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Summary: In this paper we consider the problem of finding optimal consumption strategies in an
incomplete semimartingale market model under model uncertainty. The quality of a consumption
strategy is measured by not only one probability measure but as common in risk theory by a class
of scenario measures. We formulate a dual version of the optimization problem and prove the
existence of a saddle point and give a characterization of an optimal consumption strategy in terms
of solutions of the dual problem. This generalizes results of Karatzas and Zitkovic (2003) for the
optimal consumption problem under a fixed probability measure.

1 Introduction
One of the main problems in mathematical finance is how to invest in assetsS =
(S1, . . . , Sd) in an optimal way, where optimality is measured with an utility function
U : R −→ R. Admissible investment or trading strategies are predictable processes
H = (H1, . . . ,Hd) for which the stochastic integralH ·S is well defined and uniformly
bounded below. Then the problem of optimal investment can be formulated as follows:
For a given initial capitalx ∈ R+ find an admissible trading strategyH∗ such that the
mean utility at maturityT ∈ R+ is maximal, that is,H∗ maximizes the expression

EU(x + H · ST ) (1.1)

with respect to all admissible trading strategiesH. There are essentially two approaches
in the literature for solving problem (1.1). The first one establishes a deterministic partial
differential equation and then shows that its solution is an optimal strategy. For this ap-
proach one needs the assumption thatS is a markov process. A more general approach
is the so called martingale method which uses the duality theory of convex analysis.
Therefore the starting point is an equivalent description of admissible trading strategies
by supermartingale measures. This allows the formulation of a dual problem which can
be solved more easily. By a connection with the primal problem (1.1) one gets an optimal
trading strategy (for a comprehensive overview see Schachermayer (2004)).
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In general one does not only want to invest but also to consume some of the gained
capital. This is described by consumption strategiesc which are optional nonnegative
processes. The goal is the determination of an optimal consumption strategy for which
the mean utility

E

(∫ T

0

U(ct) dt

)
(1.2)

is maximal with respect to an admissible class of consumption strategies. Under a suit-
able definition of admissibility the consumption problem (1.2) can be solved with the
martingale method similar to the investment problem (1.1) (see Karatzas and Zitkovic
(2003)).

In the following we consider a generalization of problem (1.2): Letρ be a continuous
coherent risk measure and letL be a loss function. We are searching for an admissible
consumption strategyc∗ which minimizes the risk of a loss, that is

ρ

(
−

∫ T

0

L(c∗t ) dt

)
= inf

c
(1.3)

with respect to all admissible consumption strategiesc. Since continuous coherent risk
measures can be represented by sets of probability measuresP in the form

ρ(X) = sup
Q∈P

EQ(−X)

problem (1.3) is equivalent to the minimization of

sup
Q∈P

EQ

(∫ T

0

L(ct) dt

)
(1.4)

with respect to all admissible consumption strategiesc. In contrast to problem (1.2) there
is not only one underlying probability measure but a whole class of these. Therefore, one
speaks of model uncertainty. The correct model is unknown, so one chooses a class of
models which, from a risk managers point of view, describes the reality in a sufficient
precise way.

The related generalized version of problem (1.1) of maximizing the robust utility
function inf

Q∈P
EQ(u(X)) over all admissible claims for incomplete market models has

been considered in a recent paper by Gundel (2003) extending the nonrobust version
of this problem from Goll and R̈uschendorf (2001). A related variational problem was
also considered in Schied (2004) where for law invariant risk measures explicit solutions
could be given by Neyman-Pearson theory for robust testing problems. In a recent paper
the portfolio optimization problem (1.1) has been studied in the robust case by Quenez
(2004) extending a result from Cvitanic and Karatzas (1999) and the nonrobust version
of this problem by Kramkov and Schachermayer (1999) where the solutions are charac-
terized by duality based methods.

The outline of the paper is as follows: In section 2 we specify our market model and
formulate the problem of optimal consumption under model uncertainty. In section 3 we
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give some conditions under which problem (1.4) has a saddle point. As a result we obtain
similar as in the nonrobust version of this problem in Karatzas and Zitkovic (2003) an
optimal consumption strategy.

2 The model and the consumption problem
In the following letS = (S1, . . . , Sd) be a semimartingale on a filtered probability space
(Ω,F , (Ft)t∈[0,T ], P ), whereT ∈ R+. S represents a discounted asset price process.

Trading strategiesH = (H1, . . . ,Hd) are predictableS-integrable processes, where
Hi denotes the amount invested inSi. LetX be the set of all stochastic integralsH · S
which are bounded from below by some constant. We assume that the setS of probability
measuresQ equivalent with respect toP such that each processX ∈ X is a supermartin-
gale with respect toQ is not empty. The setD denotes the weak∗-closure ofS in the space
of finitely additive measuresba(P ) absolutely continuous with respect toP . Apart from
trading strategies let an optional nonnegative endowment process(et)t∈[0,T ] be given,
which describes additional income. We assume that(et)t∈[0,T ] is essentially bounded. In
addition there is the possibility to consume gained capital. This is modeled by optional
nonnegative processesc. We call such processesc consumption strategies.

The following definitions and properties are taken from Karatzas and Zitkovic (2003).

Definition 2.1 A consumption strategy(ct)t∈[0,T ] is called admissible with respect to the
initial capital x ∈ R+ if there exists a trading strategyH such that

x +
∫ T

0

Ht dSt +
∫ T

0

(et − ct) dt ≥ 0.

The set of all admissible trading strategies with respect to the initial capitalx ∈ R+ is
denoted byA(x).

It is easy to see thatA(x) is convex and closed under convergence in probability with
respect toP ⊗ λ.

For a finitely additive measureQ ∈ D we define a density process as follows: LetQr

be the regular part ofQ and letLQ
t := d(Q|Ft)

r

d(P |Ft)
. Then the density processY Q of Q with

respect toP is defined by
Y Q

t := lim inf
q↓t
q∈Q

LQ
q .

This implies the following characterization of admissible consumption strategies (see
Karatzas and Zitkovic (2003)).

Lemma 2.2 c is an admissible consumption strategy with initial capitalx, that isc ∈
A(x), if and only if

E

(∫ T

0

ctY
Q
t dt

)
≤ x +

〈
Q,

∫ T

0

et dt

〉
for all Q ∈ D.
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Our goal is to find optimal admissible consumption strategies, that is, those strategies
for which the risk of a loss is minimal. Losses are measured by some strictly decreasing,
strictly convex, continuously differentiable loss functionL : R+ −→ R which fulfills
the Inada-conditions

L′(0) = −∞ and L′(∞) = 0.

The risk of a loss is determined by some relevant coherentL1-risk measureρ : L1(P ) →
R having the Fatou-property. These risk measures are given by the following axioms: Let
X,Y ∈ L1(P ), m ∈ R andλ ∈ R+ then

1) If X ≥ Y thenρ(X) ≤ ρ(Y ) (monotonicity).

2) ρ(X + m) = ρ(X)−m (translation invariance).

3) ρ(λX) = λρ(X) andρ(X + Y ) ≤ ρ(X) + ρ(Y ) (coherence).

4) For allA ∈ F with P (A) > 0 holdsρ(−1A) > 0 (relevance).

5) Let (Xn)n∈N be an uniformly bounded sequence inL1(P ) with Xn
L1(P )−→ X then

ρ(X) ≤ lim inf
n→∞

ρ(Xn) (Fatou-property).

By a modification of Delbaens (2002) representation theorem, by Nakano (2004) there
exists a weak∗-closed convex setP of probability measuresQ equivalent with respect to
P with the properties

sup
Q∈P

∥∥∥∥
dQ

dP

∥∥∥∥
∞

< ∞

and
ρ(X) = sup

Q∈P
EQ(−X) for all X ∈ L1(P ). (2.1)

Examples for coherentL1-risk measures are given by

a) P = {Q }, whereQ ∼ P has a boundedP -density.

b) P =
{

Q ∼ P : dQ
dP ≤ 1

λ

}
for someλ ∈ (0, 1].

The setP in b) generates the coherent risk measure

AVaRλ(f) :=
1
λ

∫ λ

0

VaRα(f) dα,

where VaRα denotes the Value at Risk at levelα. Under appropriate assumptions (see
Föllmer and Schied (2002)) AVaR is equal to the worst conditional expectation WCEλ

which is given by

WCEλ(f) := sup{E(−f | A) : A ∈ F , P (A) > λ }.
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AVaRλ is in some sense the smallest coherent risk measure which dominates VaRλ. In
addition it can be shown that AVaRλ generates the class of all law invariant risk measures
(see Inoue (2003)).

Forx ∈ R+ let

A1
L(x) :=

{
c ∈ A(x) :

∫ T

0

L(ct) dt ∈ L1(P )

}
.

We are searching for a solution of the optimization problem

ρ

(
−

∫ T

0

L(ct) dt

)
= inf

c∈A1
L(x)

. (2.2)

By the representation (2.1) ofρ problem (2.2) has the form

inf
c∈A1

L(x)
ρ

(
−

∫ T

0

L(ct) dt

)
= inf

c∈A1
L(x)

sup
Q∈P

EQ

(∫ T

0

L(ct) dt

)
.

One can formulate the problem equivalently by utility functions. LetU := −L. Then we
are searching for a solution of

sup
c∈A1

L(x)

inf
Q∈P

EQ

(∫ T

0

U(ct) dt

)
. (2.3)

In this case our problem is a generalization of Karatzas and Zitkovic (2003) whereP =
{P }.

In the following we give some conditions under which (2.3) has a saddle point
which allows to construct an optimal consumption strategy analogously to Karatzas and
Zitkovic (2003).

3 A solution of the consumption problem
The optimal consumption problem in (2.3) is defined by the functional

u∗(x) := sup
c∈A1

L(x)

inf
Q∈P

EQ

(∫ T

0

U(ct) dt

)
, x > 0. (3.1)

Let u∗ denote the corresponding functional

u∗(x) := inf
Q∈P

sup
c∈A1

L(x)

EQ

(∫ T

0

U(ct) dt

)
, x > 0. (3.2)

The dual problem to (3.1) is given by

v(y) := inf
eQ∈D

inf
Q∈P

{
EQ

(∫ T

0

V

(
y
Y

eQ
t

ZQ
t

)
dt

)
+ y

〈
Q̃,

∫ T

0

et dt

〉}
,



6 Burgert – R̈uschendorf

y > 0, whereZQ
t := E

(
dQ
dP

∣∣∣Ft

)
is the density process ofQ ∈ P with respect toP and

V is the conjugate ofU , that is

V (y) := sup
x∈R+

(U(x)− xy).

ForQ ∈ P let uQ the mean value of the optimal consumption with respect toQ,

uQ(x) := sup
c∈A1

L(x)

EQ

(∫ T

0

U(ct) dt

)
(3.3)

and letvQ denote the related dual functional

vQ(y) := inf
eQ∈D

{
EQ

(∫ T

0

V

(
y
Y

eQ
t

ZQ
t

)
dt

)
+ y

〈
Q̃,

∫ T

0

et dt

〉}
.

We assume the following conditions:

A1)
∫ T

0
U(et) dt is P -a.s. bounded below.

A2) The utility functionU fulfills the asymptotic elasticity condition, that is

lim sup
x→∞

xU ′(x)
U(x)

< 1.

Assumption A1) is fulfilled if(et)t∈[0,T ] is bounded below by a strictly positive constant.
Assumption A2) was introduced by Kramkov and Schachermayer (1999). It implies

Lemma 3.1 For all y ∈ R+ and all Q ∈ P the functiony 7−→ vQ(y) is finite and
continuously differentiable.

The proof is analogous to the proof of Lemma 3.10 in Kramkov and Schachermayer
(1999).

In the following we identify probability measuresQ ∈ P with their P -densities. In
the following theorem existence of a saddle point is stated and an optimal consumption
strategy is constructed in terms of the dual problem.

Theorem 3.2 1) Letx ∈ R+ and let the assumptionsA1) andA2) be satisfied. Then
there exists a saddle point(Z∗, c∗) ∈ P ×A1

L(x) for (2.3). As consequence

u∗(x) = u∗(x) = E

(
Z∗

∫ T

0

U(c∗t ) dt

)
(3.4)

andc∗ is an optimal consumption strategy.
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2) The following duality relations hold:

u∗(x) = inf
y∈R+

(v(y) + xy),

v(y) = sup
x∈R+

(u∗(x)− xy).
(3.5)

3) u∗ is strictly concave and continuously differentiable.

4) For x ∈ R+ let y := u′∗(x) and letQ∗ ∈ D be the solution of the dual problemv(y).
Then the optimal consumption strategyc∗ is given by

c∗t = I

(
y
Y Q∗

t

Z∗t

)
, t ∈ [0, T ], (3.6)

whereI := (U ′)−1 andZ∗t = E(Z∗ | Ft).

In the following we assume without loss of generality thatP ∈ P. Otherwise we
replace the a priori measureP by some equivalentQ ∈ P. The proof of the theorem is
based on some lemmata.

Lemma 3.3 For all Q ∈ P holds lim
x→∞

uQ(x)
x = 0.

Proof: Because of assumption A1) there exists a constantK > 0 such thatuQ(x) ≥ −K
for all x ∈ R+. By definition ofvQ holds

uQ(x) ≤ vQ(y) + xy for all y ∈ R+.

HenceuQ(x)
x ≤ vQ(y)

x + y. By assumption A2) holdsvQ(y) < ∞ for all y ∈ R+ and so

lim sup
x→∞

uQ(x)
x

≤ y for all y ∈ R+,

that is lim
x→∞

uQ(x)
x = 0. 2

In the next step we show the existence of a saddle point. Therefore we choose a sequence
(cn)n∈N in A1

L(x) such that

inf
Q∈P

EQ

(∫ T

0

U(cn
t ) dt

)
−→ sup

c∈A1
L(x)

inf
Q∈P

EQ

(∫ T

0

U(ct) dt

)
. (3.7)

Sincecn is nonnegative for alln ∈ N, there exists a subsequence(c̃n)n∈N of convex com-
binations and somec∗ ≥ 0 such that̃cn −→ c∗ P ⊗ λ-a.s. (see Delbaen and Schacher-
mayer (1994)). SinceA(x) is convex and closed under convergence in probability, we
havec∗ ∈ A(x).
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Lemma 3.4 The consumption strategyc∗ is maximin-optimal, that isc∗ ∈ A1
L(x) and

inf
Q∈P

EQ

(∫ T

0

U(c∗t ) dt

)
= sup

c∈A1
L(x)

inf
Q∈P

EQ

(∫ T

0

U(ct) dt

)
. (3.8)

Proof: With the concavity ofU follows

lim
n→∞

inf
Q∈P

EQ

(∫ T

0

U(cn
t ) dt

)
≤ lim

n→∞
inf
Q∈P

EQ

(∫ T

0

U(c̃n
t ) dt

)

≤ inf
Q∈P

lim
n→∞

EQ

(∫ T

0

U(c̃n
t ) dt

)
.

We have to show that

EQ

(∫ T

0

U+(c̃n
t ) dt

)
−→ EQ

(∫ T

0

U+(c̃∗t ) dt

)
.

If (U+(c̃n))n∈N is uniformly integrable with respect toµ := Q ⊗ λ, then conver-
gence holds. The proof of this uniform integrability is analogous to that in Kramkov
and Schachermayer (2003). We assume without loss of generality thatU+(∞) > 0. As-
sume that(U+(c̃n))n∈N is not uniformlyµ-integrable. Then there exists a measurable
partition(An)n∈N of Ω× [0, T ] and a constantK ≥ 0 such that

∫
U+(c̃n)1An dµ ≥ K for all n ∈ N.

Let

x0 := inf{x > 0 : U(x) ≥ 0 },

dn := x0 +
n∑

k=1

c̃k1Ak
.

By concavity ofU+ holds
∫

U+(dn) dµ ≥
n∑

k=1

∫
U+(c̃k)1Ak

dµ ≥ nK.

Further, forQ ∈ D we have

E

∫ T

0

Y Q
t dn

t dt ≤ x0 +
n∑

k=1

E

∫ T

0

Y Q
t c̃k

t dt

≤ x0 + nx + n
〈

Q,

∫ T

0

et dt
〉

≤ x0 + nx + (n− 1)M +
〈

Q,

∫ T

0

et dt
〉
,



Optimal consumption strategies under model uncertainty 9

whereM is chosen such that
∥∥∥

∫ T

0
et dt

∥∥∥
∞
≤ M . Hencedn ∈ A1

L(x0+nx+(n−1)M)
and therefore

lim sup
y→∞

uQ(y)
y

= lim sup
n→∞

uQ(x0 + nx + (n− 1)M)
x0 + nx + (n− 1)M

≥ lim sup
n→∞

∫
U+(dn) dµ

x0 + nx + (n− 1)M

≥ lim sup
n→∞

nK

x0 + nx + (n− 1)M
> 0.

But this is a contradiction tolim
y→∞

uQ(y)
y = 0. So we have shown that(U+(c̃n))n∈N

is uniformly µ-integrable; in particular
∫ T

0
U+(c∗t ) dt ∈ L1(P ). The optimality ofc∗

impliesc∗ ≥ e. By assumption A1) holds

(∫ T

0

U(c∗t ) dt

)−

∈ L1(P ).

Therefore
∫ T

0
U(c∗t ) dt ∈ L1(P ). 2

Lemma 3.5 There exists someZ∗ ∈ P such that

sup
c∈A1

L(x)

E

(
Z∗

∫ T

0

U(ct) dt

)
= inf

Q∈P
sup

c∈A1
L(x)

EQ

(∫ T

0

U(ct) dt

)
.

Proof: Let (Zn)n∈N be a sequence inP such that

lim
n→∞

sup
c∈A1

L(x)

E

(
Zn

∫ T

0

U(ct) dt

)
= inf

Q∈P
sup

c∈A1
L(x)

EQ

(∫ T

0

U(ct) dt

)
.

SinceP is sequentially weak∗-compact, there exists a subsequence of(Zn)n∈N denoted
by (Zm) and someZ∗ ∈ P such that lim

m→∞
E(Zmf) = E(Z∗f) for all f ∈ L1(P ).

Therefore

sup
c∈A1

L(x)

E

(
Z∗

∫ T

0

U(ct) dt

)
≤ lim

m→∞
sup

c∈A1
L(x)

E

(
Zm

∫ T

0

U(ct) dt

)

= inf
Q∈P

sup
c∈A1

L(x)

EQ

(∫ T

0

U(ct) dt

)
.

Hence sup
c∈A1

L(x)

E
(
Z∗

∫ T

0
U(ct) dt

)
= inf

Q∈P
sup

c∈A1
L(x)

EQ

(∫ T

0
U(ct) dt

)
. 2
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For showing that(Z∗, c∗) is a saddle point, we use the Minimax-theorem in the fol-
lowing form: LetA,B be nonempty sets and letf : A × B −→ R be a mapping. The
triple Γ = (A,B, f) is called two-person zero-sum game.Γ is of concave-convex type if

1) Forb1, b2 ∈ B andα ∈ [0, 1] exists someb ∈ B, such that for alla ∈ A holds:

f(a, b) ≤ (1− α)f(a, b1) + αf(a, b2).

2) Fora1, a2 ∈ A andα ∈ [0, 1] exists somea ∈ A, such that for allb ∈ B holds:

f(a, b) ≥ (1− α)f(a1, b) + αf(a2, b).

Minimax-Theorem: LetΓ = (A, B, f) be a concave-convex two-person zero-sum game
and letf < ∞. If there exists a topologyτ onA with the properties

1) A is τ -compact,

2) For all b ∈ B the mappingf( · , b) : A −→ R is upper-semicontinuous, that is, for
a0 ∈ A holds

lim sup
a→a0

f(a, b) ≤ f(a0, b),

then
inf
b∈B

sup
a∈A

f(a, b) = sup
a∈A

inf
b∈B

f(a, b).

The Minimax-theorem implies

Lemma 3.6 (Z∗, c∗) ∈ P ×A1
L(x) is a saddle point and

u∗(x) = u∗(x) = E

(
Z∗

∫ T

0

U(c∗t ) dt

)
.

Proof: Apply the Minimax-theorem toA := P andB := A1
L(x). Then

u∗(x) = u∗(x) = E

(
Z∗

∫ T

0

U(c∗t ) dt

)
.

SinceZ∗ and c∗ are by construction minimax strategies, it follows that(Z∗, c∗) is a
saddle point. 2

Similar to Karatzas and Zitkovic (2003) holds forQ ∈ P that

uQ(x) = sup
c∈A1

L(x)

EQ

( ∫ T

0

u(ct) dt
)
,

vQ(y) = inf
eQ∈D

{
EQ

( ∫ T

0

V
(
y
Y

eQ
t

ZQ
t

)
dt

)
+ y

〈
Q̃,

∫ T

0

et dt
〉}



Optimal consumption strategies under model uncertainty 11

are conjugate functions. For showing that this holds true also foru∗ andv, we use again
the Minimax-theorem.

Let wQ(x) := uQ(x) − xy. Then the mappingQ 7−→ wQ(x) is convex and upper-
semicontinuous above onR+, that is, for every sequence(Qn)n∈N in P which converges
in the weak∗-topology to someQ ∈ P holds

wQ(x) ≤ lim inf
n→∞

wQn(x).

Further, the mappingx 7−→ wQ(x) is concave. An application of the Minimax-theorem
to A := P, B := R+ andf(Q, x) := −wQ(x) results in

v(y) = inf
Q∈P

vQ(y) = inf
Q∈P

sup
x∈R+

wQ(x)

= sup
x∈R+

inf
Q∈P

wQ(x)

= sup
x∈R+

( inf
Q∈P

uQ(x)− xy)

= sup
x∈R+

(u∗(x)− xy)

= sup
x∈R+

(u∗(x)− xy).

By standard arguments from convex analysis (see Rockafellar (1970)) follows

u∗(x) = inf
y∈R+

(v(y) + xy).

In the last step we show the representation of the optimal consumption strategy. Let
(Z∗, c∗) ∈ P ×A1

L(x) be a saddle point. Then the dual problemv(y) is given by

v(y) = inf
eQ∈D

{
E

(
Z∗

∫ T

0

V
(
y
Y

eQ
t

Z∗t

)
dt

)
+ y

〈
Q̃,

∫ T

0

et dt
〉 }

. (3.9)

This can be shown similar to Karatzas and Zitkovic (2003) by an application of the
Minimax-theorem. By the weak∗-closedness ofD there exists a minimal elementQ∗ ∈
D. This implies the differentiability ofu∗ andv. The mappingv′ is given by

v′(y) = −E

(
Z∗

∫ T

0

I
(
y
Y Q∗

t

Z∗t

)Y Q∗
t

Z∗t
dt

)
+

〈
Q∗,

∫ T

0

et dt
〉
. (3.10)
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Let y be given by the equationu′∗(x) = y. SinceV (y) = U(I(y)) + yI(y), we get

u∗(x) = E
(
Z∗

∫ T

0

U(c∗t ) dt
)

≤ E
(
Z∗

∫ T

0

V
(
y
Y Q∗

t

Z∗t

)
dt

)
+ E

(
Z∗

∫ T

0

y
Y Q∗

t

Z∗t
I
(
y
Y Q∗

t

Z∗t

)
dt

)

= E
(
Z∗

∫ T

0

V
(
y
Y Q∗

t

Z∗t

)
dt

)
+ y

(
− v′(y) +

〈
Q∗,

∫ T

0

et dt
〉)

= v(y) + xy

= u∗(x).

Because of

E
( ∫ T

0

(Y Q
t − Y Q∗

t )I
(
y
Y Q∗

t

Z∗t

)
dt

)
≤

〈
Q−Q∗,

∫ T

0

et dt
〉

for all Q ∈ D and ally ∈ R+ (see Karatzas and Zitkovic (2003)), we haveI
(
y Y Q∗

Z∗

)
∈

A1
L(x). This implies that the optimal consumption processc∗ has the representation

c∗t = I

(
y
Y Q∗

t

Z∗t

)
with I = (U ′)−1,

wherey is given by the equationu′∗(x) = y.

Remark 3.7 The arguments in this paper are also valid for the more general problem

sup
c∈A1

L(x)

inf
Q∈P

EQ

(∫ T

0

U(ct) µ(dt)

)

with some weighting measureµ(dt) which allows to consider the problem of maximizing
the robust expected utility from consumption and terminal wealth

sup inf
Q∈P

EQ

(∫ T

0

U1(ct) dt + U2(x + H · ST )

)

where thesup is over all admissible investment and consumption strategies(c, H) (see
Karatzas and Zitkovic (2003), Ex. 3.15). In particular for the robust optimization of ter-
minal wealth the optimal wealth is of the form

x + H∗ · ST = I

(
y

Y Q∗

T

Z∗

)

with Q∗ ∈ D, Z∗ ∈ P andy = u′∗(x) as in Theorem 3.2.
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