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Abstract

Some necessary and some su�cient conditions are established for

the explicit construction and characterization of optimal solutions of

multivariate transportation (coupling) problems. The proofs are ba-

sed on ideas from duality theory and nonconvex optimization theory.

Applications are given to multivariate optimal coupling problems

w.r.t. minimal `

p

-type metrics, where fairly explicit and complete

characterizations of optimal transportation plans (couplings) are ob-

tained. The results are of interest even in the one-dimensional case.

For the �rst time an explicit criterion is given for the construction of

optimal multivariate couplings for the Kantorovich metric `

1

.
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1 Introduction

In this paper we deal with the following basic coupling problem. Let P;Q 2

M

1

(IR

k

; IB

k

) be two probability measures on (IR

k

; IB

k

) and de�ne for p � 1

and j j a norm on IR

k

the minimal `

p

-metric (w.r.t. the distance j j)

`

p

(P;Q) := inff(EjX � Y j

p

)

1=p

; X

d

= P; Y

d

= Qg;(1.1)

all rv'sX;Y being de�ned on a rich enough probability space. The transpor-

tation problem (or coupling problem) is to determine the value of the optimal

transportation `

p

(P;Q) and to construct an optimal pair (X;Y ) of random

variables. In this paper we restrict to the second part of the problem. The

multivariate coupling problem is a wellknown longtime open problem which

has many applications in probability theory (cf. Rachev (1991)). The aim

of the paper is to characterize optimal transportation plans (couplings), to

describe the necessary notions and arguments from nonconvex optimization

theory and consider extensions of the transportation problem in (1.1) to

general cost functions c(x; y). We remark that several parts of this paper

do not need the context of euclidean spaces (cf. also [13]). In sections 1

and 2 we review some basic notions and results which are up to now only

available in some conference volumes. In the following section 3 we develop

some new criteria which allow to determine optimal explicit coupling results

in a series of interesting examples.

In the case p = 2 and j j the euclidean metric, the following basic cha-

racterization of an optimal coupling (resp. an optimal solution of (1.1)) was

given in R�uschendorf and Rachev (1990).

Theorem 1 Let X

d

= P; Y

d

= Q have �nite second moments, j j the eucli-

dean metric on IR

k

.

a) (X;Y ) is `

2

-optimal if and only if

Y 2 @f(X) a.s. for some closed convex function f;(1.2)

where @f(x) denotes the subgradient of f in x.

b) There exists an optimal pair in a).

Some previous versions of this result were developed in Knott and Smith

(1984) and Smith and Knott (1987). A condition equivalent to (1.2) is

that the support � of the distribution of (X;Y ) is cyclically monotone i.e.

8(x

1

; y

1

); � � � ; (x

n

; y

n

) 2 �; x

n+1

:= x

1

holds:

n

X

i=1

(x

i+1

� x

i

)y

i

� 0(1.3)
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(cf. Rockafellar (1970)). Theorem 1 allows to construct many examples

of optimal transportation plans. The cases of normal distributions, radial

transformations, spherically invariant distributions and others are conside-

red in Cuesta, R�uschendorf and Tuero (1992). If � is a function on IR

k

and � = rf is the gradient of a closed (= lsc) convex function f , then

(X;�(X)) is an `

2

-optimal pair for any r.v. X in the domain of �. This

property proposes to call � an optimal coupling function. If � = (�

1

; � � � ; �

k

)

and �

i

are continuously di�erentiable de�ned on a convex domain, then the

`

2

-optimality of � is equivalent to:

� is cyclically monotone (i.e. the graph of �;

� = f(x; �(x);x 2 dom�g is cyclically monotone)

(1.4)

or, equivalently,

the matrix

�

@�

i

@x

j

(x)

�

is symmetric for all x 2 dom(�) and

� is monotone (i.e. (y � x)(�(y)� �(x)) � 0 for all x; y)

(1.5)

or, equivalently,

� = rf for some smooth convex function f(1.6)

(cf. [13] and [6]).

For radially continuous functions � on a convex set in IR

k

the condition

that � = rf for some Gateaux di�erentiable function f is equivalent to

the condition that the integral

R

x

0

!x

�(u)du is independent of the path of

integration, i.e. �(u)du is closed (cf. Vainberg (1973), Th. 6.2) and in this

case f(x) = f

0

+

R

1

0

�(x

0

+t(x�x

0

))(x�x

0

)dt = f

0

+

R

x

0

!x

�(u)du. Therefore,

under closedness of �(u)du, convexity of f is equivalent to monotonicity of

�.

Remark 1 Theorem 1 solves \one half" of the problem of construction of

optimal `

2

-transportation plans. It gives a characterization of all `

2

-optimal

transportation plans. The still open problem is to �nd to given P;Q an

optimal coupling function �. If P;Q have densities f; g w.r.t. �

n

k

and if a

regular invertible solution � exists, then by the transformation formula the

problem to be solved is the Monge nonlinear partial di�erential equation:

Find � (regular) cyclically monotone such that:

g(x) = f(�

�1

(x))jdetD

�

�1
(x)j;(1.7)

x in the support of Q.

The usual boundary conditions of PDE's are replaced by the condition

of cyclical monotonicity of �. For the (approximate) solution of (1:7) there
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seem to be except in simple cases two strategies. Firstly to develop numerical

solutions of (1:7) and secondly to give a \su�ciently" large list of examples �

of optimal coupling functions and the resulting pairs of densities f; g. This

second path has begun to be investigated in [1] but needs a lot of further

extensions. The �rst path seems to be completely unsettled up to now.

2 c-Convex Functions; the General Case

Theorem 1 has been extended to general cost functions c : IR

k

� IR

k

! IR

1

(c also might be de�ned on subsets) in [12], [13]. Call a pair X

d

= P; Y

d

= Q

c-optimal if

Ec(X;Y ) = supfEc(U; V );U

d

= P; V

d

= Qg:(2.1)

We consider the corresponding sup problem in order to avoid notational

con
ict with relevant notions from nonconvex optimization theory. For the

inf problem just switch over from c to the cost function �c. A function f

on IR

k

is called c-convex if for some index set I and y

i

2 IR

k

; a

i

2 IR

1

; i 2 I

f(x) = sup

i2I

(c(x; y

i

) + a

i

):(2.2)

For c(x; y) = xy (on IR

k

) one obtains the closed convex functions. This case

corresponds to the minimal `

2

-metrics considered in Section 1. c-convex

functions have been studied in several recent papers on non-convex op-

timization theory (cf. Elster and Nehse (1974) and Dietrich (1988) and

references therein). Denote the c-conjugate of f by

f

�

(y) := sup

x

(c(x; y)� f(x))(2.3)

the sup being over the domain of f resp. c, and the doubly c-conjugate

f

��

(x) := sup

y

(c(x; y)� f

�

(y)):(2.4)

Then f

�

; f

��

are c-convex, f

��

is the largest c-convex function majorized by

f and f = f

��

if and only if f is c-convex (cf. Elster and Nehse (1974)) and

f

�

; f

��

are \admissible" in the sense that

f

�

(y) + f

��

(x) � c(x; y); 8x; y:(2.5)

The (doubly) conjugate functions are basic for the theory of inequalities as

in (2.5). The c-subgradient of a function f is de�nded by

@

c

f(x) := fy; f(z)� f(x) � c(z; y)� c(x; y); 8z 2 dom(f)g(2.6)
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The following result gives the basic characterization of c-optimal transpor-

tation plans (X;Y ). It is the analogue to Theorem 1 for the case of `

2

-

couplings.

Let L

m

(P;Q) denote the set of all lower majorized measurable functions

c = c(x; y), i.e. c(x; y) � f

1

(x) + f

2

(y) for some f

1

2 L

1

(P ); f

2

2 L

1

(Q).

Theorem 2 (cf. [13])

Let c 2 L

m

(P;Q) and assume that I(c) := inff

R

h

1

dP+

R

h

2

dQ; c � h

1

�h

2

,

h

1

2 L

1

(P ); h

2

2 L

1

(Q)g <1.

a) X

d

= P; Y

d

= Q is a c-optimal pair if and only if

Y 2 @

c

f(X) a.s. for some c-convex function f :(2.7)

b) If c is upper semicontinuous, then there exists an optimal pair (X;Y ).

For c(x; y) = jx � yj

p

; I(c) < 1 if c(�; a) 2 L

1

(P ); c(a; �) 2 L

1

(Q), i.e.

P;Q have �nite p-th moments. The same condition implies that c(x; y) =

�jx�yj

p

is lower majorized, i.e. c 2 L

m

(P;Q). As in (1.4) and by a similar

proof condition (2.7) is equivalent to the condition that the support � of

(X;Y ) is c-cyclically monotone, i.e. 8(x

1

; y

1

); � � � ; (x

n

; y

n

) 2 �; x

n+1

:= x

1

holds:

n

X

i=1

(c(x

i+1

; y

i

)� c(x

i

; y

i

)) � 0(2.8)

(cf. [2] and [14]). For a di�erentiable cost function c(x; y) and a function

� on IR

k

denote c

1

(x; y) :=

@

@x

c(x; y). The di�erential form c

1

(x; �(x))dx is

called closed if its integral is path independent. For the case of regular �

the following lemma was given in [13].

Lemma 3 If c(�; y) is di�erentiable for all y and c

1

(u; �(x))dx is closed,

then (2:7), (2; 8) are equivalent to

Z

y!x

(c

1

(u; �(y))� c

1

(u; �(u)))du � 0; 8x; y:(2.9)

Proof: If (2.9) holds, then de�ne for some x

0

2 dom�

f(x) :=

Z

x

0

!x

c

1

(u; �(u))du:(2.10)

From (2.9) we conclude for all z

f(z)� f(x) =

R

x!z

c

1

(u; �(u))du

�

R

x!z

c

1

(u; �(x))du

= c(z; �(x))� c(x; �(x)):
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Therefore, �(x) 2 @

c

f(x). The converse direction is similar. 2

Remark 2 If c(�; y) is concave, then (without di�erentiability) the following

version of Lemma 3 holds:

If �h

x

(u) is in the subgradient @(�c(�; �(x))) at u and if h

u

(u)du is

closed, then (2:7), (2:8) are equivalent to

Z

y!x

(h

y

(u)� h

u

(u))du � 0; 8x; y:(2.11)

This conclusion follows from the inequality

c(z; �(x))� c(x; �(x)) �

Z

x!z

h

x

(u)du

and replacing (2:10) by f(x) :=

R

x

0

!x

h

u

(u)du.

For the application of the theory in this section one needs manageable

criteria to determine c-subgradients resp. c-cyclically monotone functions

�. To establish these criteria is the main contribution of this paper.

3 c-Optimal Coupling Functions

Call a function � c-cyclically monotone if the graph of �, � := f(x; �(x));x 2

dom�g is c-cyclically monotone. By Theorem 2 for any c-cyclically mono-

tone function � and any r.v. X in the domain of � the pair (X;�(X)) is

a c-optimal pair. The idea of the following simple criterion for the con-

struction of c-cyclically monotone functions � is basically due to Smith and

Knott (1992) who also consider the case of general pairs (X;Y ). It is based

on criterion (2.8) and relates c-cyclically monotone functions to cyclically

monotone functions. This in an interesting relation since the cyclically mo-

notone functions are studied in several papers.

Theorem 4 If for some cyclically monotone function h and all x; y in the

domain of �

c(x; �(x))� c(x; �(x)) � h(x)(y � x);(3.1)

then � is cyclically monotone.

Proof: For all x

1

; � � � ; x

n

2 dom�, x

n+1

:= x

1

holds

P

n

i=1

(c(x

i+1

; �(x

i

)) �

c(x

i

; �(x

i

))) �

P

n

i=1

h(x

i

)(x

i+1

� x

i

) � 0, since h is cyclically monotone. 2

6



Corollary 5 If c(�; y) is concave and di�erentiable for all y and if h(u) :=

c

1

(u; �(u)) is cyclically monotone, then � is c-cyclically monotone.

Proof: From concavity of c(�; y) we obtain c(y; �(x))�c(x; �(x)) � c

1

(x; �(x))

(y � x) = h(x)(y � x); i.e. condition (3.1) is satis�ed. 2

Remark 3 For the application to non-di�erentiable functions c like c(x; y) =

�jx� yj

p

the following extension of Corollary 5 is of interest:

If c(�; y) is concave and �h(u) is in the subgradient of �c(�; �(u)) at u, and

if h is cyclically monotone, then � is c-cyclically monotone.

Example 1 a) (Optimal `

p

-couplings)

Let c(x; y) := �jx� yj

p

; p > 1; x; y 2 IR

k

; j j the euclidean me-

tric, i.e. we consider the problem to construct optimal transportation

plans w.r.t. the minimal `

p

-metric as de�ned in (1:1) (up to the p-th

root). then c(�; y) is (strictly) concave since the Minkowskis inequality

c(�x

1

+ (1� �)x

2

; y) = �j�(x

1

� y) + (1� �)(x

2

� y)j

p

� �(�jx

1

� yj+ (1� �)jx

2

� yj)

p

� ��jx

1

� yj

p

+ (1� �)jx

2

� yj

p

= �c(x

1

; y) + (1 � �)c(x

2

; y)

(3.2)

by the convexity of t ! t

p

on the positive real line. (This argument

holds true for any norm.) Let h be any cyclically monotone function.

Then the equation

c

1

(x; �(x)) = �jx� �(x)j

p�2

(x� �(x)) = h(x)(3.3)

has the unique solution

�(x) = jh(x)j

�

p�2

p�1

h(x) + x:(3.4)

Therefore, from Corollary 5 for any cyclically monotone function h,

the function � = �

h

from (3:4) is c-cyclically monotone and so for any

r.v X in the domain of � the pair (X;�(X)) is an optimal coupling

w.r.t. minimal `

p

-metrics. Some partial result in the case 1 < p � 2

was given in Smith and Knott (1992). For p = 2 we obtain the condi-

tion that �(x) = h(x) + x is cyclically monotone. By Theorem 1 the

necessary and su�cient condition is that �(x) is cyclically monotone.

If in particular h(x) := Ax, A positive semide�nite, symmetric, linear

(df. (1:5)), then we obtain optimality of
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�(x) = (x

T

A

2

x)

�

p�2

2(p�1)

Ax+ x:(3.5)

If h(x) = �(jxj)

x

jxj

, � monotonically nondecreasing, is a radial trans-

formation, then

�(x) = g(jxj)

x

jxj

;(3.6)

where g(jxj) := (�(jxj))

1

p�1

+ jxj is optimal. � again is a radial tran-

formation. Optimality of radial transformations has been established

before in [1].

b) For c(x; y) = �

P

k

i=1

jx

i

� y

i

j

p

; p > 1, and h = (h

1

; : : : ; h

k

) any cycli-

cally monotone function de�ne

b

h(x) := (jh

i

(x)j

�

p�2

p�1

h

i

(x)):(3.7)

Then as in example a) we obtain

�(x) =

b

h+ x is c-optimal:(3.8)

c) For c(x; y) = �(

P

k

i=1

jx

i

�y

i

j

p

)

r=p

= �jx�yj

r

p

; p; r > 1 consider the

equation

c

1

(x; �(x)) = �rjx� �(x)j

r�p

p

(jx

i

� �

i

(x)j

p�2

(x

i

� �

i

(x))(3.9)

= rh(x)(3.10)

for any cyclically monotone function h. From (3:9) we obtain

jh

i

(x)j = jx � �(x)j

r�p

p

jx

i

� �

i

(x)j

p�1

and with the conjugate index

q =

p

p�1

to p, jh(x)j

q

=

�

P

jh

i

(x)j

p

p�1

�

p�1

p

= jx � �(x)j

r�1

p

. There-

fore,

jx

i

� �

i

(x)j

p�2

= jh

i

(x)j

p�2

p�1

jx� �(x)j

(p�r)(p�2)

p�1

p

= jh

i

(x)j

p�2

p�1

jh(x)j

p�r

r�1

p�2

p�1

q

(3.11)

and

8



�

i

(x)� x

i

= h

i

(x) jx� �(x)j

p�r

p

jx

i

� �

i

(x)j

2�p

= h

i

(x) jh(x)j

p�r

r�1

p

p�1

jh

i

(x)j

2�p

p�1

jh(x)j

r�p

r�1

p�2

p�1

q

= h

i

(x) jh

i

(x)j

2�p

p�1

jh(x)j

p�r

r�1

q

:

From (3:9) and Corollary 5, therefore,

�(x) :=

b

h(x) + x is c� optimal;(3.12)

where

b

h(x) := jh(x)j

p�r

r�1

q

�

h

i

(x)

jh

i

(x)j

p�2

p�1

�

.

d) (Kantorovich-metric `

1

)

For c(x; y) = �jx � yj

p

= � (

P

jx

i

� y

i

j

p

)

1=p

; p � 1, a di�erent

situation occurs. Note that this cost function corresponds to the mini-

mal `

1

-metric (based on the p-norm in IR

k

). We consider at �rst the

case p > 1. Then for f(x) = jxj

p

the subdi�erential is given by (cf.

[10])

@f(x) =

( �

jx

i

j

p�2

x

i

jxj

p�1

p

�

= rf(x) for x 6= 0

U

q

for x = 0

(3.13)

where U

q

is the unit ball w.r.t. q-norm. Therefore, for any y 2 @f(x)

holds jyj

q

= 1 for x 6= 0, while jyj

q

� 1 for x = 0. Let h be any

cyclically monotone function with

jh(x)j

q

= 1(3.14)

and consider the equation

�

jx

i

� �

i

(x)j

p�2

jx� �(x)j

p�1

p

(�

i

(x)� x

i

)

�

= h(x); x 6= �(x):(3.15)

Then from the de�nition of the subgradient we obtain

c(y; �(x))� c(x; �(x)) � h(x)(y � x)

and, therefore, by Theorem 4 (or Remark 3) � is cyclically monotone.

De�ne for any nonnegative function �(x) � 0

9



�(x) := (�(x))

1

p�1

 

h

i

(x)

jh

i

(x)j

p�2

p�1

!

+ x:(3.16)

Then

j�(x)� xj

p�1

p

= �(x)jh(x)j

q

= �(x):

Furthermore,

j�

i

(x)� x

i

j = (�(x)jh

i

(x)j)

1

p�1

and

�

i

(x)� x

i

= (�(x))

1

p�1

h

i

(x)

jh

i

(x)j

p�2

p�1

= (�(x)h

i

(x))

�(x)

2�p

p�1

jh

i

(x)j

p�2

p�1

= �(x)h

i

(x)=j�

i

(x)� x

i

j

p�2

:

This implies that � satis�es equation (3:14). So in the case of the

`

1

-metric the optimality equation has no longer a unique solution. In

the case p = 2, (3:15) simpli�es to

�(x) = �(x)h(x) + x(3.17)

and the optimality equation (3:14) reduces to the condition h(x) =

�(x)�x

j�(x)�xj

is cyclically monotone.

In the case p = 1 we have, analogously, with f(x) = jxj

1

, the following

char- acterization of @f(x):

u 2 @f(x) if and only if u

i

=

x

i

jx

i

j

for x

i

6= 0 and ju

i

j � 1 for x

i

= 0:

(3.18)

Similar to the preceeding calculations or by Remark 3 we obtain the

optimality equation

�

i

(x)� x

i

j�

i

(x)� x

i

j

= h

i

(x); x

i

6= �

i

(x)(3.19)

10



and jh

i

(x)j � 1; h cyclically monotone. The solutions of (3:18) are

given by

�

i

(x) = �

i

(x)h

i

(x) + x

i

(3.20)

for some nonnegative functions �

i

(x).

Corollary 6 Let c(x; y) = �jx � yj

p

; p � 1 and let �(x); �

i

(x) � 0 be

measurable, real, and let h(x) be cyclically monotone with jh(x)j

q

= 1 for

all x; q =

p

p�1

the conjugate index to p. Then

�(x) = (�(x))

1

p�1

 

h

i

(x)

jh

i

(x)j

p�2

p�1

!

+ x for p > 1(3.21)

and

�(x) = (�

i

(x)h

i

(x)) + x for p = 1(3.22)

are c-cyclically monotone.

So for all rv's X in the domain of � the pair (X;�(X)) is an optimal coup-

ling for the `

1

-metric (Kantorovich metric) based on the p-norm distance j j

p

on IR

k

. It remains to be investigated how large the class of admissible h is.

From de�nition (2.6) c-subgradients of a function f have a characteriza-

tion as solution of a nonconvex optimization problem:

y

�

2 @

c

f(y) if and only if

'

y

(x) � '

y

(y) for all x; y;(3.23)

where '

y

(x) := f(x) � c(x; y

�

); i.e. '

y

has its minimum in x = y. If

y

�

= �(y) and c

1

(u; �(u))du is closed, then by (2.10)

@

@x

'

y

(y) = 0:(3.24)

With the second derivatives

B(x; y) : = �

@

2

@x@x

0

'

y

(x)

=

@

2

@x@x

0

c(x; �(y))�

@

2

@x@x

0

c(x; �(x))

�

@

2

@x@y

c(x; �(x))D�(x)

(3.25)

one obtains

Proposition 7 If c is di�erentiable in the �rst component and c

1

(u; �(u))du

is closed, then:

11



a) B(x; y) � 0 (in the sense of positive de�niteness) implies that � is

c-optimal.

b) if � is c-optimal, then

�B(y; y) =

@

2

@x@x

0

c(y; �(y))�(y) � 0(3.26)

Proof:

a) If B(x; y) � 0, then '

y

is convex and

@

@x

'

y

(y) = 0. This implies that

y is a global minimum of '

y

and, therefore, by (3.22), �(y) 2 @

c

f(y);

i.e. � is a c-optimal function.

b) is a well-known necessary condition for local optimality of '

y

in x = y.

2

Remark 4 In the case c(x; y) = �jx� yj

p

; 1 < p; j j the euclidean metric,

@

2

@y

j

@x

i

c(x; y) =

8

>

>

>

<

>

>

>

:

�p(p � 2)jx� yj

p�3

s(y

j

� x

j

)(x

i

� y

i

)

for i 6= j

�p(p � 2)jx� yj

p�3

s(y

i

� x

i

)(x

i

� y

i

) + pjx� yj

p�2

for i = j

s the sign function and, therefore, the necessary condition (3:25) reads

�B(y:y)(3.27)

= �pjy � �(y)j

p�2

�

(p� 2)

(y � �(y))(y � �(y))

T

jy � �(y)j

2

� I

�

D�(y) � 0:

For p = 2, (3:26) is equivalent to the necessary and su�cient condition

D� � 0.

The following su�cient condition for c-optimality of � does not assume

that the cost function is concave.

Theorem 8 If c(�; y) is di�erentiable for all y and c

1

(u; �(u))du is closed

and if for all x; y in the domain of �

(x� y)(c

1

(x; �(x))� c

1

(x; �(y))) � 0;(3.28)

then � is a c-optimal function.

12



Proof: For c-optimality of � it is by (3.22) and (2.9) su�cient to prove that

F

y

(x) : =

Z

y!x

(c

1

(u; �(y))� c

1

(u; �(u)))du

� 0 = F

y

(y):

Let for t � 0; x

t

:= y + t(x� y) and H(t) := F

y

(x

t

). Then by (3:27)

d

dt

H(t) =

@

@x

F

y

(x

t

)(x� y)(3.29)

= (c

1

(x

t

; �(y))� c

1

(x

t

; �(x

t

)))(x� y)

=

1

t

(c

1

(x

t

; �(y))� c

1

(x

t

; �(x

t

)))(x

t

� y) � 0

This implies that

F

y

(x) = F

y

(y) +

Z

1

0

d

dt

H(t)dt � 0:

2

Remark 5 If c(�; y) is concave, then as in Remark 2 we have (without dif-

ferentiability) the following modi�ed version of Theorem 8:

If �h

x

(u) 2 @(�x(�; �(x)))(u), if h

u

(u)du is closed and if for all x; y 2

dom(�)

(x� y)(h

x

(x)� h

y

(x)) � 0;

then � is c-cyclically monotone. This gives an alternative to the criterion

in Corollary 5 and Remark 3, which is of advantage in some examples.

Example 2 a) In the case c(x; y) = �jx� yj

p

; p > 1, j j the euclidean

metric, condition (3:27) amounts to

(g

x

(x)� g

x

(y)(x� y) � 0 for all x; y;

with g

x

(y) := jx� �(y)j

p�2

(x� �(y)):

(3.30)

A rough su�cient condition for (3:29) is that for all x; g

x

is cyclically

monotone. For a cyclically monotone function h

x

the equation

g

x

(y) = h

x

(y); 8y(3.31)

13



has the unique solution

�

x

(y) = jh

x

(y)j

�

p�2

p�1

h

x

(y) + x:

The assumption that �

x

= � does not depend on x leads to the equation

with h := h

0

; r :=

p�2

p�1

;  (y) :=

h(y)

jh(y)j

r

h

x

(y) = ( (y)� x)j (y)� xj

r

1�r

(3.32)

and

�(y) = jh(y)j

�r

h(y):(3.33)

But now it has to be checked whether h

x

is cyclically monotone for all

x. For p = 2; �(y) = h(y), this is trivially true.

b) For c(x; y) = �jx� yj

p

= �(

P

jx

i

� y

i

j

p

)

1=p

; p � 1;

c

1

(x; y) := �

1

jx�yj

p�1

p

(jx

i

� y

i

j

p�2

(x

i

� y

i

); x 6= y de�nes a subgradient

and condition (3:27) resp. Remark 5 amounts to:

P

k

i=1

(x

i

� y

i

)

�

jx

i

��

i

(x)j

p�2

jx��(x)j

p�1

p

(�

i

(x)� x

i

)

�

jx

i

��

i

(y)j

p�2

jx��(y)j

p�1

p

(�

i

(y)� x

i

)

�

� 0:

(3.34)

For p = 2, (3:33) reduces to

(x� y)

�

�(x)� x

j�(x)� xj

�

�(y)� x

j�(y)� xj

�

� 0 for all x; y:(3.35)

So Theorem 8 has the following interesting consequence for the `

1

-

metric w.r.t. the euclidean distance j j = j j

2

.

Corollary 9 (Optimal couplings w.r.t. Kantorovich-metric)

If

�(u)�u

j�(u)�uj

du is closed and � satis�es the normalized angle monotonicity con-

dition

(x� y)

�

�(x)� x

j�(x)� xj

�

�(y)� x

j�(y)� xj

�

� 0 for all x; y:(3.36)

then (X;�(X)) is an optimal coupling for the `

1

-metric w.r.t. euclidean

distance on IR

k

for any r.v. X in the domain of �.
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Remark 6 a) Condition (3:35) has an obvious geometric interpretation.

If we consider �(x) and �(y) in the (by x) translated coordinate system

and normal- ized to norm 1, then this di�erence has an angle with the

di�erence of x and y (or y in the translated system) of less than 90

degrees. Without translation and normalization this is just the usual

monotonicity. Corollary 9 suggests to develop a theory of (3:35) since

this notion is related to optimality w.r.t. the Kantorovich metric `

1

, as

monotonicity is related to optimality w.r.t. the `

2

-metric (cf. Theorem

1).

b) (One dimensional case)

Even in the one-dimensional case the conclusions of this section are of

interest and new. They allow to construct optimal couplings in some

cases of cost functions c which are not of Monge-type. On the real line

condition (3:27) is equivalent to:

� �

x y implies c

1

(x; �(x)) c

1

(x; �(y));

� �

(3.37)

while in the concave case Corollary 5 gives the su�cient condition for

optimality:

h(x) := c

1

(x; �(x)) is monotonically nondecreasing:(3.38)

To compare these criteria consider the case c(x; y) = (x� y)

2

; x; y 2

IR

1

. Then condition (3:37) is equivalent to

�(x)� x is nondecreasing;(3.39)

while condition (3:36) amounts to

� is nondecreasing:(3.40)

So in this case Theorem 8 gives the best possible answer while Corollary

5 has a stronger su�cient condition.

c) The su�cient condition B(x; y) � 0 for c-optimality in Proposition

7 implies that '

y

(cf. (3:18)) is convex. If we can assure the weaker

condition that '

y

is quasi-convex, i.e.

'

y

(�x + (1� �)y) � min('

y

(x); '

y

(y));(3.41)
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then a local minimum of '

y

is either situated in a domain where '

y

is

constant, or it is already a global minimum (cf. Roberts and Varberg

(1973)). Therefore, the sharpened necessary condition thath B(y; y) <

0 is already a su�cient condition for c-optimality of �.

d) Similar ideas to those in this section appear in a recent paper of Le-

vin (1992) on the Kantorovich-Rubinstein problem. Levin obtains for

this problem (with �xed di�erence of the marginals) an explicit for-

mula for the value of the optimal transshipment problem in the case of

di�erentiable cost functions but no characterization of optimal plans.

In contrast we obtain in this paper explicit results for the form of

optimal transportation plans but no explicit formula for the optimal

value. For the proof of the optimal value formula in the transshipment

problem the di�erentiability of the cost function at the diagonal is a

crucial assumption. Note that this assumption excludes the natural

cost functions c

p

(x; y) = jx � yj

p

; p � 1, the di�erentiable powers

jx � yj

�

p

; � > 1, lead to trivial results in the transshipment problem.

Some explicit results and bounds in the nondi�erentiable case of the

transshipment problem were established in Rachev and R�uschendorf

(1991).

Since the transshipment and transportation problems coincide for cost

functions satisfying the triangle inequality, the results of this paper can

also be seen in this context.
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