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Summary: In this paper we consider the problem of finding optimal consumption strategies in an
incomplete semimartingale market model under model uncertainty. The quality of a consumption
strategy is measured by not only one probability measure but as common in risk theory by a class
of scenario measures. We formulate a dual version of the optimization problem and prove the
existence of a saddle point and give a characterization of an optimal consumption strategy in terms
of solutions of the dual problem. This generalizes results of Karatzas and Zitkovic (2003) for the
optimal consumption problem under a fixed probability measure.

1 Introduction

One of the main problems in mathematical finance is how to invest in aSsets
(S1,..., 8% in an optimal way, where optimality is measured with an utility function

U : R — R. Admissible investment or trading strategies are predictable processes
H = (H',..., H%) for which the stochastic integral - S is well defined and uniformly
bounded below. Then the problem of optimal investment can be formulated as follows:
For a given initial capitak € R* find an admissible trading stratedy* such that the
mean utility at maturityl” € R is maximal, that isH* maximizes the expression

EU(z+ H - S7) (1.1)

with respect to all admissible trading strategiésThere are essentially two approaches

in the literature for solving problem (1.1). The first one establishes a deterministic partial
differential equation and then shows that its solution is an optimal strategy. For this ap-
proach one needs the assumption thias a markov process. A more general approach

is the so called martingale method which uses the duality theory of convex analysis.
Therefore the starting point is an equivalent description of admissible trading strategies
by supermartingale measures. This allows the formulation of a dual problem which can
be solved more easily. By a connection with the primal problem (1.1) one gets an optimal
trading strategy (for a comprehensive overview see Schachermayer (2004)).
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In general one does not only want to invest but also to consume some of the gained
capital. This is described by consumption strategi@ghich are optional nonnegative
processes. The goal is the determination of an optimal consumption strategy for which

the mean utility
T
B ( / Uler) dt) (1.2)
0

is maximal with respect to an admissible class of consumption strategies. Under a suit-
able definition of admissibility the consumption problem (1.2) can be solved with the
martingale method similar to the investment problem (1.1) (see Karatzas and Zitkovic
(2003)).

In the following we consider a generalization of problem (1.2): Abe a continuous
coherent risk measure and Ietbe a loss function. We are searching for an admissible
consumption strategy” which minimizes the risk of a loss, that is

p (— /OT L(c}) dt) = ilclf (1.3)

with respect to all admissible consumption strategieSince continuous coherent risk
measures can be represented by sets of probability me&3umese form

p(X) = sup Eg(—X)
QeP

problem (1.3) is equivalent to the minimization of

T
sup Eq (/ L(ey) dt) (1.4)
QeP 0

with respect to all admissible consumption strategiés contrast to problem (1.2) there
is not only one underlying probability measure but a whole class of these. Therefore, one
speaks of model uncertainty. The correct model is unknown, so one chooses a class of
models which, from a risk managers point of view, describes the reality in a sufficient
precise way.

The related generalized version of problem (1.1) of maximizing the robust utility
function élég; Eq(u(X)) over all admissible claims for incomplete market models has

been considered in a recent paper by Gundel (2003) extending the nonrobust version
of this problem from Goll and Bschendorf (2001). A related variational problem was
also considered in Schied (2004) where for law invariant risk measures explicit solutions
could be given by Neyman-Pearson theory for robust testing problems. In a recent paper
the portfolio optimization problem (1.1) has been studied in the robust case by Quenez
(2004) extending a result from Cvitanic and Karatzas (1999) and the nonrobust version
of this problem by Kramkov and Schachermayer (1999) where the solutions are charac-
terized by duality based methods.

The outline of the paper is as follows: In section 2 we specify our market model and
formulate the problem of optimal consumption under model uncertainty. In section 3 we
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give some conditions under which problem (1.4) has a saddle point. As a result we obtain
similar as in the nonrobust version of this problem in Karatzas and Zitkovic (2003) an
optimal consumption strategy.

2 The model and the consumption problem

In the following letS = (S*,.. ., S%) be a semimartingale on a filtered probability space
(4 F, (Ft)iepo, 1), P), whereT ¢ R*. S represents a discounted asset price process.

Trading strategie$l = (H', ..., H%) are predictable-integrable processes, where
H' denotes the amount investedd. Let X’ be the set of all stochastic integrdis- .S
which are bounded from below by some constant. We assume that thefgetobability
measures) equivalent with respect t& such that each proceds € X is a supermartin-
gale with respect t@ is not empty. The séP denotes the wedkclosure ofS in the space
of finitely additive measuresa(P) absolutely continuous with respectf Apart from
trading strategies let an optional nonnegative endowment prdegssio, ) be given,
which describes additional income. We assume thatc (o, 1) is essentially bounded. In
addition there is the possibility to consume gained capital. This is modeled by optional
nonnegative processesWe call such processesonsumption strategies.

The following definitions and properties are taken from Karatzas and Zitkovic (2003).

Definition 2.1 A consumption stratedy: )co,7 is called admissible with respect to the
initial capital z € R if there exists a trading strateg§ such that

T T
$+/ thSt—l—/ (et—ct)dtZO
0 0

The set of all admissible trading strategies with respect to the initial capital R™ is
denoted byA(z).

It is easy to see thatl(z) is convex and closed under convergence in probability with
respect taP ® .

For a finitely additive measui@ € D we define a density process as follows: L&t
be the regular part af and letL¥ := d;gj“f]_ft);. Then the density proce3&? of Q with
respect taP is defined by

YtQ := lim inf L?.
qlt
qEQ

This implies the following characterization of admissible consumption strategies (see
Karatzas and Zitkovic (2003)).

Lemma 2.2 ¢ is an admissible consumption strategy with initial capitalthat isc €
A(z), if and only if

T T
E</ cthth>§x+<Q,/ etdt> forall Q € D.
0 0
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Our goal is to find optimal admissible consumption strategies, that is, those strategies
for which the risk of a loss is minimal. Losses are measured by some strictly decreasing,
strictly convex, continuously differentiable loss function: R™ — R which fulfills
the Inada-conditions

L'(0) = -0 and L'(co) =0.

The risk of a loss is determined by some relevant cohdrémtsk measure : L (P) —
R having the Fatou-property. These risk measures are given by the following axioms: Let
X,Y € LY(P),m € Rand) € R* then

1) If X > Y thenp(X) < p(Y) (monotonicity).

2) p(X +m) = p(X)—m (translation invariance).

3) p(AX) =Mp(X)andp(X +Y) < p(X)+ p(Y) (coherence).
4) ForallA € F with P(A) > 0 holdsp(—14) >0 (relevance).

5) Let(X,,).en be an uniformly bounded sequencelih( P) with X, L& X then

p(X) <liminf p(X,) (Fatou-property).

n—oo

By a modification of Delbaens (2002) representation theorem, by Nakano (2004) there
exists a weak-closed convex sé® of probability measure® equivalent with respect to
P with the properties

sup @ H < 00
QeP ap 0o
and
p(X) = sup Eg(—X) forall X € L'(P). (2.1)
QeP

Examples for coherert!-risk measures are given by

a) P ={Q}, whereQ ~ P has a boundeé-density.
b) P = {QNP:% < %}forsomeAe (0,1].

The setP in b) generates the coherent risk measure
1 )\
AR, (f) = § [ VaRu(£) da.
0

where VaR, denotes the Value at Risk at lewel Under appropriate assumptions (see
Folimer and Schied (2002)) AvaR is equal to the worst conditional expectation WCE
which is given by

WCE\(f) :=sup{ E(—f | A): Ae F, P(A) > )}
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AVaR, is in some sense the smallest coherent risk measure which dominatgsivaR
addition it can be shown that AVgRjenerates the class of all law invariant risk measures
(see Inoue (2003)).

Forxz € RT let

T
A () = {c € A(z) : /0 L(c;) dt € L*(P) } .

We are searching for a solution of the optimization problem

T
— L(cy)dt | = inf . 2.2
”(/o (@) ) Lt 2:2)

By the representation (2.1) pfproblem (2.2) has the form

T T
inf p —/ L(cy)dt | = inf sup E, / L(c)dt | .
cE.AlL(z) < 0 ( t) > cEA}J(z) QeP Q ( 0 ( t)

One can formulate the problem equivalently by utility functions.llet= — L. Then we
are searching for a solution of

T
sup inf E / Uley)dt | . (2.3)
ceAl (z) QeP @ ( 0 '
In this case our problem is a generalization of Karatzas and Zitkovic (2003) where

{P}.
In the following we give some conditions under which (2.3) has a saddle point
which allows to construct an optimal consumption strategy analogously to Karatzas and

Zitkovic (2003).

3 A solution of the consumption problem

The optimal consumption problem in (2.3) is defined by the functional

T
us(xz) = sup inf Eg / Ule)dt |, z>0. (3.2)
ceAl (z) QeP 0
Letu* denote the corresponding functional
T
u*(z) = inf sup Eg / U(er)dt |, =>0. (3.2)
QEP ceAl (a) 0

The dual problem to (3.1) is given by

T Q T
g Y 5
v(y) == C%IelfDérg;’{EQ (/0 V(ny?) dt) +y<Q,/O etdt>},



6 Burgert — Rischendorf

y >0, WhereZtQ =F (j—g ’]—“t) is the density process 6f € P with respect taP and
V is the conjugate of/, that is

V(y) = sup (U(z) — zy).

reRT
For@ € P letug the mean value of the optimal consumption with respe@,to
T
ug(x) == sup Eg / Ul(ee) dt (3.3)
ceAL (x) 0

and letvg denote the related dual functional

. T Y;QV T
vQ(y):zérelfD{EQ</o V(thQ> dt>+y<Q,/0 etdt>}.

We assume the following conditions:
A1) [} U(e;)dt is P-a.s. bounded below.

A2) The utility functionU fulfills the asymptotic elasticity condition, that is

!/
lim sup xg((f) < 1.
T—00 T

Assumption A1) is fulfilled if(e; ). [o,] is bounded below by a strictly positive constant.
Assumption A2) was introduced by Kramkov and Schachermayer (1999). It implies

Lemma 3.1 For all y € R and all Q@ € P the functiony — vg(y) is finite and
continuously differentiable.

The proof is analogous to the proof of Lemma 3.10 in Kramkov and Schachermayer
(1999).

In the following we identify probability measurég € P with their P-densities. In
the following theorem existence of a saddle point is stated and an optimal consumption
strategy is constructed in terms of the dual problem.

Theorem 3.21) Letz € RT and let the assumptiond1) and A2) be satisfied. Then
there exists a saddle poifiZ*, c¢*) € P x Al (x) for (2.3). As consequence

T
u () =uu(z) =FE (Z*/O U(c) dt) (3.4)

andc* is an optimal consumption strategy.
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2) The following duality relations hold:

ux(z) = inf (v(y) +2y),

(3.5)

v(y) = sup (ui(z) — zy).
zERT

3) u, is strictly concave and continuously differentiable.

4) Forz € RT lety := v/ (z) and letQ* € D be the solution of the dual problenty).
Then the optimal consumption strategfyis given by

Vel
=I{y—Lt- |, telo1], (3.6)

wherel := (U')"tandZ; = E(Z* | F).

In the following we assume without loss of generality tiiate P. Otherwise we
replace the a priori measure by some equivalend) € P. The proof of the theorem is
based on some lemmata.

Lemma 3.3 For all Q € P holds lim “QT(“’) = 0.

r— 00

Proof: Because of assumption Al) there exists a congtant 0 such thatug (z) > —K
for all z € R*. By definition ofvg, holds

ug(z) <vg(y) +xy forally € RT.

Hence“QT(g”) < vl 4 y. By assumption A2) holdsg (y) < oo forall y € R* and so

x

lim sup uLm
x

r—00

<y forally e RT,

that is lim “QT(Q”) =0. O

In the next step we show the existence of a saddle point. Therefore we choose a sequence
(¢")nen in Al () such that

T T
inf Eg / Ulc)dt | — sup inf Eg / U(er)dt | . (3.7)
QeP 0 ce Al (z) QEP 0

Sincec™ is nonnegative for alb € N, there exists a subsequer{¢g),,cn of convex com-
binations and some* > 0 such that™ — ¢* P ® A-a.s. (see Delbaen and Schacher-
mayer (1994)). Sincel(z) is convex and closed under convergence in probability, we
havec* € A(x).
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Lemma 3.4 The consumption strategy is maximin-optimal, that is* € A} (z) and
T T
inf U(cf)dt ] = su inf Uley)dt | . 3.8
TR AT B T A @9
Proof: With the concavity ol follows

T T
lim inf Eg </ U(c?)dt) < lim inf Eg (/ U(E?)dt)
oo Qep 0 n—eQeP 0
() dt

T
< inf lim Eg Ul(ey .

We have to show that

EQ (/()TU+(E?)dt> —>EQ (ATU+(E:)dt> .

If (UT(¢"))nen is uniformly integrable with respect tp := Q ® A, then conver-
gence holds. The proof of this uniform integrability is analogous to that in Kramkov
and Schachermayer (2003). We assume without loss of generalifly thab) > 0. As-
sume that( U™ (¢")),en is not uniformly u-integrable. Then there exists a measurable
partition (A, ),en of © x [0, 7] and a constank” > 0 such that

/U+(En)]lAn du> K foralln eN.

Let
xo:=inf{x>0:U(z) >0},

n
dn =X =+ Z’C\/k]lAk
k=1

By concavity ofU ™ holds
/U*(d")du > Z/Uﬂ&k)mk du > nkK.
k=1
Further, forQ)Q € D we have
T n T
E/ Yedp dt < x0+ZE/ Yl dt
0 w1 Y0
T
§x0+nx+n<Q,/ etdt>
0

T
§x0+nx+(n—1)M+<Q,/ etdt>,
0
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whereM is chosen such th#tﬁ)T er dt H < M.Henced, € A} (zg+nz+(n—1)M)
and therefore =

—1)M
lim sup tely) ) = lim sup ug(zo +nz+(n ) M)
y—oo Y n—oo Lo+ nr+(n—1)M

> limsu fUJr ) dp
nﬂoop xo + nx + (n - 1H)M

> i nk
im su
P xo+nx+ (n—1)M

> 0.

But this is a contradiction tolim “QT(‘”) = 0. So we have shown thdU*(¢")),en

Yy—00
is uniformly p-integrable; in particularf, U+(ct) dt € L*(P). The optimality ofc*
impliesc* > e. By assumption Al) holds

</TU@®m>_eL%Py

Thereforef0 (c;)dt € LY(P). |

Lemma 3.5 There exists somB* ¢ P such that
T T
sup FE Z*/ Uley)dt | = inf  sup Eg / Uley)dt | .
ceAl (x) 0 QEP ce Al () 0

Proof: Let (Z,).en be a sequence iR such that

T
lim sup E / Uley)dt | = inf  sup Eg / Uley)dt | .
T ceAl (z) QeP ceAl (z) 0

SinceP is sequentially weakcompact, there exists a subsequence®y),,cn denoted
by (Z,,) and someZ* € P such that lim E(Z,,f) = E(Z*f) forall f € L(P).
Therefore

T T
sup FE Z*/ U(e)dt ]| < lim  sup E Zm/ Uley) dt
c€AL (z) 0 M=% ce Al () 0

T
= inf sup FE Uley)dt ).
QeP cGAlp(r) N (/0 (ex) )

Hence sup E(Z* fo (ct dt) = 1nf sup Eg (fo (¢t dt) O
ceAl (z) QEP cc Al (a)
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For showing thatZ*, c*) is a saddle point, we use the Minimax-theorem in the fol-
lowing form: Let A, B be nonempty sets and I¢t: A x B — R be a mapping. The
tripleT = (A, B, f) is called two-person zero-sum ganhes of concave-convex type if

1) Forby,bs € B anda € [0, 1] exists somé € B, such that for alb € A holds:
fla,b) < (1 —a)f(a,b1) + af(a,by).

2) Foray,as € Aanda € [0, 1] exists some € A, such that for alb € B holds:
fla;b) = (1 —a)f(a1,b) + af(az,b).

Minimax-Theorem: LetI’ = (A, B, f) be a concave-convex two-person zero-sum game
and letf < co. If there exists a topology on A with the properties
1) AisT-compact,

2) For all b € B the mappingf(-,b) : A — R is upper-semicontinuous, that is, for
ao € A holds
lim sup f(a7 b) S f(aoa b)a

a—ao

then
inf sup f(a,b) = sup inf f(a,b).
beB acA a€AbeB

The Minimax-theorem implies

Lemma 3.6 (Z*,¢*) € P x Al (x) is a saddle point and

T
u () =uu(z) = FE (Z*/o U(cj)dt) .

Proof: Apply the Minimax-theorem tol := P andB := Al (z). Then

u () =uu(zx) =FE (Z*/0 U(c}‘)dt) .

Since Z* and c¢* are by construction minimax strategies, it follows thiat, ¢*) is a
saddle point. O

Similar to Karatzas and Zitkovic (2003) holds f@re P that

ug(x) = sup EQ(/OT u(et) dt),

ce Al (z)
Q

T T
vat) = it {Fo( [ V(vq) ) +u(@ [ evar))
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are conjugate functions. For showing that this holds true alsa f@andv, we use again
the Minimax-theorem.

Let wg(z) := ug(z) — xy. Then the mapping) — wq(z) is convex and upper-
semicontinuous above dt, that is, for every sequen¢é),, ) e in P which converges
in the weak-topology to somé&) € P holds

wg(z) < liminfwg, ().

n—oo

Further, the mapping — wg(x) is concave. An application of the Minimax-theorem
to A:=P, B:=R*" andf(Q, ) := —wg(x) results in

v(y) = inf vg(y) = inf sup wg(z)

QEP QEP zeR+

= sup inf wg(z)
rER+T QEP

= sup (inf ug(x) — zy)
rzeERT QEP

= sup (u"(z) — 2y)
zeRT

= sup (u«(z) — zy).
rzeRT

By standard arguments from convex analysis (see Rockafellar (1970)) follows

un(a) = inf () +9).

In the last step we show the representation of the optimal consumption strategy. Let
(Z*,c*) € P x Al (x) be a saddle point. Then the dual problefy) is given by

v(y) :Q}IéfD{E (Z* /OTV(y};?)dt> +y<@,/0Tetdt> } (3.9

This can be shown similar to Karatzas and Zitkovic (2003) by an application of the
Minimax-theorem. By the weékclosedness db there exists a minimal eleme@t* €
D. This implies the differentiability of., andv. The mapping’ is given by

V(y) = —F (z* /OTI(yYéi* ) Yg dt) + <Q*,/OT et ). (3.10)
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Let y be given by the equation, (z) = y. SinceV (y) = U(I(y)) + yI(y), we get

u (@) = E(Z* /0 ' U(c) dt)

<oz [ vy a) vz [V () )
—n(z [ V) a) o+ (@ [ aa))
=v(y) +ay

= uy(x).

Because of

T Q" T
. Y,
Q _ 1Q t < _N*
E(/O v =y (y 7 Ja) < {@-@ /O vt )
for all Q € D and ally € R* (see Karatzas and Zitkovic (2003)), we hd\(e;/yz—i*) €
Al (z). This implies that the optimal consumption procesas the representation

[ =1 L ith I = (U")~!
Ct_ yZ* Wlt _( ) 9
t

wherey is given by the equation’, (z) = y.

Remark 3.7 The arguments in this paper are also valid for the more general problem

T
sup inf F, / Uley) p(dt
b d e ( ; (ct) p(dt)

with some weighting measuge dt) which allows to consider the problem of maximizing
the robust expected utility from consumption and terminal wealth

T
inf F dt H -
sup C51617) o (/0 Ui(ey) dt + Us(z + 5T)>

where thesup is over all admissible investment and consumption stratégids) (see
Karatzas and Zitkovic (2003), Ex. 3.15). In particular for the robust optimization of ter-
minal wealth the optimal wealth is of the form

1
$+H*-ST:I<y g* )

with Q* € D, Z* € P andy = v/ (x) as in Theorem 3.2.
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