem 2.3 Let Ψ be a convex risk measure on L∞d (P ) with penalty function α,
then it holds:

Ψ is law invariant

⇔ The penalty function α : D0 → R of Ψ with D0 the scenario set is law
invariant i.e. α(Y ) = α(Ỹ ) if Ỹ ∼ Y .

⇔ Ψ has a representation of the form

Ψ(X) = sup
Y ∈D0

(
Ψ̂Y (X)− α(Y )

)
(2.18)

with law invariant penalty function α which can be chosen as

α(Y ) = sup
X∈AΨ

Ψ̂Y (X) = sup
eY∼Y

X∈AΨ

Ψ̂eY (X).

Proof: If Ψ is law invariant, then

Ψ(X) = Ψ̂(X) = sup
eX∼X

sup
Y ∈D

(
EX̃ · Y − α(Y )

)
= sup

Y ∈D

(
Ψ̂Y (X)− α(Y )

)

i.e. representation (2.18) holds. Furthermore,

α(Y ) = sup
X∈L∞d

(EX · Y −Ψ(X))

= sup
X∈L∞d

sup
eX∼X

(
EX̃ · Y −Ψ(X̃)

)

= sup
X∈L∞d

(
Ψ̂Y (X)−Ψ(X)

)

= α(Ỹ ) for all Ỹ ∼ Y

since by (2.12) Ψ̂Y (X) = Ψ̂eY (X). Thus α is law invariant.
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If conversely α is law invariant, then for X̃ ∼ X holds

Ψ(X) = sup
Y ∈D

(EX · Y − α(Y ))

= sup
Y ∈D

(
sup
eY∼Y

EX · Ỹ − α(Y )

)

= sup
Y ∈D

(
Ψ̂Y (X)− α(Y )

)

= sup
Y ∈D

(
Ψ̂Y (X̃)− α(Y )

)
by Proposition 2.1

= Ψ(X̃).

Thus Ψ is law invariant and the presentation of Ψ in (2.18) holds. 2

Corollary 2.4 The class of law invariant, coherent risk measures on L∞d is given
by {ΨA;A ⊂ D} where

ΨA(X) = sup
Y ∈A

Ψ̂Y (X) (2.19)

is a supremum of maximal correlation risk measures.

By Theorem 3.10 in Burgert and Rüschendorf (2005) law invariant, convex risk
measure Ψ are consistent w.r.t. the increasing convex order ≤icx and w.r.t. the
convex order ≤cx i.e.

X ≤icx Y implies Ψ(X) ≤ Ψ(Y ). (2.20)

Therefore, as consequence we obtain

Corollary 2.5 Let Ψ be a convex risk measure on L∞d (P ). Then the following are
equivalent:

Ψ is law invariant

⇔ Ψ is ≤icx – consistent

⇔ Ψ is ≤cx – consistent

⇔ Ψ has a representation as in 2.18

Remark 2.6 For d = 1 the maximal correlation risk measures Ψ̂Y have an explicit
representation as mixtures of quantiles (see 2.14), which leads to a Kusuoka type
representation as in (1.1) and also to a distortion type repesemtation as in (1.4)
(see Dana (2005), Föllmer and Schied (2004), Carlier and Dana (2003)).

For d ≥ 1 only for some special classes of distributions optimal coupling results
are known in explicit form. In contrast the class of cyclically monotone functions
is quite well studied. It includes e.g. radial transformations r(X) X

||X|| , r(X) ↑ real
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and transformations T (x) with symmetric, positive semidefinite functional matrix(
∂Ti

∂xi

)
= DT . If e.g. Y ∼ N(0,Σ0) is multivariate normal and TX = AX, A

positive semidefinite, then for X ∼ N(0,Σ1), Σ1 = AT Σ0A, the pair X∗ := TY , Y
is an optimal coupling and the maximal correlation is given by

Ψ̂Y (X) = EY ·AY = tr Σ
1/2
0 AΣ

1/2
0 .

3 Multivariate distortion type risk measures and

quantile functionals

In dimension 1 the representation of law invariant, convex risk measures (see (2.18))
leads to the representation of % by weighted quantiles in (1.2) and also to the
representation as distortion risk measure in (1.4). Both types of representation are
senseful and have a natural interpretation. Since the general representation result
in section 2 in terms of maximal correlation risk measures is only qualitatively good
to interprete (see Example 2.2 b) but in general difficult to determine explicitly we
discuss in this section some extensions of quantile based and distortion based risk
measures to the multivariate case.

Here the main aim is not to obtain complete mathematical representation results
as in d = 1 but to define risk measures which have a clear motivation and which can
be calculated (in principle at least). This supplements the proposal of concrete risk
measures in Burgert and Rüschendorf (2005) where the main idea is to measure
the risk of some real aspects of X.

We concentrate in this section to nonnegative risk vectors X ≥ 0. In analogy
to the one dimensional case d = 1 we define for d ≥ 1 distortion type risk
measures of the form

Ψµ(X) =

∫

Rd
+

g(1− F (x))dµ(x), (3.1)

where F = FX is the multivariate distribution function of X, g is a distortion
function and µ is some weighting measure. More generally one could consider
ΨA(X) := supµ∈A Ψµ(X), the sup over some class of weighting measures resp. the
convex variant of these with penalty functions.

We denote by F̄−1
µ the multivariate quantile functional

F̄−1
µ (t) := µ({x ∈ Rd

+; F̄ (x) < t}, (3.2)

F̄ (x) := 1− F (x). Then

Ψµ(X) =

∫ ∞

0

g(t)dF̄−1
µ (t) (3.3)

In dimension d = 1 and for µ = λ\1 holds

F̄−1
µ (t) = F̄−1(t), 0 ≤ t ≤ 1 (3.4)
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is the generalized inverse of F̄ , and is indentical to the quantile functional F̄−1(t) =
F−1(1 − t). Under a corresponding integrabilty condition we obtain from partial
integration in the case d = 1, µ = λ\1 a representation as weighted quantile risk
measure

Ψ(X) = −
∫ 1

0

F̄−1(t)dg(t) (3.5)

resp. for d ≥ 1 and for any probalility weighting measure µ the corresponding
representation

Ψµ(X) = −
∫ 1

0

F̄−1
µ (t)dg(t). (3.6)

Thus the distortion risk measure Ψµ defined in (3.1) also for d ≥ 1 has a represen-
tation as a weighted, linear functional of the generalized quantile functional F̄−1

µ if
g is a concave distortion function. If g is absolutely continuous and concave, then
we can write (3.6) also in the form

Ψµ(X) =

∫

(0,1)

AV@Rµ
s (X)dν(s) (3.7)

where

AV@Rµ
s (X) :=

1

s

∫ s

0

F̄−1
µ (1− u)du. (3.8)

Hier ν is a probalility measure defined by

dν(s) = s dν̃(s), (3.9)

where ν̃(s, 1] := g′(s). Note that

∫ 1

0

t dν̃(t) =

∫ 1

0

ν̃(s, 1] ds =

∫ 1

0

g′(s) ds = g(1)− g(0) = 1.

(Compare also a similar argument in Föllmer and Schied (2004, p. 186) in d = 1.)
Thus AV@Rµ

s (X) plays the role of an average value at risk measure in d ≥ 1.

Example 3.1 In this example we consider the special case that µ is the Lebesgue
measure on the positive diagonal, µ = λ\π, where π : [0,∞) → Rd

+, t → t · 1 is a
parametrization of the diagnoal.

Then

ψµ(X) =

∫ ∞

0

g(1− F (t · 1))dt (3.10)

and

F̄µ(t · 1) = 1− F (t · 1) = P (max
i≤d

Xi > t) = F̄max Xi
(t). (3.11)

Further

F̄−1
µ (u) = λ\1({0 ≤ t : F̄µ(t · 1) ≤ u} = F̄−1

max Xi
(u)
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and thus we obtain

Ψµ(X) = −
∫ 1

0

F̄−1
max Xi

(u) dg(u) (3.12)

Thus in this special case Ψµ(X) is dentical to the one dimensional distortion risk
measure applied to max

i≤d
Xi.

The class of distortion type risk measures defined in (3.1) is weighting the risk
sets

Ax := {X ≤ x}c, x ∈ Rd
+ (3.13)

by the distortion

cg := g ◦ P (3.14)

of the probability measure P . In the multivariate case the distribution function is
however no longer simple to calculate and thus the calculation of Ψµ in (3.1) poses
a considerable problem. It is also not the case that the risk sets of the form Ax

represent the only relevant class of risk sets.
We next consider an extension of the class of distortion risk measures defined

in (3.1) by allowing more general classes of relevant risk sets. We restrict to one
parametric classes of risk sets (At)t≥0 ⊂ Rd

+ in order to induce the order structive
from R+ and to get not to complicated expressions. We assume the following
conditions on the class of risk sets (At)t≥0 ⊂ Rd

+

Risk sets: (At)t≥0 ⊂ Rd
+ is called family of risk sets, if

R1) At are monotone sets, t ≥ 0, i.e. x ∈ At and y ≥ x⇒ y ∈ At

R2) (At) is decreasing in t

R3) A0 = Rd
+, limt→∞At = Ø

R4) (At) is right continous, i.e. At+ε ↑ At as ε→ 0.

As consequence of R1) – R4) we may introduce a generating risk function U :
Rd

+ → R+ by

U(x) := inf{s : x ∈ As}. (3.15)

We obtain a representation of the risk sets At as level sets of the risk function U :

At = {U ≥ t}. (3.16)

Our generalized class of multivariate distortion risk measures is induced by a class
of risk sets (At) satisfying R1) – R4) and by a concave distortion function g. It is
given by

Ψg(X) :=

∫ ∞

0

g ◦ P (X ∈ At)dλ\(t). (3.17)
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Since
F̄ (t) := P (X ∈ At) = P (U(X) ≥ t) = F̄U(X)(t) (3.18)

we obtain

Ψg(X) =

∫ ∞

0

g(F̄U(X)(t))dt = −
∫ 1

0

F̄−1
U(X)(t)dg(t) = Ψg(U(X)). (3.19)

Thus Ψg(X) is the one dimensional distortion risk measures applied to the (real)
risk function U(X) of X. As consequence Ψg can be subsumed in the classes
ΨA,ΨM of risk measures introduced in Burgert and Rüschendorf (2005). If U is a
convex function, then Ψg is a convex risk measure. Let e.g. U(x) =

∑n
i=1 x

2
i , then

At = {x :
∑d

i=1 x
2
i ≥ t} and Ψg is based on weighting the radial part of the risk

X. Further interesting choices of U are
∑
aix

2
i , or max aiXi, ai ≥ 0, which lead to

convex risk measures Ψg as well.
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Delbaen, F. (2000). Coherent risk measures. Cattedra Galileiana, Pisa: Scuola
Normale Superiore.

Delbaen, F. (2002). Coherent risk measures on general probability spaces. In
K. Sandmann et al. (Eds.), Advances in Finance and Stochastics. Essays in
honour of Dieter Sondermann, pp. 1–37. Springer.

Dhaene, J., S. Vanduffel, Q. Tang, M. Goovaerts, R. Kaas, and D. Vynke (2004).
Solvency capital, risk measures and monotonicity: A review. Research report
or 0416, Department of Applied Economics, K.U. Leuven.
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Rüschendorf, L. and S. T. Rachev (1990). A characterization of random variables
with minimum L2-distance. Journal of Multivariate Analysis 1, 48–54.

Wang, S., V. Young, and H. Panjer (1997). Axiomatic characterization of insurance
prices. Insurance: Mathematics and Economics 21, 173–183.

Wirch, J. L. and M. R. Hardy (2000). Distortion risk measures: Coherence and
stochastic dominance. Preprint.

Ludger Rüschendorf
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