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Abstract

In this paper we derive a limit theorem for recursively defined pro-
cesses. For several instances of recursive processes like for depth first
search processes in random trees with logarithmic height or for fractal
processes it turns out that convergence can not be expected in the
space of continuous functions or in the Skorohod space D. We there-
fore weaken the Skorohod topology and establish a convergence result
in Lp spaces in which D is continuously imbedded. The proof of our
convergence result is based on an extension of the contraction method.
An application of the limit theorem is given to the FIND process. The
paper extends in particular results in [HR00] on the existence and
uniqueness of random fractal measures and processes. The depth first
search processes of Catalan and of logarithmically growing trees do
however not fit the assumptions of our limit theorem and lead to the
so far unsolved problem of degenerate limits.

1 Introduction

In this paper we establish a limit theorem for recursively defined processes
in Lp. The proof of this theorem is based on an extension of the contraction
method which has turned out to be an effective method to establish limit the-
orems in the area of recursive structures and algorithms (see [RR01, NR04]).

One motivation for this paper comes from the fact that for several natural
classes of recursive processes one can not expect convergence to hold in the
space C of continuous functions or in the Skorohod space D supplied with
uniform metric resp. with Skorohod topology. This has been observed for
example in connection with a process Fn describing the number of comparison
steps of the FIND algorithm by Grübel and Rösler (1996). [GR96] however
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managed to introduce a ‘modification’ F ′
n of Fn and to establish convergence

of F ′
n to the ‘FIND process’ in D[0, 1].

For conditional Galton–Watson processes it has been shown in a series of
papers that scaled versions of the depth first search process (DFS) as well
as of the height process and of the width process converge to a Brownian
excursion process, while the scaled profile process converges to the local time
process of a Brownian excursion (see Aldous (1991, 1993), Gutjahr and Pflug
(1992), Drmota and Gittenberger (1997), Kersting (1998), Le Gall and Le Jan
(1998), Marckert and Mokkadem (2003) and further references therein); con-
vergence holds in C[0, 1] resp. D[0, 1]. For random binary search trees (rBST)
however and more generally for random trees with logarithmic height corre-
sponding convergence results in D[0, 1] can not be expected. As indication
we give in Section 3 a formal proof that the DFS processes of random BSTs
are not tight in D[0, 1].

We propose in this paper to imbed D[0, 1] into an Lp space (continuous
imbedding) and then to consider convergence of the recursive processes in the
weaker Lp-topology. As consequence one gets weak convergence for a smaller
class of continuous real functions on Lp compared to a convergence result
in D[0, 1]. The main result of this paper gives a set of sufficient conditions
for a sequence of recursive processes to converge in Lp. The conditions are
of similar nature as corresponding conditions for related limit theorems for
recursive random sequences in R or in Rp (see [NR04]).

It has been taken care in this paper in particular to postulate only point-
wise convergence of the scaling operators describing the recursion, while to
restrict the application of (uniform) operator norm only to the formulation
of the contraction conditions for which pointwise conditions would not allow
to control the development of the recursive processes.

Our convergence result serves as a general frame for convergence of re-
cursive processes in the (weak) Lp-convergence sense. As an application we
derive directly convergence of the FIND sequence Fn to the unmodified FIND
process F . Note that Grübel and Rösler (1996) obtained the stronger D[0, 1]-
convergence result for the modified sequences F ′

n. The DFS processes for con-
ditional Galton–Watson trees and for random trees with logarithmic height
do however not fit the conditions of our limit theorem. They lead to degener-
ate limit equations. The problem of degenerate limit equations is also present
in the case of recursive sequences in Rp. So far only for the case of normal
limit theorems a solution for this problem has been found (see [NR02]). This
is a problem of considerable further interest in Rp as well as in Lp.

As further application we show that the existence and uniqueness results
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on fractal processes in Hutchinson and Rüschendorf (2000) are special cases
of the recursive frame and the limit theorem in this paper. In fact this paper
can be seen as an extension of [HR00]. We are convinced that as in the case
of the contraction method in Rp the result in this paper for convergence in
Lp is a first step of further developments and will be of interest for a series
of further applications.

Independently of this paper which has been circulated in April 2006 and
which is based on the diploma thesis of Eickmeyer (2005) a related con-
vergence result for recursive random sequences in Hilbert spaces has been
established recently in Drmota, Janson, and Neininger (2006, Theorem 6.1).
In their paper they apply the limit theorem to obtain a convergence result
for the profile process of some class of random search trees including binary
search trees. The proof is based on convergence of the profile polynomials
to some analytic processes using convergence in the Bergman–Hilbert space
which implies strong pointwise and uniform convergence. There are some
differences between our limit theorem to that in [DJN06]. First we consider
more general recursive sequences (allowing homomorphisms in the Banach
spaces Lp compared to [DJN06] who considered random affine transforma-
tions in the frame of Hilbert spaces). Our results are based on the minimal
L1-metrics on Lp. We could extend this to `r-metrics but the conditions seem
to be easier to apply w.r.t. `1. [DJN06] instead use in the Hilbert space case
the more flexible Zolotarev metric. In comparison to [DJN06] we avoid con-
vergence conditions on the coefficients in the (uniform) operator norm. But
their application to the profile process speaks for itself.

After introducing our frame of Lp-convergence, the minimal `r-metrics on
Lp together with scaling operators and some connection to D-convergence in
Section 2 we formulate the recursive sequences considered in this paper in
Section 3 and establish a general convergence theorem for them. In Section 4.2
we give an application to the FIND convergence result of Grübel and Rösler
(1996) and formally prove that the DFS processes of random trees with loga-
rithmic height are not tight in the Skorohod topology on D[0, 1]. It turns out
however that DFS processes lead for the interesting cases of trees with loga-
rithmic height as well as for conditional Galton–Watson trees to degenerate
limit equations, so that our theorem is not applicable to them. Still we are
convinced that the convergence result in this paper is of interst in itself and
will be useful for further development and examples. In fact in the case of ran-
dom fractal measures a similar frame has been developed in Hutchinson and
Rüschendorf (2000) for random measures and the corresponding convergence
result for random measures gives as consequence existence and uniqueness
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of random fractal measures (see [HR00, Theorems 3 and 4]). Also in The-
orem 6 of that paper a similar existence and uniqueness result for fractal
processes is proved based on `p-contraction arguments as in this paper. In
particular Brownian bridges are characterized by fractal scaling properties
in that paper. The results in this paper can be seen as an extension of that
paper to general recursive sequences of processes including the case of fractal
processes as particular case.

2 Weak convergence, scalings and Lp-spaces

In this section we introduce the Lp-spaces together with the minimal `r-
metrics on them and the induced convergence notion. We also introduce the
basic homomorphisms on Lp which are used for formulating the recursive
equations in this paper. A case of particular interst are scaling operators
which allow to scale in space and in time. In the first part of this section
we consider some properties of weak convergence in the Skorohod topology
on D = D[0, 1] and discuss a continuous imbedding of D into the Lp =
Lp[0, 1] space supplied with the usual Lp-topology. This is of interest when
convergence of processes on D cannot be expected as in the case of DFS
processes for trees with logarithmic height (see Section 3).

The space D of càdlàg functions supplied with the Skorohod topology is
studied in detail in Billingsley (1968). A subset K ⊂ D is relatively compact
iff K is uniformly bounded, i.e.

sup
f∈K

sup
t∈[0,1]

|f(t)| < ∞ (2.1)

and

lim
δ→0

sup
f∈K

ω′f (δ) = 0 (2.2)

where ω′f (δ) = infti−ti−1>δ max1≤i≤n ωf ([ti−1, ti)), the inf over all decomposi-
tions (ti) of [0, 1], and where ωf (A) is the continuity modulus of f on A.

A consequence of this criterion is the following necessary condition for
tightness.

Lemma 2.1 If K ⊂ D is relatively compact, then for any ε > 0, there exists
some nε = nε,K ∈ N such that for all f ∈ K and any 0 ≤ t1 < · · · < tnε+1 ≤ 1
holds min1≤i≤nε |f(ti)−f(ti+1)| ≤ ε, i.e. any f ∈ K crosses intervals of length
ε at most nε times.
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For functions f defined on an interval I we introduce the scaling operator
Ta,b, a > 0, b ∈ R1 by

Ta,bf(t) := f(a(t− b)), (2.3)

where f(a(t−b)) is defined to be zero if f is not defined there. This definition
extends similarly to functions on more general domains. In particular Ta,0

describes a scaling of time from domain I = [0, 1
a
] to [0, 1].

ba bp1

tab
PSfrag replacements

Ta,b

1
b

b+ 1
a

Figure 2.1 The operator Ta,b.

Scaling operators are a basic class for formulating recursive sequences. In
particular they are used to introduce fractal random measures and fractal
processes which are particular instances of random recursive processes (see
[HR00]).

In order to obtain weak convergence results for processes in C or in D we
have sometimes to consider a weakening of the Skorohod topology on C, D
by embedding these spaces in the Banach space Lp = Lp[0, 1] supplied with

the usual Lp-norm ‖f‖p =
( ∫ 1

0
|f |pdx

)1/p

, 1 ≤ p < ∞. Ta,b is well defined

on Lp and

‖Ta,bf‖p ≤
(1

a

)1/p

‖f‖p, (2.4)

with equality holding for a ∈ (0, 1) and b = 0.
Let for a continuous endomorphism A on Lp

‖A‖op := sup
‖f‖p=1

‖Af‖p (2.5)

denote the operator norm. Then using (2.4) and approximation by continuous
functions one sees

Lemma 2.2 The mapping T : R × R × Lp → Lp, (a, b, f) → Ta,bf is
continuous.

Since elements f ∈ D are bounded, one can embed D ⊂ Lp. With respect
to the Lp-topology D is not complete. In the converse direction one obtains
(for details see [Eic05]).
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Lemma 2.3 The imbedding D → Lp is continuous, where D is supplied with
the Skorohod topology, i.e., convergence w.r.t. the Skorohod topology implies
convergence in Lp.

To describe weak convergence of stochastic processes in the Banach space
(Lp, ‖ ‖p) we define for 1 ≤ r < ∞ the minimal Lr-metric `r on the set Mp,r of
all probability measures µ on Lp with finite r-th moments

∫ ‖f‖r
pdµ(f) < ∞

by
`r(µ, ν) = inf{(E‖X − Y ‖r

p}1/r; X ∼ µ, Y ∼ ν}. (2.6)

Here X ∼ µ means that the stochastic process X has distribution µ. It is
well known that (Mp,r, `r) is a complete metric space and for µn, µ ∈ Mp,r,
convergence `r(µn, µ) → 0 is equivalent to

µn
D→ µ and

∫
‖f‖r

pdµn →
∫
‖f‖r

pdµ (2.7)

or to ∫
φ(f)dµn →

∫
φ(f)dµ (2.8)

for all continuous φ : Lp → R with |φ(f)| = O(‖f‖r
p).

For X ∼ µ, Y ∼ ν we use the notation `r(X, Y ) = `r(µ, ν). For continuous
endomorphisms A : Lp → Lp holds the estimate

`r(AX, AY ) ≤ ‖A‖op`r(X,Y ) (2.9)

while for the particular scalings Aαf = αf equality holds. We shall use con-
tinuous endomorphisms to formulate the recursive sequences in Section 3.
This gives additional degrees of freedom compared to using random affine
transformations only as is quite typical in recursive algorithms. One may
e.g. include kernel transforms

∫
K(t, s)Xsds of a process X in this frame-

work. In the following we concentrate on the case r = 1 and define M1 :=
Mp,1 = M1(L

p) the class of all distributions of Lp processes Z with finite
norm E‖Z‖p < ∞.

Lemma 2.4 (Random scaling) Let A, B, C be real random variables,
A > 0 and for X ∼ µ ∈ Mp, X independent of (A,B, C) consider the
random scaled process Y := CTA,BX. Then

E‖Y ‖p ≤ cE‖X‖p with c := E
|C|
A1/p

. (2.10)

Proof: Using the estimate (2.4) and the independence assumption we obtain

E‖Y ‖p = E‖CTA,BX‖p ≤ E(|C| ‖TA,B‖op‖X‖p) ≤ E
∣∣∣ C

A1/p

∣∣∣E‖X‖p. ¤
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3 A limit theorem for recursively defined pro-

cesses

In this section we introduce a class (Zn) of recursive processes in Lp = Lp[0, 1]
and establish sufficient conditions for a limit theorem for (Zn). In more de-
tail we consider a sequence (Zn) of Lp[0, 1]-valued processes satisfying the
following recursive structure

Zn
d
= b(n) +

K∑
r=1

A(n)
r Z

(r)

I
(n)
r

, n ≥ n0 (3.1)

with Lp-valued processes b(n) and random continuous endomorphisms A
(n)
r of

Lp. (Z
(1)
n ), . . . , (Z

(K)
n ) are independent copies of (Zn) which are also indepen-

dent of ((I
(n)
r ), (A

(n)
1 , . . . , A

(n)
K ), b(n)). Further the ‘subgroup sizes’ (I

(n)
r ) are

assumed to be distributed on {0, . . . , n}.
Thus the process at ‘time’ n is formed by applying some continuous ho-

momorphisms as e.g. scaling transforms or kernel integral transforms A
(n)
r to

some independent random copies of the processes at random previous ‘time
points’ I

(n)
r adding them up and adding an Lp-process b(n). In random tree

examples the I
(n)
r typically are subgroup sizes of the subtrees below the root.

Conditioned on the numbers I
(n)
r these subtrees are independent and are trees

of the same type. This is a quite common structure in algorithms (see [NR04]
for examples).

Our main result is the following limit theorem. We denote by Z ∈ M1 =
Mp(L

p) that E‖Z‖p < ∞.

Theorem 3.1 Let (Zn) be a recursively defined sequence of stochastic pro-
cesses in Lp = Lp[0, 1] as in (3.1). Further we assume the following conditions
for any f ∈ Lp, ` ≥ 1 and 1 ≤ r ≤ K holding for some b∗ ∈ Lp and random
endomorphisms A∗

r on Lp:

Let Z0, . . . , Zn0−1 ∈ M1, b(n), b∗ ∈ M1 for n ∈ N such that

(1) E‖b(n) − b∗‖p → 0 (2) E‖A(n)
r f − A∗

rf‖p → 0

(3) E
∑K

r=1 ‖A∗
r‖op < 1 (4) E

(
1{I(n)

r ≤`}∪{I(n)
r =n}‖A

(n)
r ‖op

)
→ 0

(5) limE
∑K

r=1 ‖A(n)
r ‖op < 1

(6) ‖A∗
r‖op < M and ‖A(n)

r ‖op < M for 1 ≤ r ≤ K, n ∈ N and some M > 0.

Then `1(Zn, Z∗) → 0, where Z∗ is the unique solution (in distribution) of the
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recursive equation

Z∗
d
=

K∑
r=1

A∗
rZ

(r) + b∗ (3.2)

in Lp with E‖Z‖p < ∞.

Proof: For the proof we define the linear operator T : M1 → M1 by TZ
d
=∑K

r=1 A∗
rZ

(r) + b∗. Let X(1), . . . , X(K) d
= X and Y (1), . . . , Y (K) d

= Y be pair-
wise optimal couplings, i.e. `1(X, Y ) = E‖X(r) − Y (r)‖p, 1 ≤ r ≤ K and
let (X(1), Y (1)), . . . , (X(K), Y (K)), (A∗

1, . . . , A
∗
K , b∗) be independent. Then we

obtain by Minkowski’s inequality and using (2.9)

`1(TX, TY ) ≤ E
∥∥∥
( K∑

r=1

A∗
rX

(r) + b∗)−
( K∑

r=1

A∗
rY

(r) + b∗
)∥∥∥

p

= E
∥∥∥

K∑
r=1

A∗
r(X

(r) − Y (r))
∥∥∥

p

≤ E
( K∑

r=1

‖A∗
r‖op

)
`1(X, Y ). (3.3)

By assumption (3) c := E
∑K

r=1 ‖A∗
r‖op < 1 and thus T is a contractive

operator on the complete metric space (M1, `1). By Banach’s fixpoint theorem
there exists a unique fixpoint Z∗ of T in M1, i.e. a unique solution of the
recursive stochastic equation (3.2).

To prove convergence of Zn to Z∗ we introduce

Qn :=
K∑

r=1

A(n)
r Z(r)

∗ + b(n), n ≥ n0, (3.4)

where Z
(r)
∗ are independent copies of Z∗. By the triangle inequality we obtain

`1(Zn, Z∗) ≤ `1(Zn, Qn) + `1(Qn, Z∗) =: an + bn. (3.5)

From the fixpoint equation (3.2) we obtain

bn = `1(Qn, Z∗) ≤ E
∥∥∥
( K∑

r=1

A(n)
r Z(r)

∗ + b(n)
)
−

( K∑
r=1

A∗
rZ

(r)
∗ + b∗

)∥∥∥
p

≤
K∑

r=1

E‖(A(n)
r − A∗

r)Z∗‖p + E‖b(n) − b∗‖p (3.6)
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The second term converges by assumption (1) to zero. Using the indepen-
dence assumptions and a conditioning argument we obtain

E‖(A(n)
r − A∗

r)Z∗‖p =

∫
E

[‖(A(n)
r − A∗

r‖p | Z∗ = f
]
dPZ∗(f)

=

∫
E‖(A(n)

r − A∗
r)f‖pdPZ∗(f).

By assumption (6) the integrand is bounded above by 2M‖f‖p. Since Z∗ ∈
M1 we conclude by the dominated convergence theorem that

bn → 0. (3.7)

To estimate the first term an = `1(Zn, Qn) we assume that (Z
(r)
∗ , Z

(r)
n )

are independent optimal couplings of (Z∗, Zn). By assumption (4) pn :=

E
∑K

r=1(1{I(n)
r =n}‖A

(n)
r ‖op) → 0. This implies that

an = `1(Zn, Qn) ≤ E
∥∥∥
(
b(n) +

K∑
r=1

A(n)
r Z

(r)

I
(n)
r

)
−

(
b(n) +

K∑
r=1

A(n)
r Z(r)

∗
)∥∥∥

p

= E
∥∥∥

K∑
r=1

A(n)
r (Z(r)

∗ − Z
(r)

I
(r)
n

)
∥∥∥

p

≤ E
∥∥∥

K∑
r=1

1{I(n)
r 6=n}A

(n)
r (Z(r)

∗ − Z
I
(r)
n

∥∥∥
p

+E
[
1{I(n)

r =n}

( K∑
r=1

‖A(n)
r ‖

)
`1(Zn, Z∗)

]

≤ pn`1(Zn, Z∗) + E
∥∥∥

K∑
r=1

1{I(n)
r 6=n}A

(n)
r (Z(r)

∗ − Z
(r)

I
(r)
n

)
∥∥∥

p
.(3.8)

From the triangle inequality in (3.5) we thus obtain

`1(Zn, Z∗) ≤ 1

1− pn

[(
E

K∑
r=1

‖A(n)
r ‖op

)
sup

0≤j≤n−1
`1(Zj, Z∗) + `1(Qn, Zn)

]

≤ 1

1− pn

[(
E

K∑
r=1

‖A(n)
r ‖op

)
sup

0≤j≤n−1
`1(Zj, Z∗) + o(1)

]
. (3.9)

Using assumption (5) we obtain that the sequence `1(Zn, Z∗) is bounded, i.e.

η := sup
j≥0

`1(Zj, Z∗) < ∞. (3.10)
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Thus η := lim`1(Zj, Z∗) ≤ η < ∞ and for all η > 0 holds `1(Zn, Z∗) < η + ε
for n ≥ n0. This implies for n > n1 using (3.6)

`1(Zn, Z∗) ≤ 1

1− pn

E
∥∥∥
( K∑

r=1

1l{I(n)
r 6=n}A

(n)
r

(
Z(r)
∗ − Z

(r)

I
(r)
n

))∥∥∥
p

+ o(1)

≤ 1

1− pn

E
[( K∑

r=1

‖A(n)
r ‖op

)
`1(ZI

(n)
r

, Z∗)
]

+ o(1)

≤ η

1− pn

E
( K∑

r=1

1l{0≤I
(n)
r ≤n0}‖A

(n)
r ‖op

)

+
η + ε

1− pn

E
( K∑

r=1

‖A(n)
r ‖op

)
+ o(1)

≤
(
E

K∑
r=1

‖A(n)
r ‖op

) η + ε

1− pn

+ o(1).

As consequence this implies

η ≤ limE
( K∑

r=1

‖A(n)
r ‖op

)
(η + ε) (3.11)

holding for all ε > 0. Thus assumption (5) implies that η = 0. ¤

Remark 3.2 a) We remark that pointwise convergence of the operators

A
(n)
r f → A∗

rf in Lp does in general not imply that ‖A(n)
r − A∗

r‖op → 0.

In applications the postulate of convergence of A
(n)
r → A∗

r in operator norm
would be too strong. As consequence we have to add to condition (3) which is
quite common in the application of the contraction method (see e.g. [RR01,

Rös04, NR04]) the asymptotic condition (5) on the A
(n)
r .

b) As consequence of Theorem 3.1 we obtain that

φ(Zn)
D→ φ(Z∗) (3.12)

for any continuous real function φ : Lp → R. Thus in particular for contin-
uous linear functionals Λ on Lp of the form

Λf =

∫
f(x)g(x)dx (3.13)
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for some g ∈ Lq, 1
p

+ 1
q

= 1 convergence `1(Zn, Z∗) → 0 implies

ΛZn
D→ ΛZ∗ (3.14)

as well as
E‖Zn‖p → E‖Z∗‖p (3.15)

Further for linear functionals Λ as in (3.13) and A,B real rv’s with A ≥ a >
0, EΛ ◦ TA,B defines a linear functional on Lp and

(EΛ ◦ TA,B)f = E

∫
f(A(x−B))g(x)dx

= E

∫
f(y)g

( y

A
+ B

)dy

A

=

∫
f(y)hA,B(y)dy (3.16)

with hA,B(h) := E 1
A
g( y

A
+ B) ∈ Lq.

4 Some applications and remarks

4.1 FIND process

The FIND process has been introduced in Grüebel and Rösler (1996) when
studying the FIND-algorithm. The FIND-algorithm determines in a list L
with n linearly ordered elements the k-th order statistic in the following
recursive way. An element p ∈ L is randomly chosen (p = pivot) and the list
L is subdivided into 3 sublists L< the list of elements smaller then p, L> the
list of elements larger than p, and L= = {p}. If |L<| = k − 1, then p is the
searched k-th order statistic, if not, the algorithm continues to search in L<

or in L>.
Let X

(n)
k denote the number of comparisons of FIND needed to find the

k-th order statistic and define the step function Fn in D [0,∞)

Fn(t) :=

{
X

(n)
btc+1 if t < n,

0 else,
(4.1)

then the stochastic process Fn satisfies the recursive equation

F0
d
= F1

d
= 0

Fn
d
= (n− 1)1[0,n) + T1,0FLn + T1,Ln+1FRn (4.2)
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where Ln = |L<| is uniformly distributed on {0, . . . , n − 1}, Rn = |L>| =

n − 1 − Ln, Fn
d
= F n, and (Fn), (F n) are independent of each other and of

(Ln) resp. (Rn).
Grübel and Rösler (1996) have shown that the FIND algorithm process

(Fn) does not converge in Skorohod topology. [GR96] introduced a modifica-
tion F ′

n of the FIND-algorithm process, where the list L is splitted into two
lists L≤ = L< ∪ L= and L>, i.e. if the random pivot p is identical to the
searched order statistic it is put into the list L≤ and the search continues.
They proved that this modification converges after normalization in D[0, 1]
to some limit F which is called FIND process.

1

n
Tn,0F

′
n

D−→ F. (4.3)

Let Gn := 1
n
Tn,0Fn denote the scaled version of the unmodified FIND algo-

rithm process Fn, then for n ≥ 1

Gn
d
=

n− 1

n
1[0,1) +

Ln

n
T n

Ln
,0GLN

+
Rn

n
T n

Rn
, Ln+1

n
GRn . (4.4)

Thus (Gn) fits the recursive scheme in (3.1) with K = 2,
(
I

(n)
1 , I

(n)
2

)
=

(Ln, Rn), b(n) = n−1
n

1[0,1), A
(n)
1 = Ln

n
T n

Ln
,0 and A

(n)
2 = Rn

n
T n

Rn
, Ln+1

n
. We have

convergence 1
n
(Ln, Rn)

D−→ (U, 1 − U) where U is uniformly distributed on
(0, 1) and by Lemma 2.2.

A
(n)
1 f

D−→ A∗
1f := UT 1

U
,0f and

A
(n)
2 f

D−→ A∗
2f := (1− U)T 1

1−U
,Uf, for all f ∈ Lp. (4.5)

Using couplings of (Ln) as e.g. Ln = bnUc we obtain a.s. convergence of
(Ln, Rn) and thus for any f ∈ Lp

‖A(n)
r f − A∗

rf‖p → 0 a.s., r = 1, 2. (4.6)

As

‖A(n)
1 f‖p ≤ ‖A(n)

1 ‖op‖f‖p =

(
bn

n

) p+1
p

‖f‖p < ‖f‖p

and

‖A(n)
2 f‖p ≤

(
Rn

n

) p+1
p

‖f‖p < ‖f‖p

12



and similarly for A∗
1, A∗

2, we conclude by dominated convergence

E‖A(n)
r f − A∗

rf‖p → 0, r = 1, 2. (4.7)

Further

E‖A(n)
r ‖op =

1

n

n−1∑
i=0

(
i

n

) p+1
p

→
∫ 1

0

x
p+1

p dx =
p

2p + 1
<

1

2

and thus

E
(
‖A(n)

1 ‖op + ‖A(n)
2 ‖op

)
→ E

(
‖A∗

1‖op + ‖A∗
2‖op

)
=

2p

2p + 1
< 1. (4.8)

Finally for all 1 ≤ r ≤ K and ` ≥ 1 holds

E 1n
I
(n)
r ≤`

o
∪
n

I
(n)
r =n

o‖A(n)
r ‖op ≤ P

({
I(n)
r ≤ `

} ∪ {
I(n)
r = n

}) → 0 as n →∞.

(4.9)
Thus all conditions of Theorem 3.1 are satisfied and we obtain as corollary.

Proposition 4.1 The normalized FIND algorithm process (Gn) converges
weakly in Lp to the FIND process F , and moreover `1(Gn, F ) → 0. F is the
unique solution in M1 = M1(L

p) of the recursive equation

Z
d
= 1[0,1) + UT 1

U
,0Z + (1− U)T 1

1−U
,0Z. (4.10)

Here Z is an independent copy of Z, U ∼ U [0, 1] and Z, Z, U are in-

dependent. Applying Remark 3.2 b) to the functional Λf =
∫ 1

0
f(x)dx we

obtain

ΛGn
D−→ ΛF, (4.11)

where F is the FIND process as in (4.10). Using the case p = 1 we obtain
further

E

∫ 1

0

Gn(t)dt −→ E

∫ 1

0

F (t)dt. (4.12)

ΛGn is the scaled version of the average search time of the FIND algorithm
over all order statistics. From (4.10) we obtain

ΛF
d
= Λ1[0,1] + UΛ(T 1

U
,0F ) + (1− U)Λ

(
T 1

1−U
,UF

)
. (4.13)

13



Thus Λ 1[0,1] = 1, UΛ(T 1
U

,0F ) = U
∫ 1

0
F ( x

U
)dx = U2

∫ 1/U

0
F (y)dy = U2ΛF .

Similarly, (1−U)Λ(T 1
1−U

,UF ) = (1−U)2ΛF and thus we obtain the recursive

equation

ΛF
d
= 1 + U2ΛF + (1− U)2ΛF, (4.14)

which characterizes uniquely the distribution of ΛF . In particular (4.14) im-
plies that the expectation EΛF = 3 and thus

EΛGn → 3. (4.15)

4.2 Depth first search processes

Depth first search processes have been a topic of intensive study in the last 15
years. For Galton–Watson trees conditioned on their total progeny it has been
proved that the normalized depth first search process (DFS) and the height
process converge in C[0, 1] to a Brownian excursion process while the profile
process converges in D[0, 1] to the local time process of a Brownian excursion
process. Convergence is w.r.t. the Skorohod topology on C resp. D. This
implies in particular convergence results for simple or simply generated trees.
For references to these kind of results we refer to Aldous (1991, 1993), Gutjahr
and Pflug (1992), Drmota and Gittenberger (1997), Kersting (1998), Le Gall
and Le Jan (1998), Marckert and Mokkadem (2003), and many references
therein.

For several further classes of random trees like random binary search
trees (rBST), tries, digital search trees and others one cannot expect similar
convergence results in D[0, 1] in the Skorohod topology. We demonstrate this
claim in the following for the depth first search process (DFS) also called
depth first walk (DFW) of an rBST.

Let Tn be a random binary search tree with n internal and n+1 external
nodes. Let Ln, Rn denote the number of nodes in the left resp. right subtree of
the root, then Rn +Ln = n−1. Rn is uniformly distributed on {0, . . . , n−1}
and conditional on (Ln, Rn) the left subtree TLn and the right subtree TRn are
independent and both are rBSTs. Let Vn denote the depth first search process
of Tn (DFS) including the external nodes.The walk follows the contour of the
tree from left to the right (see Figure 4.1).

There are 2(2n + 1 − 1) = 4n steps in the definition of the DSF. Thus
by linear interpolation Vn is defined in C[0,∞) with support in [0, 4n]. The
local maxima of Vn correspond to the external nodes. Vn(2(2Ln + 1)) =
Vn(4Ln +2) = 0 since the left subtree contains 2Ln +1 nodes and the contour
returns to the root after 2(2Ln + 1) steps.

14
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Figure 4.1 A binary search tree and its DFS-process (n = 4, Ln = 2, and Rn = 1).

The recursive structure of Tn is reflected by the following recursive struc-
ture of Vn: {

V0 = 0

Vn
d
= b

(n)
Ln

+ T1,1VLn + T1,4Ln+3V Rn

(4.16)

where (Ln, Rn), (Vn), and V n) are independent, V n
d
= Vn, Ln + Rn = n− 1,

and Ln
d
= unif{0, . . . , n− 1}. Further b

(n)
Ln
∈ C[0,∞) is one on [1, 4Ln + 1] ∪

[4Ln+3, 4n−1] and zero on {0, 4Ln+2}∪ [4n,∞) and is linearly interpolated
else. We denote by Xn the rescaled DFS-process

Xn := γ(n)T4n,0Vn, (4.17)

where γ(n) is a scaling function. The operator T4n,0 scales Vn to the unit
interval [0, 1].

In this section we give a formal proof showing that the rescaled DFS-
process of an rBST does not converge to some nontrivial limit when consid-

ering weak convergence
D→ on C[0, 1] resp. on D[0, 1] in the Skorohod topol-

ogy. We show in the following that a nontrivial convergence result cannot be
expected for any scaling sequence γ(n).

Proposition 4.2 a) If γ(n) = o
(

1
log n

)
, then

Xn = γ(n)T4n,0Vn
D→ 0. (4.18)

b) If γ(n) = ω( 1
log n

), i.e. 1
log n

= o(γ(n)), then (Xn) is not convergent in

D[0, 1] w.r.t. the Skorohod topology.

Proof: a) For binary search trees Tn the height h(Tn) is of logarithmic order

h(Tn)

log n
→
P

c, (4.19)
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where →
P

is convergence in probability and c ≈ 4.31107 . . . is the unique

solution of the equation γ log(2e
γ
) = 1 bigger than 2 (see Devroye (1986)).

Therefore,

‖Xn‖∞ = γ(n)‖T4n,0Vn‖∞ = γ(n)h(Tn) = (γ(n) log n)
h(Tn)

log n
→
P

0.

This implies (4.18).

b) Assume that Xn
D→ X for some process X in D[0, 1]. Then ‖Xn‖∞ =

γ(n)h(Tn)
D→ ‖X‖∞, where

D→ here denotes weak convergence in R1. But
since γ(n) log n → ∞ we obtain by (4.19) a contradiction to tightness of

(h(Tn)
log n

). ¤

Thus essentially it remains to check normalizing sequences of the order
of magnitude γ(n) ∼ 1

log n
, since the arguments in Proposition 4.2 also can

be applied to subsequences and thus imply that a necessary condition for a
nontrivial convergence result for Xn is

0 < limγ(n) log n ≤ limγ(n) log n < ∞. (4.20)

In the following theorem we prove that also a logarithmic normalization
as in (4.20) does not allow to establish a nontrivial convergence result for
Xn. The argument holds true for the more general class of random trees with
logarithmic height.

Proposition 4.3 Let (Tn) be a sequence of random binary trees with n in-
ternal nodes, assume that Tn has logarithmic height, i.e.

0 < lim
Eh(Tn)

log n
= α < ∞, (4.21)

and let γ(n) be a logarithmic normalization sequence satisfying (4.20). Then
the normalized DFS-process (Xn) = (γ(n)T4n,0Vn) is not convergent in D[0, 1]
w.r.t. the Skorohod-topology.

Proof: By Markov’s inequality we obtain P (h(Tn) > 2(α + 1) log n) < 1
2

for
n ≥ n0. Thus P (An) ≥ 1

2
with An = {h(Tn) ≤ α∗ log n}, α∗ := 2(α + 1). For

ω ∈ An there exists a level k̃ = k̃(Tn) in the tree with at least n
α∗ log n

nodes

(see Figure 4.2).
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Figure 4.2 A tree with n nodes and height < α∗ log n.

At the level k := k̃ − b1
2
log nc, therefore, we find at least

n

α∗ log n

(1

2

)b 1
2

log nc
≥ n1/2

α∗ log n
=: mn (4.22)

nodes which have at least one successor in level k̃. In particular we have
mn → ∞ and k = kn > 1. Thus we may choose nodes u1, . . . , umn in level
k and for any of these nodes a successor ũ1, . . . , ũmn in level k̃. We list the
nodes in the order in which they are visited by the DFS-process and thus get
time points 0 ≤ t1 < t̃1 < · · · < tmn < t̃mn ≤ 1, where at time ti the node ui

and at time t̃i the node ũi is visited, 1 ≤ i ≤ mn.
By the choice of ui, ũi we obtain for n ≥ n0

Xn(t̃i)−Xn(ti) = γ(n) log n
[
Ṽn(t̃i)− Ṽn(ti)

]

>
1

2
γ(n) log n > α1 · 1

2
=: ε,

where α1 = limγ(n) log n and Ṽn = 1
log n

T4n,0Vn is the logarithmically nor-
malized DFS-process. Thus the scaled DFS-process Xn crosses at least mn

times an interval of height 1
2
α1 > 0. By Lemma 2.1 however for any K ⊂ D

compact there exists some nε such that any f ∈ K crosses at most nε times
intervals of length ε. Therefore we conclude

P (Xn ∈ K) ≤ P (h(Tn) > α∗ log n) <
1

2

for n ≥ n0 and thus the process (Xn) is not tight. ¤

Remark 4.4 Condition (4.21) on the logarithmic height of Tn applies in
particular to rBST, to tries, to digital search trees, Patricia tries and others.
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The proof can easily also be extended to trees where the number of successors
of any node is bounded above by some fixed number m like e.g. for m-ary
search trees.

Depth first search processes converge for conditional Galton–Watson trees
to a Brownian excursion process in D[0, 1], while – as shown in Proposi-
tion 4.3 – they do not converge for rBST in D[0, 1]. It now turns out however
that our limit theorem in Lp does not apply to give convergence of the DFS-
process for Catalan trees or for trees of logarithmic Catalan height. Both
cases lead to degenerate limit equations. It is an important open problem
to establish some extension of the convergence result to the degenerate case.
We give a short sketch of the arguments showing this degenerate behaviour
in the following remark which might be of use as an extension of the limit
theorem to this degenerate case will include some copying of the recursive
structure by a limiting process (as in the Rp case in [NR02]).

Remark 4.5 a) Catalan trees
The DFS-process Vn of a Catalan tree satisfies the recursive equation

Vn
d
= b

(n)
Ln

+ T1,1VLn + T1,2Ln+3V Rn , (4.23)

where Ln is Catalan-distributed i.e. P (Ln = k) = CkCn−1−k

Cn
with Catalan

numbers Cn = 1
n+1

(
2n
n

)
and b

(n)
Ln

defined as in Proposition 4.2. Further, the

normalized DFS process Yn := 1√
n
T4n,0Vn converges to the Brownian excur-

sion process E, i.e.

Yn
D−→ 1

σ
E in [0, 1] (4.24)

w.r.t. sup-metric (here n denotes the number of internal nodes, thus we nor-
malize by 4n considering also external nodes). (Yn) satisfies the recursive
equation

Yn
d
=

1√
n

T4n,0b
(n)
Ln

+

√
Ln

n
T n

Ln
, 1
4n

YLn +

√
Rn

n
T n

Rn
, 4Ln+3

4n
Y Rn . (4.25)

The first summand converges to zero. Further, 1
n
(Ln, Rn)

D−→ (I, 1− I) with
I ∼ 1

2
(ε{0} + ε{1}) and for all f ∈ Lp,

√
Ln

n
T n

Ln
, 1
4n

f
D−→
√

I T 1
I
,0f =: A1f and

√
Rn

n
T n

Rn
, 4Ln+3

4n
f

D−→
√

1− I T 1
1−I

,If =: A2f.

(4.26)
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The contraction condition (3) for the limiting equation (3.2) is not satisfied

E(‖ A1 ‖op + ‖ A2 ‖op) =
1

2
(1 + 0) +

1

2
(0 + 1) = 1.

The fixpoint equation (3.2) degenerates to

Y
d
= IY + (1− I)Y . (4.27)

which does not have a unique solution, but any process Y ∈ M1(Lp) solves
(4.27). Thus Theorem 3.1 does not apply to this case.

b) Trees with logarithmic height
Let Vn be the DFS process of a family of trees Tn with logarithmic height i.e.

0 < lim
Eh(Tn)

log n
< ∞. (4.28)

To obtain convergence we have to use a logarithmic scaling (see Section 2.).
In the case of an rBST the scaled DFS-process Yn := 1

log n
T4n,0Vn satisfies the

recursive equation (see (4.16)).

Z0
d
= 0

Zn
d
= 1

log n
T4n,0b

(n)
Ln

+ log Ln

log n
T n

Ln
, 1
4n

ZLn + log Rn

log n
T n

Rn
, 4nLn+3

4n
ZRn . (4.29)

We have 1
log n

T4n,0b
(n)
Ln

−→ 0 as b
(n)
Ln

≤ 1. For any sequence (kn) ⊂ R with

sup kn

n
< ∞ holds log kn

log n
=

log kn
n

+log n

log n
→ 1. With a.s. convergent versions(

Ln

n
, Rn

n

) → (U, 1− U) we thus obtain for all f ∈ Lp

log Ln

log n
T n

Ln
, 1
4n

f → T 1
U

,0f (4.30)

With A
(n)
1 f := log Ln

log n
TLn

n
, 1
4n

f holds ‖A(n)
1 ‖op = log Ln

log n

(
Ln

n

)1/p
and thus

E‖A(n)
1 ‖op =

1

n

n−1∑

k=0

log k

log n

(
k

n

)1/p

≥ 1

n

n−1∑

k=0

log k

log n

k

n
.

For ε > 0 holds log k
log n

> 1− ε iff k > n1−ε and thus

1

n

n−1∑

k=0

log k

log n

k

n
≥ 1− ε

n2

n−1∑

k=dn1−εe
k ≈ 1− ε

n2

1

2
n(n− 1)(1− n−ε) → 1− ε

2
.
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As a result we obtain limE(‖A(n)
1 ‖op+‖A(n)

2 ‖) ≥ 1 and thus the contraction
condition (3) for the limiting equation in (3.1) is not satisfied. The limiting
equation degenerates to

Z
d
= T 1

U
,0Y + T 1

1−U
,UZ (4.31)

which again has any Z ∈ M1(L
p) as solution. Thus also in this case Theorem

3.1 is not applicable.

c) Convergent DFS-processes
The DFS processes of Catalan trees and of rBST’s do not fit the conditions of
Theorem 3.1. The reason however seems to be not the frame of convergence
in Lp.

Our limit theorem applies to give convergence of the DFS-process in a
scenario of random tree models Tn with height of order

√
n (as in the case

of Catalan trees) and with DFS-process (Vn) satisfying the recursive equation
(4.10). If 1

n
(Ln, Rn) → (I, 1 − I) for some rv I on (0, 1) and (4.26) holds,

then with A∗
1f =

√
IT 1

I
,0f we have by (2.10)

E‖A∗
1‖op ≤ c1 := E

I1/2

(1/I)1/p
= EI1/2+1/p (4.32)

Thus the essential contraction condition (4) of Theorem 3.1 is fulfilled if

c1 + c2 = E(I1/2+1/p + (1− I)1/2+1/p) < 1 (4.33)

For 1 ≤ p < 2 holds r := 1
2

+ 1
p

> 1 and thus c1 + c2 < 2
(

1
2

)r
< 1 and

the contraction condition is fulfilled. Thus our limit theorem applies to these
kind of examples and yields convergence of the DFS processes. It is however
not obvious whether there are some natural examples of random trees of this
type.

4.3 Random fractal processes

The limit theorem proved in this paper generalizes some existence and unique-
ness results in [HR00] on random fractal processes. To show this connection
we remind on some of the basic constructions there. Let I be a closed bounded
interval in R1 and let f : I → Rn be a function. Let I = I1 ∪ · · · ∪ IN be a
partition of I into disjoint subintervals. Further let φi : I → Ii be increasing
Lipschitz maps with pi = Lip φi and define for gi : Ii → Rn the composition⊔

i gi : I → Rn by
⊔

i gi(x) = gj(x) for x ∈ Ij.
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A scaling law S on Rn is an N -tuple (S1, . . . , SN) of Lipschitz maps Si :
Rn → Rn with Lipschitz constants ri. A function f is called selfsimilar w.r.t.
the scaling law S if

Sf = f (4.34)

where Sf =
⊔

i Si ◦ f ◦ φ−1
i =

∑N
i=1 Aif , where Aif = Si ◦ f ◦ φ−1

i on Ii and
zero else.

Thus selfsimilarity in this deterministic case is described via continuous
homomorphisms Ai on Lp. Our limit theorem in Section 3 of this paper then
implies convergence of the iterative sequence Snf to some selfsimilar function
f ∗ under the conditions of Theorem 5 in [HR00]. Note that for this result we

do not need the subgroup sizes I
(n)
r of our general recursion.

Random fractal (selfsimilar) processes are defined via random scaling laws
S = (S1, . . . , SN) which are random variables with values in the class of scal-
ing laws. A random process f = f(t, w) is called fractal process or selfsimilar
process w.r.t. a random scaling law S if

f
d
= Sf :=

⊔
i

Si ◦ f (i) ◦ φ−1
i , (4.35)

where (f (i))1≤i≤N are iid copies of f . Similarly as in (4.34) we can imbed the
operator Sf in (4.35) as a particular case of our general recursive sequence in
(3.1) and obtain as application of our limit theorem the existence of random
fractal processes under the conditions of Theorem 6 in [HR00].

It is of interest that in [HR00] also Brownian bridges are constructed and
characterized by fractal properties, where however an additional parameter
standing for the volatility has to be introduced. A related characterization of
the Brownian excursion process seems to be possible and should be of interest
in connection with the limiting results for the DFS-process of the conditional
Galton–Watson process based on the recursive structure as in Section 4.2.
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