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Abstract

In this paper we extend some recent results on the comparison of
multivariate risk vectors w.r.t. supermodular and related orderings.
We introduce a dependence notion called ‘weakly conditional increas-
ing in sequence order’ that allows to conclude that ‘more dependent’
vectors in this ordering are also comparable w.r.t. the supermodu-
lar ordering. At the same time this ordering allows to compare two
risks w.r.t. the directionally convex order if the marginals increase
convexly. We further state comparison criteria w.r.t. the direction-
ally convex order for some classes of risk vectors which are modelled
by functional influence factors. Finally we discuss Fréchet-bounds
w.r.t. ∆-monotone functions when multivariate marginals are given.
It turns out that comonotone vectors in the case of multivariate mar-
ginals no longer yield necessarily the largest risks but even may in
some cases be vectors which minimize risk.

Keywords: supermodular ordering, Fréchet-bounds, positive depen-
dence, risk vectors

1 Introduction

In a large number of recent papers it has been shown that the methods
and tools of stochastic ordering and construction of probabilities with given
marginals are of relevance for the modelling of multivariate portfolios and
bounding functions of dependent risks, like the value at risk, the expected
excess of loss and other financial derivatives and risk measures. (See Em-
brechts et al. (2003) and references in that paper.) A comprehensive survey
of this field is given in the recent book of Müller and Stoyan (2002). The
stochastic comparison of risks (random vectors) w.r.t. supermodular ordering
or the related orderings by directionally convex functions resp. ∆-monotone
functions is of particular interest in many applications. One interesting type
of question is to identify large function classes which allow to conclude that
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positive (negative) dependent random vectors are more (less) risky than in-
dependent vectors w.r.t. these functions. More generally it is of interest to
establish general conditions for the comparison of risk of two ‘models’ P
and Q. A natural aim is to state some results of the form: More ‘positive
dependence’ implies ‘more risk’ in the case of identical marginals and more
positive dependence plus convex increase of the marginals also implies more
risk. In this paper we state several results in this direction.

For functions f : IRn → IR1 define the difference operator ∆ε
i , ε>0, 1≤ i≤n

by

∆ε
if(x) = f(x+εei)− f(x) (1.1)

where ei is the i-th unit vector. Then f is called

a) supermodular if for all 1 ≤ i < j ≤ n and ε, δ > 0

∆ε
i∆

δ
jf(x) ≥ 0 for all x (1.2)

b) directionally convex if (1.2) holds for all 1 ≤ i ≤ j ≤ n

c) ∆-monotone if for all J = {i1, . . . , ik} ⊂ {1, . . . , n} and ε1, . . . , εk > 0
holds

∆ε1
i1 . . . ∆εk

ik
f(x) ≥ 0. (1.3)

Let F sm,Fdcx,F∆ denote the classes of supermodular, directionally convex
and ∆-monotone functions and ≤sm,≤dcx,≤∆ the induced integral stochastic
orders on the class of probability measures. Then Fdcx ⊂ F sm and F∆ ⊂
F sm and for differentiable functions f one obtains:

f ∈ F sm iff
∂2

∂xi∂xj

f ≥ 0 for i < j (1.4)

f ∈ Fdcx iff (1.4) holds for i ≤ j

f ∈ F∆ iff
∂kf

∂xi1 . . . ∂xik

≥ 0 for all k ≤ n and i1 < . . . < ik. (1.5)

While comparison of P and Q w.r.t. the largest class F sm is restricted to the
case of identical marginals Pi = Qi, the comparison w.r.t. the smaller class
F∆ allows stochastically increasing marginals Pi ≤st Qi and the comparison
w.r.t. Fdcx allows convexly increasing marginals Pi ≤cx Qi. The most easy to
apply order is ≤∆. It is equivalent to the simple upper orthant order defined
for P,Q ∈ M1(IRn) – the class of all probability measures on IRn – by

P ≤uo Q iff P ([x,∞]) ≤ Q([x,∞]) (1.6)
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for all x ∈ IRn (Rüschendorf (1980), in the following abbreviated as Rü
(1980)). A basic result for ≤sm is the Lorentz theorem due to Tchen (1980):
For any random vector X with df F and one dimensional marginals F1, . . . ,Fn

holds:

X ≤sm (F−1
1 (U), . . . , F−1

n (U)), (1.7)

where U is uniformly distributed on [0, 1]. The so called comonotone vec-
tor (F−1

1 (U), . . . , F−1
n (U)) therefore represents in many respects the riskiest

portfolio vector. In particular (1.7) implies for the combined portfolio

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
i (U), (1.8)

where ≤cx is the convex ordering which compares expectations of all convex
functions. (1.8) was first proved in Meilijson and Nadas (1979) for the in-
creasing convex order ≤icx and in Rü (1983) for ≤cx. For various aspects of
this kind of comparison see also the recent survey in Rü (2003b).

In contrast to the ≤∆ ordering the comparison of ≤sm and ≤dcx is not
so easy and there are many open problems. In section 2 we introduce a new
dependence ordering ≤wcs called ‘weakly conditionally ordered in sequence’.
We show that in the case of identical marginals P ≤wcs Q implies supermod-
ular ordering P ≤sm Q. This generalizes the very interesting recent result
of Christofides and Vaggelatou (2002) stating that weakly associated ran-
dom vectors X are riskier than independent vectors w.r.t. all supermodular
functions. We also derive a corresponding comparison result for the ≤dcx

ordering if marginals increase convexly in section 3.
In section 4 we consider various functional models of random vectors and

derive ≤dcx ordering results for convexly increasing marginals. In this way
we obtain some variations on a result of Müller and Scarsini (2001) for the
case of distributions with conditionally increasing copula.

In the final section we consider an extension of sharp Fréchet-bounds to
the case of multivariate marginals and obtain some comparison results for
∆-monotone functions. Fixing some multivariate marginals corresponds to
the situation where for some joint parts of the portfolio one knows the joint
distribution while for others one only knows the marginal distribution. Some
of the nice properties of one dimensional marginals no longer are valid. For
example, the comonotone vectors no longer represent the riskiest portfolio.

2 Supermodular ordering

Define for two random vectors X = (X1, . . . , Xn), Y = (Y1, . . . , Yn)

X ≤wcs Y
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– X is smaller than Y in the weakly conditional increasing in sequence order –
if for all t, 1 ≤ i ≤ n−1, and f monotonically nondecreasing

Cov(1(Xi > t), f(X(i+1))) ≤ Cov(1(Yi > t), f(Y(i+1))). (2.1)

Here X(i+1) = (Xi+1, . . . , Xn), Y(i+1) = (Yi+1, . . . , Yn).

Let X∗ denote the vector with independent components X∗
i

d
= Xi. Then

X is called weakly associated in sequence (WAS) if

X∗ ≤wcs X. (2.2)

We remark that weak association in sequence as defined in (2.2) is equivalent
to

PX(i+1)|Xi>t ≥st PX(i+1), (2.3)

where ≤st is the usual stochastic order.

Remark 2.1 There would be some formal reason to use in definition (2.1)
the corresponding “forward” version with inverted “time” like in CIS. But
interpreting the indices as time points our WAS condition says that “future
depends positively on the present state” which corresponds to the CIS condi-
tion, which says that “present state depends positively on the past”.

Weak association in sequence (WAS) is a wakening of weak association
(WA) as introduced in Christofides and Vaggelatou (2002). With the condi-
tional increasing (CI), the conditional increasing in sequence (CIS) and the
positive dependence through stochastic ordering (PDS) the following relations
hold:

CI ⇒ CIS ⇒ Association ⇒ WA ⇒ WAS,
and PDS ⇒ WAS

(see Müller and Stoyan (2002, p 146))

The next theorem states that more positive dependence w.r.t. the ≤wcs or-
dering implies more risk with respect to the supermodular ordering.

Theorem 2.2 Let X, Y be n-dimensional random vectors with identical
marginal distributions Pi = Qi, 1 ≤ i ≤ n. Then X ≤wcs Y implies that
X ≤sm Y .

Proof: Let X∗, Y ∗ be random vectors with independent components and

X∗
i

d
= Pi, Y ∗

i
d
= Qi, 1 ≤ i ≤ n. Then it is sufficient to compare expectations

of functions f ∈ F sm which are bounded and twice differentiable (see e.g.
the approximation argument in Christofides and Vaggelatou (2002, Prop. 1)).
Denote g(t, x(2)) := ∂f

∂x1
(t, x(2)) and note that g(t, ·) is increasing since f ∈
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F sm. Then we obtain using the simple representation formula of Christofides
and Vaggelatou (2002)

E(f(X)− f(X∗
1 , X(2))) =

∫
Cov(1(X1 > t), g(t,X(2)))dt (2.4)

≤
∫

Cov(1(Y1 > t), g(t, Y(2)))dt

= E(f(Y )− f(Y ∗
1 , Y(2))),

where the inequality follows from X ≤wcs Y and the assumption of identi-

cal marginals X1
d
= Y1. This implies that Ef(X) ≤ Ef(Y ) + An−1, where

An−1 := Ef(X∗
1 , X(2)) − Ef(Y ∗

1 , Y(2)). The function
∫

f(x1, ·) dP1(x1) is a

supermodular function in (n−1) arguments. Therefore, using that X∗
1

d
= Y ∗

1 ,
we obtain from induction An−1 ≤ 0 and thus Ef(X) ≤ Ef(Y ). 2

As corollary we obtain

Corollary 2.3 If X is weakly associated in sequence then X∗ ≤sm X i.e. X
has positive supermodular dependence.

Remark 2.4 a) Corollary 2.3 is due to Christofides and Vaggelatou (2002)
under the assumption of weak association. Under the stronger CIS-condi-
tion this conclusion is due to Meester and Shantikumar (1993).

b) Since X ≤sm Y implies that ϕ(X) ≤icx ϕ(Y ) for all monotonically non-
decreasing, supermodular functions ϕ one obtains as consequence of The-
orem 2.2 a convex comparison result for a general class of risk-functionals
of the random vectors. For X weakly associated in sequence WAS holds:
ϕ(X) has a higher risk than ϕ(X∗) for any monotonically nondecreasing
supermodular function ϕ.
Thus the positive dependence notion WAS implies a higher risk for a
general class of functionals. Denuit, Dhaene, and Ribas (2001) have
established this conclusion for the special case of the combined portfo-
lio X1 + . . . + Xn for an associated random vector X. Christofides and
Vaggelatou (2002) have stated this interesting conclusion for weakly as-
sociated random vectors X. A version of this result for a large class of
directionally convex functions is in the previous version Rü (2003b) of
this paper.

c) In the case n = 2 holds (for identical marginals) X ≤wcs Y if and only if

X ≤uo Y (upper orthant ordering). (2.5)

In this case the result of Theorem 2.2 goes back to the classical paper of
Cambanis, Simons, and Stout (1976).
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3 Directionally convex order

For the comparison of risk vectors it is of interest to compare vectors X
and Y in the case where the marginals increase convexly (≤cx) or w.r.t.
the increasing convex order (≤icx). The most general and suitable class of
functions for this purpose are the directional convex functions Fdcx resp. the
increasing, directional convex functions F idcx.

In order to state a comparison result we need a condition which ensures
increase in the dependence structure and a condition for the increase in the
convex ordering of the marginals. Both conditions are contained in the wcs-
ordering and yield in the following statement.

Theorem 3.1 Let X, Y be random vectors with marginals Pi, Qi such that
Pi ≤cx Qi, 1≤ i ≤n. Assume that X ≤wcs Y , then X ≤dcx Y .

Proof: Let f ∈ Fdcx be twice differentiable and let g := ∂
∂x1

f , then as in
(2.4) by the wcs-ordering and using monotonicity of g(t, ·) we obtain

Ef(X)− Ef(X∗
1 , X(2)) =

∫
Cov(1(X1 > t), g(t,X(2)))dt

≤
∫

Cov(1(Y1 > t), g(t, Y(2)))dt

= Ef(Y )− Ef(Y ∗
1 , Y(2)).

Since X∗
1 ≤cx Y ∗

1 and f(·, y(2)) is convex this implies

Ef(X) ≤ Ef(Y ) + Ef(X∗
1 , X(2))− Ef(Y ∗

1 , Y(2)) (3.1)

≤ Ef(Y ) + Ef(Y ∗
1 , X(2))− Ef(Y ∗

1 , Y(2))

= Ef(Y ) + An−1

with An−1 := Ef(Y ∗
1 , X(2)) − Ef(Y ∗

1 , Y(2)). Now using that f(y∗1, ·) ∈ Fdcx

we conclude by induction, that An−1 ≤ 0 and thus the result follows. 2

Remark 3.2 For the conclusion that X is smaller than Y w.r.t. the increas-
ing directionally convex order X ≤idcx Y one can weaken the wcs-ordering
to the ≤iwcs ordering of X and Y defined as in (2.1) but restricted to f ≥ 0,
monotonically nondecreasing. Thus similar to Theorem 3.1 we obtain:

Pi ≤icx Qi, 1 ≤ i ≤ n and X ≤iwcs Y implies that X ≤idcx Y. (3.2)

The wcs-ordering condition simplifies if only one marginal increases con-
vexly.

Corollary 3.3 Let X = (X1, X(2)), Y = (Y1, X(2)) and assume

Cov(1(X1 > t), f(X(2))) ≥ Cov(1(Y1 > t), f(X(2))) (3.3)

for all nondecreasing bounded f .

If X1 ≤cx Y1, then X ≤dcx Y.
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Proof: In the proof of Theorem 3.1 one can omit the induction step after
formula (3.1) if only one marginal increases convexly. 2

In the case n = 2 Theorem 3.1 yields a very simple sufficient condition
for comparing risks in terms of the survival functions F̄ (u, v) = P (X1 ≥
u,X2 ≥ v), Ḡ(u, v) = P (Y1 ≥ u, Y2 ≥ v). We formulate also a variant for
increasing convex risks.

Corollary 3.4 Let X = (X1, X2), Y = (Y1, Y2). Assume that for the sur-
vival functions F̄ , Ḡ of X and Y holds

F̄ (u, v)− F̄1(u)F̄2(v) ≤ Ḡ(u, v)− Ḡ1(u)Ḡ2(v). (3.4)

a) If Xi ≤cx Yi, i = 1, 2, then X ≤dcx Y .

b) If Xi ≤icx Yi, i = 1, 2, then X ≤idcx Y .

Here ≤idcx denotes the ordering w.r.t. the class F idcx of increasing direction-
ally convex functions.

Proof: The wcs-ordering condition is in the case n = 2 identical to the
dependence ordering in (3.4) of the survival functions. 2

4 Some functional models

In general the wcs-ordering condition is not easy to verify. In this section we,
therefore, state comparison criteria for some functional models which allow
to combine some conditioning arguments with known ordering results for
≤sm resp. ≤dcx. Some related comparison results have been given in Shaked
and Tong (1985), Bäuerle (1997), and Bäuerle and Müller (1998).

A basic ordering result for ≤dcx is the following Ky Fan–Lorentz theorem:
Let Fi, Gi, 1≤ i ≤n be one-dimensional df’s with Fi ≤cx Gi, 1≤ i ≤n, then

(F−1
1 (U), . . . , F−1

n (U)) ≤dcx (G−1
1 (U), . . . , G−1

n (U)), (4.1)

where U is uniformly distributed on (0, 1); i.e., the comonotone vectors are
comparable w.r.t. the directionally convex order.

(4.1) was first stated in Rü (1983), the proof being based there on some
functional inequalities in Ky Fan and Lorentz (1954). Müller and Scarsini
(2001) proved an extension of the comparison result in (4.1) for distributions
with marginals Fi, Gi (F ∈ F(F1, . . . , Fn), G ∈ F(G1, . . . , Gn)) convexly
increasing Fi ≤cx Gi if both F and G have the same conditionally increasing
copula.

A consequence of the Ky Fan–Lorentz theorem is the following compari-
son result.
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Theorem 4.1 Let V1, Θ be independent random vectors, V1 real, and let
Xi = hi(V1, Θ), Yi = gi(V1, Θ), 1 ≤ i ≤ n, where hi(·, ϑ) and gi(·, ϑ) are
monotonically nondecreasing. If for all ϑ

hi(V1, ϑ) ≤cx gi(V1, ϑ), 1≤ i≤n (4.2)

then X ≤dcx Y .

Proof: By assumption, conditionally given Θ = ϑ, X|ϑ and Y |ϑ are comono-
tone vectors. Therefore, by the Ky Fan–Lorentz theorem componentwise
convex ordering of the marginals as in (4.2) implies X|ϑ ≤dcx Y |ϑ. There-
fore, by mixing we obtain X ≤dcx Y . 2

One can interpret the representation Xi = hi(V1, Θ), Yi = gi(V1, Θ) as a
model with functional dependence of an internal factor V1 and an external
factor Θ common to both. Both models depend stochastically increasing on
V1 while for any external factor ϑ the second model has more risk than the
first model.

A functional type representation of X, Y as in Theorem 4.1 can be ob-
tained by the regression construction resp. the standard construction which
is a general and useful construction method for random vectors with df
F ∈ Fn – the class of all n-dimensional df’s. It is defined in the follow-
ing way. Let V = (V1, . . . , Vn) be a sequence of independent rv’s, uniformly
distributed on [0, 1] and let Fi|1...i−1(xi|x1, . . . , xi−1) denote the conditional
df’s of Xi given Xj = xj, 1≤ j≤ i−1, where X is a random vector with df
F . Define τ−1

F
: [0, 1]n → IRn recursively by:

τ−1

F
(u) = z = (z1, . . . , zn), where

z1 = F−1
1 (u1), (4.3)

z2 = inf{y : F2|1(y|z1) ≥ u2} = F−1
2|1 (u2|z1)

...

zn = F−1
n|1...n−1(un|z1, . . . , zn−1). Then

Z = τ−1

F
(V ) (4.4)

is a random vector with df F , the regression representation.
This construction was introduced in O’Brien (1975), Arjas and Lehtonen

(1978), and in Rü (1981b). By definition in (4.3) one can write Z also directly
as a function of V , Z = τ ∗

F
(V ) where the functional dependence on V is of

the form

τ ∗
F
(V ) = (h1(V1), h2(V1, V2), . . . , hn(V1, . . . , Vn)). (4.5)

This is called standard representation of F . It is of the functional form in
Theorem 4.1 with Θ = (V2, . . . , Vn).
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If F, G ∈ Fn, then pointwise comparison

τ−1

F
(V ) ≤ τ−1

G
(V ) implies F ≤st G. (4.6)

Here ≤st denotes the usual stochastic ordering w.r.t. monotonically nonde-
creasing functions. This criterion stated in Rü (1981b) implies many of the
known stochastic ordering criteria.

As corollary of Theorem 4.1 we obtain the following result, allowing to
increase one component convexly.

Corollary 4.2 Assume that X, Y have the same copula and assume that
the conditional distribution of Xi|(X1, . . . , Xi−1) = (x1, . . . , xi−1), is stochas-
tically increasing in x1, 2≤ i≤n.

a) If X1 ≤cx Y1 and Fi = Gi, 2≤ i≤n, then X ≤dcx Y .

b) If X1 ≤icx Y1 and Fi = Gi, 2≤ i≤n, then X ≤idcx Y .

Here ≤icx, ≤idcx are the increasing convex resp. increasing directionally
convex order.

Proof:

a) Using the standard representation for the joint copula of X, Y we see
that w.l.g.

X1 = F−1
1 (V1), Xi = F−1

i ◦ fi(V1, . . . , Vi), i≥2,

and

Y1 = G−1
1 (V1), Yi = Xi = F−1

i ◦ fi(V1, . . . , Vi), i≥2,

where fi(v1, . . . , vi) are nondecreasing in v1 and where U = (U1, . . . , Un)
with Ui = fi(V1, . . . , Vi), i≥2, U1 = Vi are the common copula vector of
X, Y . Therefore, the assumption of Theorem 4.1 is fulfilled with

Θ = (V2, . . . , Vn),

h1(v1, ϑ) = G−1
1 (v1) = h1(v1),

g1(v1, ϑ) = F−1
1 (v1) = g1(v1) and

gi(v1, ϑ) = hi(v1, ϑ) = F−1
i ◦ fi(v1, (ϑ2, . . . , ϑi)), i≥2.

b) follows similarly. 2
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Remark 4.3 a) One can iteratively apply Corollary 4.2 to obtain a ≤dcx-
comparison result in the case that Xi ≤cx Yi, 1≤ i≤n. This comparison
result under the assumption that the joint copula is conditionally increas-
ing is due to Müller and Scarsini (2001).

b) A similar comparison result as in Corollary 4.2 can be formulated if X and
Y have not necessarily the same copula. Let Xi = F−1

i ◦ fi(V1, . . . , Vi),
Yi = G−1

i ◦ gi(V1, . . . , Vi) be the standard representations of X, Y , let
Θ = (V2, . . . , Vn) and assume:

1) Xi|(X1, . . . , Xi−1) = (x1, . . . , xi−1) and
Yi|(Y1, . . . , Yi−1) = (x1, . . . , xi−1) are stochastically increasing in x1

2) X1 ≤cx Y1 and

3) Xi|Θ = ϑ ≤cx Yi|Θ = ϑ, 2≤ i≤n.

Then X ≤dcx Y. (4.7)

c) Two general methods to increase convexly distributions are the following

(C1) Let Yi = hi ◦Xi with hi ↑,
hi(y)− hi(x) ≥ y − x, ∀x < y and EYi = EXi (4.8)

(C2) Let Yi = hi(Xi, Θ), where Xi, Θ are independent and

Ehi(xi, Θ) = xi ∀xi, 1≤ i≤n. (4.9)

Then under (C1)

X ≤ccx Y (4.10)

where ≤ccx denotes the componentwise convex order. Under (C2) we ob-
tain convex ordering of the vectors

X ≤cx Y (4.11)

More generally (C2) can be replaced by condition (C2
′):

(C2
′) Yi = hi(X, Θ), where Ehi(x, Θ) = xi, 1≤ i≤n, X, Θ independent.

Condition (C2
′) again implies convex ordering

X ≤cx Y (4.12)

The argument in the proof of Corollary 4.2 allows to derive the following
criterion for the ≤wcs ordering.
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Proposition 4.4 Let X,Y be random vectors with the same conditionally
increasing copula and let Xi ≤cx Yi, 1 ≤ i ≤ n, then X ≤wcs Y .

Proof: W.l.g. let X1 ≤cx Y1 and Xi
d
= Yi, 2 ≤ i ≤ n. We have to establish

Cov(fi(Xi), f(X(i+1))) ≤ Cov(fi(Yi), f(Y(i+1))), 1 ≤ i ≤ n,

for fi, f monotonically nondecreasing. Without loss of generality we con-

sider the case i = 1. Since X(2)
d
= Y(2) we also may assume that X(2) = Y(2)

and Ef(X(2)) = 0. Using the standard representation and notation from the
proof of Corollary 4.2 we obtain conditionally given Θ = (V2, . . . , Vn) = ϑ.
f1(X1) = h1(V1), f(X(2)) = h2(V1) and f1(Y1) = g1(V1) where hi, g1 are
monotonically nondecreasing, g1 = g1(·, ϑ). Thus conditionally given Θ = ϑ
by the Lorentz-Ky Fan Theorem (see( 4.1))

(f1(X1), f(X(2))) ≤dcx (f1(Y1), f(Y(2)))

and therefore

Cov(f1(X1), f(X(2))) = Ef1(X1)f(X(2)) ≤ Cov(f1(Y1), f(Y(2))). 2

Proposition 4.4 implies that the directionally convex ordering result of
Müller and Scarsini (2001) stating that under the conditions of Proposition
4.4 X ≤dcx Y is also obtained as a consequence of our ordering result in
Theorem 3.1 for the wcs-ordering.

We finally consider some functional models based on random sequences
(Ui), (Vi), V , where V and (Vi) are independent of (Ui). Let (Ui), (Vi) be
random sequences and let V and (Vi) be one-dimensional and independent of
(Ui). From these we build up functional models X = (X1, . . . , Xn), Y = (Yi),
Z = (Zi) and W = (Wi) by

Xi = gi(Ui, Vi), Yi = gi(Ui, V )

Zi = g̃i(Ui, Vi), Wi = g̃i(Ui, V ).
(4.13)

Here (Ui) is some basic stochastic variable while Vi is some external random
source whose influence is given by the functionals gi, g̃i.

We make the following assumptions:

(A1) (Ui) are independent.

(A2) Vi ∼ V , 1≤ i≤n.

(A3) gi(u, ·), g̃i(u, ·) are monotonically nondecreasing.

Let ≤ccx denote the component-wise convex order. The first part of the
following result is stated in Bäuerle (1997, Theorem 3.1) for independent Ui.



12 Comparison of multivariate risk vectors

Proposition 4.5 Under (A2), (A3) holds

a) X ≤sm Y, Z ≤sm W . (4.14)

b) If additionally gi(ui, · ) ≤cx g̃i(ui, · ), for all ui, then

Y ≤dcx W (4.15)

Proof:

a) For ϕ ∈ F sm holds by the Lorentz theorem in (1.7)

Eϕ(X) = EUE(ϕ(X) | U1 = u1, . . . , Un = un)

= EUEϕ(g1(u1, V1), . . . , gn(un, Vn))

≤ EUEϕ(g1(u1, V ), . . . , gn(un, V ))

= Eϕ(g1(U1, V ), . . . , gn(Un, V )) = Eϕ(Y ).

Here EU denote the marginal expectation w.r.t. the random vector U
The proof of Z ≤sm W is similar.

b) The proof of X ≤dcx W follows from a) and the Ky Fan–Lorentz theorem
in 4.1 by a conditioning argument on the Ui.

2

We next compare vectors X, Y, Z, W under the assumption that the mar-
ginals increase convexly.

Proposition 4.6 Under conditions (A1), (A2), (A3) the following holds: If
for all v, g̃i(Ui, v) ≤cx gi(Ui, v) then

Z ≤ccx X,W ≤ccx Y and Z ≤dcx Y. (4.16)

Proof: By Proposition 4.5, X ≤sm Y . Further for any component-wise
convex function ϕ holds when conditioning under Vi = vi and using the
assumption on gi, g̃i:

Eϕ(X) = EV Eϕ(g1(U1, v1), . . . , gn(Un, vn))

≥ EV Eϕ(g̃1(U1, v1), . . . , gn(Un, vn))

= Eϕ(Z), i.e. Z ≤ccx X.

EV is the marginal expectation w.r.t. V . Here at the inequality we used that
by (A1) (g1(U1, v1), . . . , gn(Un, vn)) ≤ccx (g̃1(U1, v1), . . . , g̃n(Un, vn)). So we
get Z ≤ccx X ≤sm Y, implying Z ≤dcx Y. The inequality W ≤ccx Y is similar.

2
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Remark 4.7 The random vectors Y, Z and X,W which are compared w.r.t.
≤dcx in Proposition 4.6 do not have the same dependence structure (cop-
ula). The vectors X,Y, Z, W considered in Proposition 4.6 are not necessar-
ily positive dependent. Since we do not assume independence of the (Vi), any
F ∈ Fn can be represented in the form (gi(Ui, Vi)), with gi satisfying (A3).
Thus the comparison results of Propositions 4.5 and 4.6 concern a large class
of models.

5 Multivariate marginals

We consider random vectors X = (X1, . . . , Xn), where Xi are ki-dimensional
random vectors with df’s Fi and corresponding probability measures P1, . . .,
Pn. The df F = FX ∈ F(F1, . . . , Fn) has (known) multivariate marginals. In
comparison to the case of one-dimensional marginals the multivariate mar-
ginals case has not been considered a lot in the literature even if it seems
to be natural that for several applications one can control (determine) the
joint distribution of some subgroups and would like to control the influence
of dependence between the subgroups. Some general results and principles
for these kind of problems have been discussed in Rü (1991a, 1991b). In the
following we consider the analog of the classical Fréchet-bounds and obtain
as consequence some bounds on the integrals on ∆-monotone functions. Let
k =

∑n
i=1 ki be the dimension of X.

Theorem 5.1 (Fréchet-bounds for multivariate marginals)

a) If n = 2, A ∈ Bk is closed, and π1(x1, x2) = x1 is the first projection then

M(A) := sup{P (A); P ∈ M(P1, P2)} (5.1)

= 1− sup
{
P2(O)− P1

(
π1

(
A ∩ (IRk1 ×O)

))
; O ⊂ IRk2 open

}
,

b) F−(x) :=

(
n∑

i=1

Fi(xi)−(n−1)

)

+

≤ F (x1, . . . , xn)

≤ min
i≤n

Fi(xi) =: F+(x)

(5.2)

F̄−(x) :=

(
n∑

i=1

F̄i(xi)−(n−1)

)

+

≤ F̄ (x1, . . . , xn)

≤ min
i≤n

F̄i(xi) =: F̄+(x)

(5.3)

where F̄i(xi) = P (Xi ≥ xi), F̄ (x1, . . . , xn) = P (Xi ≥ xi, 1≤ i≤n) are the
multivariate survival functions. The bounds in (5.2), (5.3) are sharp.
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Proof:

a) is a consequence of Strassen (1965, Theorem 11) (see Rü (1982, 1986)).

b) In the case n=2 b) follows from a). The case n≥2 follows from a general
result in Rü (1981a) which states that for P ∈M(P1, . . . , Pn) where the
marginals Pi are defined on general polish spaces and for any measurable
sets A1, . . . , An holds

( n∑

i=1

Pi(Ai)− (n− 1)
)

+
≤ P (A1 × . . .× An) ≤ min

i≤n
Pi(Ai) (5.4)

and the bounds in (5.4) are sharp. 2

Remark 5.2 a) In the case of one-dimensional marginals (5.2), (5.3) are
the classical Fréchet-bounds. F+ the upper Fréchet-bound is a df while
the lower Fréchet-bound F− is a df only in exceptional cases with large
jumps (for details see Dall’Aglio (1972)).

b) Bounds for tails of Ψ(X1, X2): Part a) of Theorem 5.1 allows to obtain
sharp upper and lower bounds for tail probabilities P (Ψ(X1, X2) ≥ t)
of general functionals Ψ(X1, X2). One obtains much simpler forms for
monotonically nondecreasing function Ψ however:

If Ψ is monotonically nondecreasing upper-semicontinuous and A−
Ψ :=

{(u, v) minimal in IR2 : Ψ(u, v) ≥ t}, then

P (Ψ(X1, X2) ≥ t) ≤ inf
(u,v)∈A−Ψ(t)

(F1(u) + F2(v)) . (5.5)

In analogy to the case of combined risks where Ψ(x, y) = x + y (see Rü
(1982)) one could call the bounds in (5.5) the infimal (resp. supremal)
Ψ-convolution of P1, P2.

In the one-dimensional case the comonotone random vectors (F−1
1 (U), ...,

F−1
n (U)) attain the upper Fréchet-bound (i.e. have df F+) and by (1.7)

are the riskiest random vectors. In the multivariate case there typically
will not exist comonotone vectors (X1, . . . , Xn) with Xi ∼ Fi in the sense
that (X1, . . . , Xn) = (f1(U), . . . , fn(U)) with nondecreasing, fi : [0, 1] →
IRki . Even in the case that ki = k1, 1 ≤ i ≤ n, and F1 = F2 = . . . = Fn

the natural comonotone vector with identical components will not attain
the sharp upper Fréchet-bound F+(x) and thus does not yield the riskiest
portfolio distribution.
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Proposition 5.3 (Comonotone random vector and Fréchet-bounds)

a) In general the upper and lower Fréchet-bounds for ki ≥ 2 do not define
distribution functions.

b) If F1 = F2 = . . . = Fn is a k1-dimensional df, and X1 ∼ F1, then the
comonotone random vector X = (X1, . . . , Xn) has df

F (x) = F1(x1
∧ . . . ∧ xn) ≤ F+(x) = min

1≤i≤n
F1(xi), x

i
∈ IRk. (5.6)

In general there is strict inequality in (5.6).

Proof:

b) follows directly from the definition. Only for k1 =1 equality holds in (5.6)
in general.

a) The reason for a) is the following. Let w.l.o.g. n=2, k1=k2=2. Assume
that for G, H ∈ F2 with one-dimensional marginals G1, G2, H1, H2 the
lower Fréchet-bound F− = F−(G,H) were a four dimensional df. Then
for X ∼ F− we conclude from (5.2) that (X1, X3) ∼ F−

2 (G1, H1),
(X1, X4) ∼ F−

2 (G1, H2), (X2, X3) ∼ F−
2 (G2, H1) and (X2, X4) ∼

F−
2 (G2, H2). This however would imply strong positive correlation of

(X3, X4) and of (X1, X2) which is not according to our assumption. Ex-
cept for some exceptional cases with big jumps (as in Dall’Aglio’s clas-
sical 1972 paper) we would obtain that (X1, X2) ∼ F+

2 (G1, G2) and
(X3, X4) ∼ F+

2 (H1, H2). Similarly, the argument for the upper Fréchet-
bound yields the same conclusion. 2

Remark 5.4 The discussion in the proof of a) in Proposition 5.3 shows that
up to some exceptional cases (with big jumps) only for G = F+

2 (G1, . . . , Gn)
and H = F+

2 (H1, . . . , Hn) the Fréchet-bounds are df ’s. This holds in partic-
ular true if Gi, Hi are continuous df ’s.

For ∆-monotone functions f one can conclude from (5.2), (5.3) upper and
lower bounds for the integrals.

Theorem 5.5 Let f : IRk → IR1 be ∆-monotone and assume that for 1≤ i≤
k, limxi→−∞ f(x1, . . . , xi, . . . , xk) = 0 for all x1, . . . , xi−1, xi+1, . . . , xk. Then
for any F ∈ F(F1, . . . , Fn)

∫
F̄−(x) df(x) ≤

∫
fdF ≤

∫
F̄+(x) df(x) (5.7)

if the integrals exist.
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Proof: The proof follows from the Fréchet-bounds in (5.2), (5.3) applied to
the partial integration formula in Rü (1980, proof of Theorem 3). By this
formula one obtains for any a ∈ IRk

∫

[a,∞)
∆x

afdF =
∫

[a,∞)
F̄ (x)df(x). (5.8)

For a → −∞ the integrals converge by our assumption on f to yield
∫

fdF =
∫

F̄ (x)df(x) (5.9)

and so (5.4) follows from (5.3). 2

Remark 5.6 The bounds in (5.4) for the integrals are not sharp in general,
since F+, F− are not df ’s.

Example 5.7 (Antithetic and comonotone variates) In the following
examples we investigate some natural multivariate extensions of antithetic
and comonotone variates for various examples of functions ϕ. In particular
we also give an example where the comonotone random vector yields the
lowest risk for a directionally convex function ϕ.

Consider as example the case ki = 2, 1 ≤ i ≤ n and Fi = F−
2 (Gi, Hi),

1≤ i≤n, i.e. for a uniform random variable U , (G−1
i (U), H−1

i (1−U)) ∼ Fi,
1 ≤ i ≤ n. Some alternative random vectors with df ’s in F(F1, . . . , Fn) are

W+ = ((G−1
1 (U), H−1

1 (1−U), . . . , (G−1
n (U), H−1

n (1−U))),

Z = ((G−1
1 (U1), H

−1
1 (1−U1)), . . . , (G

−1
n (Un), H−1

n (1−Un))),

and W− = ((G−1
1 (U), H−1

1 (1−U)), (G−1
2 (1−U), H−1

2 (U)), . . .)

(5.10)

where (Ui) are independent uniform. W+ is a generalized comonotone vector,
Z the independent vector and W− a generalized antithetic vector. Then for
x = (x1, . . . , xn), xi = (yi, zi) we obtain

FW+(x) = (min Gi(yi) + min Hi(zi)− 1)+,

FZ(x) =
n∏

i=1

(Gi(yi) + Hi(zi)− 1)+,

F+(x) = min(Gi(yi) + Hi(zi)− 1)+, and

F−(x) =
( n∑

i=1

(Gi(yi) + Hi(zi)− 1)+ − (n−1)
)

+

(5.11)

FW+ , FZ are not uniformly comparable with each other.
Consider ϕ1(x) = (

∑
yi +

∑
zi)

2 and the special case Gi = G,Hi = H,
both with expectations zero. Then

Eϕ1(W
+) = Var

( n∑

i=1

G−1(U) + H−1(1−U)
)
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= n2 Var(G−1(U) + H−1(1−U)). (5.12)

Eϕ1(Z) = Var
( n∑

i=1

(G−1(Ui) + H−1(1−Ui))
)

= n Var(G−1(U) + H−1(1−U)). (5.13)

So Eϕ1(W
+) = nEϕ1(Z). The comonotone vector W+ = (X1, X1, . . . , X1),

X1 = (G−1(U), H−1(1−U)) induces a much higher variance of the sum
than the independent vector Z = (X1, . . . , Xn) where Xi are independent,
Xi ∼ X1. In fact in this case we obtain from (1.7) that

Eϕ1(W
+) ≥ Eϕ1(X) (5.14)

for all X with marginals Fi = F−
2 (G,H), i.e. the risk measured by ϕ1 is

maximal for the comonotone vector (this is true for all marginals Fi).

For ϕ2(x) = max yi + max zi, the sum of the maximal risks in the first
and second components the situation is different Eϕ(W+) = EG−1(U) +
EH−1(1−U) is the smallest possible value. From extreme value theory it is
known that the value of the independent vector Z, Eϕ2(Z), is of the order
an = G−1(1− 1

n
)+H−1(1− 1

n
) under the corresponding domain of attraction

conditions. It was shown in the classical 1976 paper of Lai and Robbins that
this is close to the maximal possible value attained by maximally dependent
rv’s. The fact that Eϕ2(W

+) ≤ Eϕ2(Z) is to be expected in this case since
ϕ2 is ∆-antitone.

Finally consider ϕ3(x) =
∑n−1

i=1 (yizi+1+yi+1zi)
2 and let G, H have support

in IR+. Then ϕ3 is directionally convex (so a proper measure of risk). For
the comonotone vector W+ we obtain

Eϕ3(W
+) = (n−1)E(G−1(U)H−1(1−U) + H−1(U)G−1(1−U))2.(5.15)

Thus in this case the comonotone vector W+ yields the smallest possible risk.
The reason is the strong negative dependence between the components of the
marginal distributions. The largest possible value is attained in this case by
the antithetic vector

W− = ((G−1(U), H−1(1−U)), (G−1(1−U), H−1(U)), . . .). (5.16)
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