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Abstract

Limit theorems are established for some functionals of the distances between two

nodes in weighted random b-ary recursive trees. We consider the depth of the nth

node and of a random node, the distance between two random nodes, the internal

path length and the Wiener index. As application these limit results imply by an

imbedding argument corresponding limit theorems for further classes of random trees

as for plane-oriented recursive trees and for random linear recursive trees.

Key words: random trees, Wiener index, path length, contraction method, PORTs

AMS classification: 05C05, 60C05, 60F05

1 Introduction

In this paper we establish limit theorems for several basic functionals of distances of

nodes in weighted random b-ary recursive trees. We consider the depth of the nth node,

the depth of a randomly chosen node, the distance between two randomly chosen nodes,

the internal path length, i.e. the sum of all depths of nodes and the Wiener index, i.e. the

sum of all distances of pairs of nodes in the tree. All these functionals are well motivated

and of importance for the structure of the tree and for the closely connected analysis

of related algorithms (see for example Devroye and Neininger (2004), Mahmoud (1992),

Mahmoud and Neininger (2003), Su et al. (2006). They have been studied in a wide

variety of tree models.

In Szymański (1987) a procedure is introduced to obtain also nonuniform distributions on

the set of recursive trees, i.e. trees which evolve by a step by step insertion of the nodes.

This procedure operates by defining a weight function for each node in terms of its degree

and attaching a new node randomly to a former node with probability proportional to

its weight. In Quintas and Szymański (1992) a weight function is used which yields trees

with bounded degrees, so-called recursive f -trees. A slight modification of this tree model

coincides with the b-ary increasing tree introduced in Bergeron et al. (1992).

The weighted random b-ary recursive tree is a combination of the b-ary increasing

tree and the continuous time model of b-ary trees introduced in Broutin and Devroye

(2006). In the tree model of Broutin and Devroye (2006), a copy of a nonnegative vector

((Z1, E1), . . . , (Zb, Eb)) is attached independently to any node in an infinite b-ary tree.
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The components Zi are random weights of the edges to the b children of a node, the

entries Ei describe lifetimes of the children. At time t the tree Tt is given by the set of

all those nodes for which the sum of the lifetimes along the path to the root is smaller

than t. By a proper choice of the lifetimes this tree model without edge weights is close

to being a random split tree and thus includes important families of trees like random

m-ary search trees, quad-trees, and many others. Despite the bounded branching factor

of these trees it is possible to transfer properties of these weighted random b-ary trees to

trees with unbounded branching factor as e.g. to random recursive trees, to plane oriented

recursive trees and to the random linear recursive trees, as introduced in Pittel (1994).

If all lifetimes are independent exponentially distributed and we consider the tree at the

random moment where it has n nodes, due to the lack of memory property of the expo-

nential distribution the shape of the tree (i.e. the tree without the edge weights) coincides

with the b-ary increasing tree, in which every external node has the same probability to

become the next new internal one.

In Section 2 of this paper we introduce the weighted random b-ary trees together with

some basic properties. In Section 3 we derive limit theorems for the depths of the nth

node as well as for a randomly chosen node in the tree and for the distance between two

randomly chosen nodes. In Section 4 we establish a limit theorem for the internal path

length and the Wiener index based on a suitable two-dimensional recursion for their joint

distribution by applying the contraction method. The main problem for the application

of the contraction method to this problem is to derive a second order expansion for the

mean of the Wiener index. In the final Section 5 we obtain as consequence of the limit

theorems for weighted random b-ary trees corresponding limit results for plane oriented

recursive trees and for linear recursive trees.

There are several related results in the literature for the depths and distances of random

recursive trees (see Smythe and Mahmoud (1995) for a survey of early results for recursive

trees). Limit theorems for the depth of the nth node are given in Devroye (1999) for

random split trees and in Mahmoud (1992) for plane-oriented recursive trees. For the

depths of a random node as well as for the distance between two random nodes limit

theorems are shown in Panholzer and Prodinger (2004a,b); Morris et al. (2004); Panholzer

(2004a,b); Kuba and Panholzer (2010) for several random trees.

The internal path length of a tree has been studied for a large class of trees including

in particular random recursive trees, random m-ary search trees, and split trees (see

Dobrow and Fill (1999), Rösler (1991), Neininger and Rüschendorf (1999, 2004), and

others). The Wiener index has been investigated in Neininger (2002) for binary search

trees and random recursive trees and in Janson (2003) for simply generated trees.

For several details and extensions of results in this paper we refer to the dissertation of

Munsonius (2010) on which this paper is based1.

We fix some notations for the rest of this paper. We use the notation f ∼ g, for x→∞,

for two functions f and g if f(x)/g(x) → 1, for x → ∞. For a real number x the

largest integer smaller than or equal to x is denoted by bxc. For random variables or

1Munsonius is abbreviated within this paper with [Mu].
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distributions we write
d
= for equality in distribution and L(X) for the distribution of X.

By N(0, 1) we denote the standard normal distribution with expectation 0 and variance

1. The Wasserstein-metric l2 is defined on the set of distributions on Rd by

l2(µ, ν) := inf{‖X − Y ‖2 : L(X) = µ,L(Y ) = ν},

where the L2-norm ‖ · ‖2 is given by ‖X‖2 = (E[‖X‖2])1/2. We denote convergence

in distribution, probability and with respect to the L2-metric by
d−→,

P−→ and
L2−→,

respectively. Let M2
0,2 be the set of centered probability measures on R2 with finite

second moments.

2 Random weighted b-ary recursive trees

The random b-ary recursive tree is a rooted, ordered, labelled tree where the outdegree

is bounded by b and the labels along each path beginning at the root increase. We define

this tree model by the following recursive procedure. We consider the infinite complete

b-ary rooted, ordered tree and start with the root as the first internal node and its b

children as external nodes. Given the random b-ary recursive tree with n internal nodes,

the n + 1st internal node is added in the following way. We choose a random node

uniformly distributed on the set of all current external nodes, change it to an internal

one and add the b children of this new node to the set of external nodes. Finally, the

nodes are labelled in the order of their appearance.

Remark 2.1. Considering this insertion rule, the parent u of the nth internal node is

chosen with probability proportional to b−deg(u) where deg(u) is the number of internal

children of node u in the tree with n−1 nodes and each of the deg(u)+1 possible positions

for the new node are equally likely. In Panholzer and Prodinger (2007) and Kuba and

Panholzer (2010) it is shown, that this tree is the same as the b-ary increasing tree, which

belongs to the simple families of increasing trees introduced in Bergeron et al. (1992). In

Drmota (2009) this tree is also called b-ary recursive tree.

It is well known that for b = 2 the b-ary recursive tree is isomorphic to the random binary

search tree.

The random b-ary recursive tree can also be defined as uniformly distributed on the set

of ordered, labelled, rooted b-ary trees where the labels increase along each path beginning

at the root. Note that in this class we have to distinguish trees where the nodes are in

different positions, i.e. a tree where a node is at the leftmost position is not identical with

the tree where this node is at the second position from the left also if there are no other

siblings of this node. The equivalence of the distributions is already mentioned in Stanley

(1997) for the binary case (i.e. b = 2). For the general case this can be seen by induction

on the size of the tree (see [Mu] (2010))

Now, we introduce edge weights. Let Z := (Z1, . . . , Zb) ∈ Rb≥0 be a random vector with

non-negative entries and attach to every node u of the complete infinite b-ary tree an

independent copy Z(u) of Z. We consider the entries of Z(u) as weights of the edges from
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u to its b children. If all Z(u) are independent of Tn, we refer to Tn supplied with the

family {Z(u)} as a random b-ary recursive tree with edge weights Z.

While the entries of the vector Z may depend on each other, we assume throughout this

paper that they are identically distributed, i.e. for all i, j ∈ {1, . . . , b} we have

Zi
d
= Zj . (2.1)

This assumption is not restrictive for the intended limit theorems as can be seen by a

permutation argument (see [Mu] (2010, p. 14–15)). Furthermore, we assume µ := E[Z1]

and 0 ≤ σ2 := Var(Z1) <∞.

Given a random b-ary recursive tree with weighted edges we denote by Tn,1, . . . , Tn,b the

subtrees rooted at the children of the root from left to right. Let In,j := |Tn,j | be the

number of internal nodes in the subtree Tn,j and In := (In,1, . . . , In,b) be the vector of

the subtree sizes. For the edge weight of the edge between the root of Tn and the one of

Tn,i we write Zi instead of Z
(0)
i . From the definition we see that conditioned upon their

sizes the subtrees are again independent, b-ary recursive trees. This property of Tn is

fundamental when using the contraction method.

The subtree sizes In = (In,1, . . . , In,b) of a random b-ary recursive tree can be described

by a Pólya urn with b colors, starting with one ball of each color, where each drawn ball

is returned to the urn with b− 1 additional balls of the same color. Then, the number of

drawings of one color corresponds to the number of internal nodes in the corresponding

subtree. We summarize some well known results needed later (see e.g. Johnson and Kotz

(1977)). The explicit formula for the distribution of the subtree size is given by

P (In+1,1 = k) =
1

b− 1

Γ
(
k + 1

b−1

)
Γ(k + 1)

Γ(n+ 1)

Γ
(
n+ 1 + 1

b−1

) . (2.2)

The first and second moments are

E[In,1] =
1

b
n, E[I2

n,1] =
1

2b− 1
n2 +

b− 1

b(2b− 1)
n and E [In,1In,2] =

n(n− 1)

b(2b− 1)
. (2.3)

For the normalized subtree sizes we have In/n→ (D1, . . . , Db) =: D almost surely, where

D is a Dirichlet β( 1
b−1

,..., 1
b−1

) distributed random vector, with parameters ( 1
b−1 , . . . ,

1
b−1)

(see e.g. Athreya, 1969)).

Furthermore, we have the asymptotic expansions

E [In,1 log In,1] =
1

b
n log n− b− 1

b2
n+ o(n) (2.4)

and

E
[
I2
n,1 log In,1

]
=

1

2b− 1
n2 log n− b− 1

(2b− 1)2
n2 + o(n2) (2.5)

as n→∞. For details and the proof of (2.4) and (2.5) see [Mu] (2010).
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3 Limit theorems for depths and distances

In this section, we consider the depth of one (random) node and the distance between

two random nodes in a b-ary recursive tree with edge weights. The (weighted) depth of

a node is given by the sum of the edge weights along the unique path from the root to

that node. The (weighted) distance between two nodes is in the same way defined as the

sum of the edge weights along the unique path between these nodes.

With the aid of a central limit theorem in Javanian and Vahidi-Asl (2006) (see also

Kuba and Panholzer, 2010) for the unweighted depth of the nth node we conclude in the

following theorem the central limit theorem for the weighted depth of the nth node and

derive from this the central limit theorem of a randomly chosen node DU . The result of

Javanian and Vahidi-Asl (2006) corresponds to the case of all edge weights being 1, i.e.

µ = 1 and σ2 = 0.

Theorem 3.1 (Central limit theorem for Dn). Let Dn be the weighted depth of the

node with label n in a random b-ary recursive tree with edge weights Z and 0 ≤ σ2 =

Var(Z1) <∞. Then we have for n→∞

E[Dn] ∼ µ b

b− 1
log n and Var(Dn) ∼ (µ2 + σ2)

b

b− 1
log n. (3.1)

Furthermore, for n→∞ it holds

Dn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

d−→ N(0, 1). (3.2)

Proof. Let D̃n be the depth of the node with label n in a random b-ary recursive tree

with constant edge weights (1, . . . , 1). The weighted depth Dn is the sum of independent,

identically distributed random variables, as the path to the root never contains two nodes

at the same level. So, for independent copies Z̃k of Z1 we have

Dn
d
=

D̃n−1∑
k=0

Z̃k.

Since D̃n is independent of the summands, Wald’s equation yields E[Dn] = µE[D̃n] and

by direct calculation we obtain Var(Dn) = µ2 Var(D̃n) + σ2E[D̃n]. Thus the claims for

the expectation and variance in (3.1) follow from the results of Javanian and Vahidi-Asl

(2006) for D̃n.

Now, let xn = b
b−1 log n, f(x, y) =

√
x2/(x2 + y2) and Z∗i := (Z̃i − µ)/σ. Then we get

the representation

Dn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

d
=

∑D̃n−1
k=0 Z̃k − b

b−1µ log n√
(σ2 + µ2) b

b−1 log n
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= f(σ, µ)

√
bxnc
xn

1√
bxnc

bxnc−1∑
k=0

Z̃∗k + f(µ, σ)
D̃n − xn√

xn
(3.3)

+ f(σ, µ)
1
√
xn

D̃n−1∑
k=0

Z̃∗k −
bxnc−1∑
k=0

Z̃∗k

 .

In the proof of the central limit theorem of Doeblin–Anscombe in Chow and Teicher (1997,

Section 9.4), it is shown that for n → ∞ the term in the last line of (3.3) converges to

zero in probability. Since the first two terms in (3.3) are independent and both converge

in distribution to normal distributions with variances f(µ, σ)2 and f(σ, µ)2 respectively,

we obtain, for independent standard normal distributed random variables N and N ′,

Dn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

d−→

√
σ2

σ2 + µ2
N +

√
µ2

σ2 + µ2
N ′ d= N(0, 1).

Now we can transfer this result to the depth of a uniformly distributed node. For the

unweighted case these result is proved in Panholzer and Prodinger (2004b) by using

generating functions.

Corollary 3.2 (Central limit theorem for DU ). Let Un be uniformly distributed

on {1, . . . , n} and DUn be the weighted depth of the node with label Un in a random b-ary

recursive tree with edge weights Z and 0 ≤ σ2 <∞. Then we have for n→∞

DUn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

d−→ N(0, 1).

Proof. Let ε ∈ (0, 1/2) and Iε := [εn, n]. For k ∈ Iε we have | log(k/n)| ≤ − log ε and

1 = lim
n→∞

log ε+ log n

log n
≤ lim

n→∞
log k

log n
≤ 1.

Together with Theorem 3.1 this yields, for n→∞,

Dk − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

=

√
log k

log n︸ ︷︷ ︸
→1

Dk − b
b−1µ log k√

(σ2 + µ2) b
b−1 log k

+
b
b−1µ log(k/n)√

(σ2 + µ2) b
b−1 log n︸ ︷︷ ︸

→0

d−→ N(0, 1). (3.4)

Since P (Un ∈ Iε) ≥ 1− ε the convergence in (3.4) yields

lim inf
ε→0

lim
n→∞

P

 DUn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

≤ x, Un ∈ Iε

→ P (N ≤ x),
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for a standard normal distributed random variable N . The claim follows with

lim sup
ε→0

lim sup
n→∞

P

 DUn − b
b−1µ log n√

(σ2 + µ2) b
b−1 log n

≤ x, Un /∈ Iε

 ≤ lim sup
ε→0

P (Un /∈ Iε) = 0.

We now turn to the distance between two random nodes. In the unweighted case, the

central limit theorem is proved by using generating functions in Panholzer and Prodinger

(2004b). We give a short self-contained proof of this result which is based on a simple

stochastic argument which traces the problem back to the depth of random nodes.

The distance is given by the sum of the edge weights along the unique path between these

nodes. This path can be found by starting at each node and going up in the tree until

the two paths coincide. The node at which the two paths meet is called the last common

ancestor (LCA) of the nodes.

The key idea is to express the distance as the sum of the respective depths of the two

nodes minus two times the depth of the last common ancestor. We first show that the

latter one is bounded in probability. A similar idea is used in the recent thesis of Ryvkina

(2008) in the case of random split trees.

Lemma 3.3 (Depth of LCA). Let Ũn and Ṽn be two independent random variables

uniformly distributed on {1, . . . , n}. Denote by R(n) the (unweighted) depth of the last

common ancestor of the nodes Un and Vn with labels Ũn and Ṽn respectively in a random

b-ary recursive tree of size n. For any real sequence fn with fn →∞ we have, as n→∞,

R(n)

fn

P−→ 0.

Proof. Let E [In,1] = α1n and E
[
I2
n,1

]
= α2n

2 +α3n with αi ∈ R. First, we note that for

m ≥ 0

P (R(n) ≥ m) = (bα2)m + r(m,n), (3.5)

where r(m,n) ≤ m(max{α1, α2, α3}b)m 1
n .

This can be seen in the following way. If we have R(n) ≥ m+ 1, both nodes have to lie in

the same subtree and the depth of the last common ancestor related to this subtree has

to be greater than m. Conditioned upon the sizes of the subtrees, the depth of the last

common ancestor related to the subtree with size ki is distributed as R(ki). We obtain

P (R(n) ≥ m+ 1) =
∑
k∈Nb

0

b∑
i=1

P (R(n) ≥ m+ 1, Un, Vn ∈ Tn,i | In = k)P (In = k)

=
∑
k∈Nb

0

b∑
i=1

(
ki
n

)2

P (R(ki) ≥ m)P (In = k). (3.6)
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Equation (3.5) can now be proved by induction on m. In our case we have

max{α1, α2, α3} = 1
b . This yields for every ε > 0 and any sequence fn with fn → ∞

and fn = o(n)

P (R(n) ≥ εfn) ≤ (bα2)εfn +
εfn
n
→ 0

since 0 < α2 < 1/b. Then surely P (R(n) ≥ εfn) → 0 holds also for any sequence

fn →∞.

Lemma 3.4. Let Ũn, Ṽn be two independent random variables uniformly distributed on

{1, . . . , n} and ∆̃Un,Vn be the (unweighted) distance between the nodes Un and Vn with

labels Ũn and Ṽn respectively in a random b-ary recursive tree of size n. Then we have

for n→∞
∆̃Un,Vn − 2 b

b−1 log n√
2 b
b−1 log n

d−→ N(0, 1).

Proof. The unweighted distance between Un and Vn is given by

∆̃Un,Vn = D̃′Un
+ D̃′Vn ,

where D̃′Un
= D̃Un − R(n) is the unweighted distance between Un and the last common

ancestor of Un and Vn and D̃′Vn is defined similarly. Since D̃′Un
and D̃′Vn are independent by

the construction of the tree, the claim follows by application of Lemma 3.3 and Corollary

3.2.

After these preliminaries we now obtain the central limit theorem for the distance between

two uniformly distributed nodes in random weighted b-ary recursive trees.

Theorem 3.5 (Central limit theorem for the distance). Let Ũn, Ṽn be two inde-

pendent random variables uniformly distributed on {1, . . . , n} and ∆Un,Vn be the distance

between the nodes Un and Vn with labels Ũn and Ṽn respectively in a random b-ary recur-

sive tree of size n with edge weights Z where Var(Z1) = σ2 ∈ [0,∞). Then we have for

n→∞
∆Un,Vn − 2 b

b−1µ log n√
2(σ2 + µ2) b

b−1 log n

d−→ N(0, 1),

where µ = E[Z1].

Proof. We prove the claim in analogy to the proof of Theorem 3.1. We make use of the

fact that the weighted distance is given by the sum of the edge weights along the path

between Un and Vn. This path consists of ∆̃Un,Vn edges, as given in Lemma 3.4. Except for

the two edges which belong to the last common ancestor of Un and Vn the edge weights

in the sum building the weighted distance are independent. Hence we have the following

representation of ∆Un,Vn :

∆Un,Vn
d
=

∆̃Un,Vn−2∑
i=1

Z̃i + Ẑ1 + Ẑ2
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where Z̃1, . . . , Z̃n, (Ẑ1, Ẑ2) are independent and Z̃i
d
= Z1.

Using the same arguments as in the proof of Theorem 3.1 as well as Lemma 3.4, we

conclude the proof. The additional term Ẑ1 + Ẑ2 vanishes due to the scaling.

4 The internal path length and the Wiener index

The internal path length of a tree is the sum of the depths of all nodes. The Wiener index

of a tree is the sum of all distances between pairs of nodes. We denote by Pn the internal

path length and by Wn the Wiener index of a random b-ary recursive tree of size n with

weighted edges.

The vector consisting of the Wiener index and the internal path length satisfies a recursion

formula in dimension two. We will use this recursion to establish a limit theorem via the

contraction method. Since we apply the contraction theorem in L2 we have to center

this vector. Therefore, we have to derive an asymptotic expansion of the expectation of

the internal path length and of the Wiener index. The expectation of the internal path

length is given in Bergeron et al. (1992) for the unweighted tree. It can also be obtained

by summing up the exact expectations for the unweighted depths given in Javanian and

Vahidi-Asl (2006).

Unlike for the internal path length, it seems that there is no simple way available so far to

determine the expectation of Wn directly . In Roura (2001), the asymptotic expansion of

a certain class of recursively defined sequences is proved. We show that the expectation of

the Wiener index belongs to this class and we obtain accordingly the needed asymptotic

of the expectation.

Lemma 4.1. Let (Wn, Pn) be the vector containing the Wiener index Wn and the internal

path length Pn of a random b-ary recursive tree of size n with edge weights Z. Then we

have the recursion formula(
Wn

Pn

)
d
=

b∑
i=1

[
1 n− In,i
0 1

](
W

(i)
In,i

P
(i)
In,i

)
+ b(n) (4.1)

with

b(n) =

(∑b
i=1 ZiIn,i + 1

2

∑
i 6=j(Zi + Zj)In,iIn,j∑b

i=1 ZiIn,i

)
(4.2)

where (Z1, . . . , Zb), (Wn, Pn), (W
(1)
n , P

(1)
n ), . . . , (W

(b)
n , P

(b)
n ) are independent and

(W
(i)
n , P

(i)
n )

d
= (Wn, Pn) for i ∈ {1, . . . , b}.

Proof. Let Tn be a random b-ary recursive tree with weighted edges. By Pn,i we denote

the internal path length of Tn,i. For u ∈ Tn,i let D
(i)
u be the depth of node u in Tn,i.

Thus, D
(i)
u is the sum of the weights of the edges along the path from node u to node i.

Obviously D
(i)
u + Zi = Du. So we obtain

Pn =
b∑
i=1

(Pn,i + ZiIn,i). (4.3)
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The Wiener index is given by

Wn :=
∑

{u,v}⊂Tn
u6=v

∆u,v

where ∆u,v is the weighted distance between u and v. We distinguish between two cases—

either both nodes u, v lie in the same or in different subtrees of the root—and rewrite

the Wiener index

Wn =
b∑
i=1

∑
{u,v}∈Tn,i

∆u,v +
1

2

∑
i 6=j

∑
u∈Tn,i

v∈Tn,j

∆u,v +
∑
u6=0

∆0,u.

For u ∈ Tn,i and v ∈ Tn,j with i 6= j we have ∆u,v = D
(i)
u +D

(j)
v +Zi +Zj . Summing this

up we get ∑
u∈Tn,i

v∈Tn,j

∆u,v = In,jPn,i + In,iPn,j + (Zi + Zj)In,iIn,j .

With
∑

i 6=j In,j = n− 1− In,i and (4.3) we obtain

Wn =
b∑
i=1

(Wn,i + (n− In,i)Pn,i) +
b∑
i=1

ZiIn,i +
1

2

∑
i 6=j

(Zi + Zj)In,iIn,j .

The claim follows since the subtrees are (conditioned upon their sizes) independent ran-

dom b-ary recursive trees.

In order to apply the contraction theorem to the vector (Wn, Pn) we have to identify the

expectation. In Bergeron et al. (1992) the first and second order terms of the expectation

of the internal path length of b-ary recursive trees without edge weights are determined.

Since the edge weights and the shape of the tree are independent we obtain with Wald’s

equation the following lemma.

Lemma 4.2. Let Pn be the internal path length of a random b-ary recursive tree with

edge weights Z. Then there exists a constant cp ∈ R such that for n→∞

E[Pn] =
b

b− 1
µn log n+ cpn+ o(n). (4.4)

Remark 4.3. Lemma 4.2 can also be proved by a direct calculation using an exact for-

mula for the expectation of the unweighted depth given in Javanian and Vahidi-Asl (2006).

We then obtain the constant cp in (4.4) in terms of an infinite series. As remarked by

a reviewer, this series can be expressed in a closed form by using the psi function (also

called the digamma function), which is the logarithmic derivative of the gamma function,

i.e. ψ(u) = Γ′(u)/Γ(u), and we obtain

cp =
µ

b− 1

(
−1− b ψ

(
2b− 1

b− 1

))
.
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It remains to determine an expansion of the expectation of the Wiener index. From

equation (4.1) we obtain

E[Wn] =
b∑
i=1

E
[
W

(i)
In,i

]
+ E[t(n)]

with

t(n) :=
b∑
i=1

(n− In,i)P (i)
In,i

+ b1(n) (4.5)

where b1(n) denotes the first entry of the vector b(n) in (4.2). Since all subtrees and their

sizes are identically distributed the above equation can be simplified:

E [Wn] = b

n−1∑
k=0

E[Wk]P (In,1 = k) + E[t(n)]. (4.6)

There is no obvious way to solve this recurrence. But to apply the contraction method a

second order asymptotic expansion of the expectation is sufficient. In Roura (2001), cer-

tain recursions as in (4.6) are considered and some sufficient conditions for the asymptotic

expansion of the solution are identified. We need two notions from Roura (2001).

Definition 4.4. Let ω(z) ≥ 0 be a function on [0, 1] such that 1 ≤
∫ 1

0 ω(z) dz < ∞.

Furthermore, assume that there is some µ < 0 such that
∫ 1

0 ω(z)zµ dz converges. Then

we say that ω(z) is a shape function.

Definition 4.5. We say that

Fn =

{
bn, if 0 ≤ n < N

tn +
∑

0≤k<n ωn,kFk, if n ≥ N
(4.7)

is a ‘continuous recursive definition’ of Fn iff there exists some shape function ω(z), some

constant 0 < q ≤ 1 and some function Mn = Θ(nq) with integer values such that, with

zn,j = j/Mn, 0 ≤ j ≤Mn, with In,j = [zn,jn, zn,j+1n), 0 ≤ j < Mn, and with

εn,j =

∣∣∣∣∣∣
∑
k∈In,j

ωn,k −
∫ zn,j+1

zn,j

ω(z) dz

∣∣∣∣∣∣ , 0 ≤ j < Mn,

∑
0≤j<Mn

εn,j = O(n−%) for some % > 0.

One of the main conclusions of Roura (2001) is the following theorem.

Theorem 4.6 (Roura (2001, Theorem 3.3 (1))). Let Fn be a function defined by a

continuous recursive definition, and let Bna logc n·ξn be the main term of tn, where B > 0,

a and c are arbitrary constants, and ξn = µn or ξn = 1/µn for some sublogarithmical

function µn. Let ϕ(x) =
∫ 1

0 ω(z)zx dz, and H = 1− ϕ(a). If H > 0, then

Fn ∼ tn/H.
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To determine the asymptotic expansion of E[Wn] via this theorem we have to find the

asymptotic expansion of E[t(n)] and we have to show that (4.6) is a continuous recursive

definition of E[Wn].

Lemma 4.7. For N = 1, b1 = 0 and ωn,k = bk/nP (In,1 = k) equation (4.7) is a

continuous recursive definition with the shape function ω(z) = b/(b− 1)z1/(b−1).

Proof. We set Mn = n, b0 = 0 and F0 := 0. It is clear that the given function ω(z) is a

shape function.

For the proof it is sufficient to show

n−1∑
k=0

∣∣∣∣∣ωn,k −
∫ k+1

n

k
n

ω(z) dz

∣∣∣∣∣ = O
(
n
− 1

2(b−1)

)
. (4.8)

For k = 0 we have
∫ 1/n

0 ω(z) dz = n−b/(b−1). Thus, it suffices to consider the terms with

k ≥ 1. Since ω is increasing we have

b

b− 1

1

n

(
k

n

) 1
b−1

≤
∫ k+1

n

k
n

ω(z) dz ≤ b

b− 1

1

n

(
k + 1

n

) 1
b−1

.

This implies∣∣∣∣∣
∫ k+1

n

k
n

ω(z) dz − b

b− 1

1

n

(
k

n

) 1
b−1

∣∣∣∣∣ ≤ b

b− 1

1

n1+ 1
b−1

(
(k + 1)

1
b−1 − k

1
b−1

)
≤ b

b− 1
n−(1+ 1

b−1
)

where we used (k + 1)
1

b−1 − k
1

b−1 ≤ 1. With the triangle inequality we get∣∣∣∣∣ωn,k −
∫ k+1

n

k
n

ω(z) dz

∣∣∣∣∣ ≤
∣∣∣∣∣ωn,k − b

b− 1

1

n

(
k

n

) 1
b−1

∣∣∣∣∣+
b

b− 1
n−(1+ 1

b−1).

Using (2.2) and Stirling’s formula for the Gamma function, we obtain by analytical

computations ∣∣∣∣∣ωn,k − b

b− 1

1

n

(
k

n

) 1
b−1

∣∣∣∣∣ = O
(
n
−1− 1

2(b−1)

)
(4.9)

for all k ∈ {1, . . . , n − 1}. Summing up (4.9) for k = 1, . . . , n − 1 shows (4.8) and the

proof is finished.

For using Theorem 4.6 to obtain the asymptotic behavior of E[Wn] it remains to identify

the first order term of E[t(n)] in (4.5). Using that all subtrees are identically distributed

we get from equation (4.5)

E[t(n)] = bE
[
(n− In,1)P

(1)
In,1

]
+ bµE [In,1] + b(b− 1)µE [In,1In,2] .
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Since In,1 < n we have bµE [In,1] = o(n2). By Lemma 4.2 there exists a function ε1 with

ε1(n) = o(n) for n→∞ such that

E[Pn] =
b

b− 1
µn log n+ cpn+ ε1(n) for all n ∈ N.

This yields

E
[
(n− In,1)P

(1)
In,1

]
=

n−1∑
k=0

E
[
(n− In,1)P

(1)
In,1
| In,1 = k

]
P (In,1 = k)

= n

(
b

b− 1
µE [In,1 log In,1] + cpE [In,1] + E [ε1 (In,1)]

)
−
(

b

b− 1
µE
[
I2
n,1 log In,1

]
+ cpE

[
I2
n,1

])
+ o(n2).

Since almost surely In,1 →∞ we have E [ε1 (In,1)] = o(n) and using (2.3), (2.4), (2.5) we

finally obtain

E[t(n)] =
b

2b− 1
µn2 log n+

(
b− 1

2b− 1
cp −

b2 − b
(2b− 1)2

µ

)
n2 + o(n2). (4.10)

Combining these results we obtain an asymptotic expansion of E[Wn] of second order.

Theorem 4.8 (Expectation of Wiener index). Let Wn be the Wiener index of a

random b-ary recursive tree of size n with edge weights Z. Then there exists a constant

cw ∈ R such that for n→∞

E[Wn] =
b

b− 1
µn2 log n+ cwn

2 + o(n2).

Proof. It suffices to show that for n→∞

Gn :=
1

n

(
E[Wn]− b

b− 1
µn2 log n

)
∼ cwn.

From equation (4.6) we get the recursion

Gn =

n−1∑
k=0

ωn,kGk + sn,

with ωn,k as in Lemma 4.7 and

nsn = E[t(n)]− b

b− 1
µn2 log n+

n−1∑
k=0

bP (In,1 = k)
b

b− 1
µk2 log k

= E[t(n)]− b

b− 1
µn2 log n+

b2

b− 1
µE
[
I2
n,1 log In,1

]
.
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Using equations (2.4), (2.5), and (4.10) we also obtain

nsn =

(
b− 1

2b− 1
cp −

b

2b− 1
µ

)
︸ ︷︷ ︸

=:ĉ

n2 + o(n2).

In short, we write sn = ĉn+ o(n).

Lemma 4.7 shows, that Gn is defined by a continuous recursive definition. The main

term of s(n) is given by ĉn. We set ξn = 1, a = 1, c = 0 and B = ĉ. Then it is B < 0.

For using Theorem 4.6 we need B > 0. Multiplying the recursion by −1 shows that

Theorem 4.6 also works in the case B < 0. In the terminology of Roura (2001) we will

show H = 1− ϕ(1) > 0. Note that

ϕ(1) =

∫ 1

0

b

b− 1
z

1
b−1

+1 dz =
b

2b− 1
< 1.

Therefore, H = (b − 1)/(2b − 1) > 0 and Theorem 4.6 yields Gn ∼ s(n)/H. Thus we

finally get the expansion

E[Wn]− b

b− 1
µn2 log n = cwn

2 + o(n2)

with cw := cp − b/(b− 1)µ.

After determining the asymptotic expansion of the expectation we next use the recursion

formula for the vector consisting of the internal path length and the Wiener index to

show a limit theorem via the contraction method.

Theorem 4.9 (Limit theorem for (Wn, Pn)). Let (Wn, Pn) denote the vector of

Wiener index and internal path length of a random b-ary recursive tree of size n with

random edge weights Z, where σ2 = Var(Z1) <∞. Then we have

l2

((
Wn − E[Wn]

n2
,
Pn − E[Pn]

n

)
, (W,P )

)
→ 0

where (W,P ) is the unique distributional fixed-point of the map T :M2
0,2 →M2

0,2 given

for ν ∈M2
0,2 by

T (ν) := L

(
b∑
i=1

[
D2
i Di(1−Di)

0 Di

](
X

(i)
1

X
(i)
2

)
+

(
b∗1
b∗2

))

with (
b∗1
b∗2

)
=

b

b− 1
µ

b∑
i=1

Di logDi

(
1

1

)
+

(∑
i 6=j
(

1
2(Zi + Zj) + b

b−1µ
)
DiDj∑b

i=1 ZiDi

)

where D := (D1, . . . , Db) has the Dirichlet distribution with parameter (1/(b −
1), . . . , 1/(b − 1)), L(X(i)) = ν for X(i) := (X

(i)
1 , X

(i)
2 ), and X(1), . . . , X(b), D, Z are

independent.
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Proof. We define wn := E[Wn] and pn := E[Pn] and obtain from (4.1) for the standard-

ized vector Xn the following recursion

Xn :=

(
Wn−wn
n2

Pn−pn
n

)
=

b∑
i=1

A
(n)
i X

(i)
In,i

+ b(n)

with

A
(n)
i :=

[
1
n2 0

0 1
n

] [
1 n− In,i
0 1

][
I2
n,i 0

0 In,i

]
=

 I2n,i

n2

In,i(n−In,i)
n2

0
In,i

n


and b(n) =

(
b
(n)
1 , b

(n)
2

)T
where

b
(n)
1 =

1

n2


b∑
i=1

ZiIn,i +
1

2

∑
i 6=j

(Zi + Zj)In,iIn,j −
b

b− 1
µn2 log n− cwn2 + o(n2)

+

b∑
i=1

wIn,i + n

b∑
i=1

pIn,i −
b∑
i=1

In,i pIn,i

}

and

b
(n)
2 :=

b∑
i=1

Zi
In,i
n
− b

b− 1
µ log n− cp + o(1) +

1

n

b∑
i=1

pIn,i .

Using
∑b

i=1 In,i = n− 1 it follows

n
b∑
i=1

pIn,i −
b

b− 1
µn2 log n = n

b

b− 1
µ

b∑
i=1

In,i log
In,i
n

+ cpn(n− 1) + o(n2)

and

b∑
i=1

wIn,i −
b∑
i=1

In,i pIn,i = (cw − cp)
b∑
i=1

I2
n,i + o(n2).

The equation

1−
b∑
i=1

(
In,i
n

)2

=
∑
i 6=j

In,iIn,j
n2

+ o(1)

yields with ZiIn,i = o(n2) and cp − cw = b/(b− 1)µ:

b
(n)
1 =

b

b− 1
µ

b∑
i=1

In,i
n

log
In,i
n

+
∑
i 6=j

(
1

2
(Zi + Zj) +

b

b− 1
µ

)
In,i
n

In,j
n

+ o(1). (4.11)

By similar arguments we have

b
(n)
2 =

b

b− 1
µ

b∑
i=1

In,i
n

log
In,i
n

+
b∑
i=1

Zi
In,i
n

+ o(1). (4.12)
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In order to use the contraction method as in Neininger (2001, Theorem 4.1) it suffices to

show that for n→∞ (
A

(n)
1 , . . . , A

(n)
b , b(n)

)
L2−→ (A∗1, . . . , A

∗
b , b
∗) , (4.13)

E

[
1{In,i≤l}∪{In,i=n}

∥∥∥(A
(n)
i )TA

(n)
i

∥∥∥
op

]
→ 0 (4.14)

for all l ∈ N and
b∑
i=1

E
∥∥(A∗i )

TA∗i
∥∥

op
< 1 (4.15)

where ‖ · ‖op is the operator norm.

Let D := (D1, . . . , Db) be the almost sure limit of In/n, which is Dirichlet distributed

with parameter (1/(b−1), . . . , 1/(b−1)). By equations (4.11), and (4.12) we have almost

surely b(n) → b∗ as n→∞ with

b∗ =
b

b− 1
µ

b∑
i=1

Di logDi

(
1

1

)
+

(∑
i 6=j
(

1
2(Zi + Zj) + b

b−1µ
)
DiDj∑b

i=1 ZiDi

)

By the boundedness of the function x 7→ x log x on [0, 1] and as In,i/n ∈ [0, 1] there exists

a constant C such that ∣∣∣b(n)
1

∣∣∣ ≤ C +
1

2

∑
i 6=j
|Zi + Zj |.

By the assumption that E[Z2
1 ] < ∞, we get the uniform integrability of b

(n)
1

2
and con-

sequently the convergence of b
(n)
1 with respect to the L2-norm. Similar arguments yields

the L2-convergence of b
(n)
2 and the convergence of A

(n)
i with respect to the L2-norm to

A∗i =

[
D2
i Di(1−Di)

0 Di

]
. (4.16)

This shows condition (4.13).

Condition (4.14) follows from the deterministic boundedness of ‖A(n)
i ‖op and from the

fact that

lim
n→∞

P ({In,i ≤ l} ∪ {In,i = n}) = 0

which results from (2.2) or the almost sure convergence of In/n to a continuous distri-

bution.

It remains to show (4.15). Solving the characteristic equation for the matrix (A∗i )
TA∗i we

obtain that its eigenvalue λ(Di) being larger in absolute value is given by

λ(Di) = D2
i

(
1−Di +D2

i + (1−Di)
√
D2
i + 1

)
.

Elementary calculations show x > x2(1−x+x2 +(1−x)
√
x2 + 1) for all x ∈ (0, 1). Thus,

we obtain

E[λ(Di)] <
1

b− 1

∫ 1

0
x

1
b−1 dx =

1

b
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which finally yields

E

[
b∑
i=1

∥∥(A∗i )
TA∗i

∥∥
op

]
= E

[
b∑
i=1

λ(Di)

]
< 1.

Remark 4.10. Since convergence with respect to the l2-metric implies convergence of

the second moments Theorem 4.9 shows for the variance of Pn

Var(Pn) ∼ Var(P )n2

where Var(P ) <∞ can be calculated via the fixed point equation in Theorem 4.9.

5 Application to linear recursive trees and PORTs

The results on random weighted b-ary trees imply also limit theorems for further classes of

recursive trees with not necessarily bounded outdegree of the nodes as random recursive

trees or plane oriented recursive trees (PORT).

Pittel (1994) introduced the so called linear recursive tree in which for every new node

the parent u is chosen from the already existent nodes with probability proportional to

1 + βdeg(u), where β ≥ 0 is the parameter of the tree and deg(u) denotes the number of

internal children of node u. For β = 0 we obtain the random recursive tree. The plane

oriented recursive tree—going back to Szymański (1987)—without the consideration of

the orientation correspond to case β = 1.

For our purpose, we consider the random linear recursive tree with parameter β ∈ N0 and

give a construction in this case. Starting with one internal node and one external child of

it, in each step a uniformly distributed external node is chosen and replaced by an internal

one. Furthermore, in each step β + 1 external siblings and one external child of the new

node are added to the tree. By this construction, the number of external children of a

node u is given by 1 + βdeg(u) which corresponds to the weight defined above. Since the

new node is chosen with uniform distribution on the set of external nodes, the probability

that an internal node becomes the parent of the new node is proportional to 1+βdeg(u).

Hence, this construction yields the linear recursive tree with parameter β.

Let T denote the linear recursive tree with parameter β and consider simultaneously the

b-ary recursive tree with b = β + 2 and edge weights z := (1, 0, . . . , 0) denoted by T ′.
The tree T with two internal nodes corresponds to the tree T ′ with one internal node. In

both of these trees, we have the same number of external nodes. We identify the internal

node labelled 2 in T with the root of T ′ and the external siblings of the first one with

the external children of the root in T ′ where the edges have weight 0. The external child

of node 2 in T corresponds in T ′ to the child of the root where the edge has weight 1.

Now, in both tree models and in each insertion step an external node is chosen, changed

to an internal one and b external nodes are added. We identify these new nodes in the

same way as above, i.e. the new external siblings of the new internal node T correspond
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to the children of the corresponding new internal node in T ′ where the edge weights are

0 and the child of the new node T is identified with the child of the new node in T ′ where

the edge weight is 1. Then, the depth of a node in the linear recursive tree is equal to

the weighted depth of the corresponding node in the b-ary recursive tree plus one.

This relationship between both tree models is already used in Broutin and Devroye (2006)

when investigating the height of linear recursive trees. In Figure 5.1 a linear recursive

tree T and its correspondent b-ary recursive tree T ′ for the case b = 3 is shown. The

nodes in T ′ indicated by small squares correspond to the nodes in T which are children

of the root.

b
1

3 b

T

4 b

b

6
7 b

b

9

b

11

b 2

b

8
b

10

b 5

rs
2

8 b

T ′

10 b

3 rs

rs 5

rs rs

rs

rs 4

6 b

7 b

9 b

b 11

rs rs

Figure 5.1 A linear recursive tree T with eleven nodes and its correspondent ternary tree

T ′ (without the edge weights)

A fundamental difference between both tree models is that the b-ary recursive tree is an

ordered tree, and the linear recursive tree is not. To obtain a transformation between both

models, one can define an equivalence relation on the set of ordered b-ary trees which

identifies trees that correspond to the same linear recursive tree. If ψ(Tb(n)) denotes the

set of equivalence classes of b-ary recursive trees with n nodes and Tn+1 the set of all

unordered recursive trees with n+ 1 nodes, one can show the following lemma.

Lemma 5.1. For any n ∈ N there exists a bijection

ϕ : Tn+1 → ψ(Tb(n)).

Moreover, let Tlin(b−1)(n+ 1) be a random linear recursive tree of size n+ 1 and Tb+1(n)

be a random b+ 1-ary recursive tree of size n. Then we have

ψ(Tb+1(n))
d
= ϕ(Tlin(b−1)(n+ 1)).

This lemma can be proved rigorously by induction on n (for the details see [Mu] (2010)).

To transfer the limit results for functionals of random b-ary recursive trees to random

linear recursive trees we have to investigate the behavior of the functionals under the

bijection ϕ. For a node u ∈ T we denote the subtree of T rooted at u by Tu. Let

Γ := {(u, v) ∈ T × T | v ∈ Tu}

be the set of all pairs of nodes such that the second one lies in the subtree which is rooted

to the first one.
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Lemma 5.2. Let ϕ denote the bijection of Lemma 5.1, let T be a recursive tree and let

ϕ(T ) be weighted with the edge weight vector z = (1, 0, . . . , 0).

a) Let D(u) denote the depth of node u in T and let Db(w) denote the weighted depth

of node w in ϕ(T ). Then we have D(u) = Db(ϕ(u)) + 1 for all nodes u which are

different from the root.

b) Let ∆(u, v) denote the distance between node u and v, where the label of node u

is less than the label of v, in the recursive tree T and ∆b(ϕ(u), ϕ(v)) the distance

between the corresponding nodes in ϕ(T ). Then

∆(u, v) = ∆b(ϕ(u), ϕ(v)) + 21(u,v)6∈Γ.

The proof is by induction on n (see [Mu] (2010)). From these relationships between the

depth and the distances in recursive trees and their images under ϕ we can now deduce

formulas for the internal path length and the Wiener index in linear recursive trees. For

a tree T let P (T ) denote its internal path length and W (T ) its Wiener index.

Corollary 5.3. Let ϕ be the bijection of Lemma 5.1, let T be a recursive tree with n

nodes and let ϕ(T ) be the weighted b-ary tree with edge weight vector z. Then we have

P (T ) = P (ϕ(T )) + n− 1 (5.1)

and

W (T ) = W (ϕ(T )) + (n− 1)2 − P (ϕ(T )). (5.2)

Proof. Part a) of Lemma 5.2 immediately yields (5.1).

To see (5.2) we argue as follows. By part b) of Lemma 5.2 we get all distances between

nodes other than the root. So we have with (5.1)

W (T ) =
∑

1<u<v

(
∆b(ϕ(u), ϕ(v)) + 21(u,v)6∈Γ

)
+
∑
1<v

∆(1, v)

= W (ϕ(T )) + 2
∑

1<u<v

1(u,v) 6∈Γ + P (T )

= W (ϕ(T )) + 2

((
n− 1

2

)
− |Γ|

)
+ P (ϕ(T )) + n− 1.

So we have to determine |Γ|. For v ∈ {2, . . . , n} there are exactly D(v) nodes along the

path from v to the root including the root. This means there are D(v) − 1 tuples in Γ

where the second entry is v. Summing over all v ∈ {2, . . . , n} yields

|Γ| = P (T )− (n− 1) = P (ϕ(T )).

So, we finally get

W (T ) = W (ϕ(T )) + 2

(
(n− 1)(n− 2)

2
− P (ϕ(T ))

)
+ P (ϕ(T )) + n− 1

= W (ϕ(T )) + (n− 1)2 − P (ϕ(T )).
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For the functions considered it does not matter whether we weigh the edges of a random

b-ary recursive tree in a definite order or not. In order to apply the results of the last

sections we need the edge weights to be identically distributed. So we take as edge weights

the vector (Z1, . . . , Zb) with

P ((Z1, . . . , Zb) = ei) =
1

b

for e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0)... and thus µ = 1/b and σ2 = (b− 1)/b2.

As a result we obtain the corresponding limit theorems for random linear recursive trees

combining Lemmas 5.1, 5.2 with Theorem 3.1.

Theorem 5.4 (Depth of node n). Let Dn denote the depth of the node with label n in

a random linear recursive tree of size n with weight function u 7→ 1 + (b − 2) deg(u) for

b ≥ 2. For n→∞ we have E[Dn] = 1
(b−1) log n+o(log n), Var(Dn) = 1

(b−1) log n+o(log n)

and
Dn − 1

b−1 log n√
1
b−1 log n

d−→ N(0, 1).

Similarly using Corollary 3.2 and Theorem 3.5 we obtain a limit theorem for the depth

and distances of random nodes.

Theorem 5.5 (Depth and distance of random nodes). Let DU denote the depth

and ∆U,V the distance of uniformly distributed nodes U, V in a random linear recursive

tree of size n with weight function u 7→ 1 + (b− 2) deg(u) for b ≥ 2.

For n→∞ we have E[DU ] = 1/(b− 1) log n+ o(log n),

DU − E[DU ]√
1
b−1 log n

d−→ N(0, 1).

Further E[∆U,V ] = 2/(b− 1) log n+ o(log n) and

∆U,V − E[∆U,V ]√
2 1
b−1 log n

d−→ N(0, 1).

Finally the following limit theorem for the internal path length and the Wiener index is

a consequence of the imbedding procedure and Theorem 4.9 for random b-ary recursive

trees.

Theorem 5.6 (Limit theorems for Pn and Wn). Let Wn denote the Wiener index

and Pn the internal path length of a random linear recursive tree of size n with weight

function u 7→ 1 + (b− 2) deg(u) for b ≥ 2. Then we have for n→∞

E[Pn] =
1

b− 1
n log n+ (cp + 1)n+ o(n)

and

E[Wn] =
1

b− 1
n2 log n+

(
cp +

b− 2

b− 1

)
n2 + o(n2)
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where cp is given in Remark 4.3. Furthermore, we have(
Wn − E[Wn]

n2
,
Pn − E[Pn]

n

)
d−→ (W,P )

where L(W,P ) is given in Theorem 4.9.

Proof. The expectation of Pn and Wn follows directly from Lemma 4.2, Theorem 4.8

(with cw = cp − 1/(b− 1)), Corollary 5.3 and Lemma 5.1.

Let ϕ be the bijection of Lemma 5.1. Let Tn be a random linear recursive tree of size n

with weight function u 7→ 1 + (b− 2) deg(u). Then, Remark 4.10 yields

Rn =

(
P (ϕ(Tn))− E[P (ϕ(Tn))]

n2
, 0

)
P−→ 0.

The combination of Corollary 5.3 and Theorem 4.9 now implies the claim.

Random plane oriented recursive trees without the order of the nodes equal in distribution

the random linear recursive trees with parameter β = 1. Since the considered functionals

are invariant under changing the order of the tree the limit theorems above provide in

particular the limit theorems for the plane oriented recursive tree. Limit theorems for the

depth of a (random) node and the distance between two random nodes, as well as the

expectation of the internal path length and of the Wiener index are given in Morris et al.

(2004). The limit theorem for the depth of node n in the plane-oriented recursive tree is

proved in Mahmoud (1992). We obtain the results for PORTs as corollary of Theorem

5.6

Corollary 5.7 (PORTs). The depth of the nth node and of a random node, the distance

of two random nodes, the internal path length and the Wiener index of a PORT satisfy

the same limit theorem as in the case of random linear recursive trees in the case b = 3.
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1991.

S. Roura. Improved master theorems for divide-and-conquer recurrences. J. ACM, 48:

170–205, 2001.

J. Ryvkina. Ein universeller zentraler Grenzwertsatz für den Abstand zweier Kugeln in
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