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Abstract

The optimal risk allocation problem or equivalently the problem of risk sharing
is the problem to allocate a risk in an optimal way to n traders endowed with risk
measures %1, . . . , %n. This problem has a long history in mathematical economics and
insurance. In the first part of the paper we review some mathematical tools and dis-
cuss their applications to various problems on risk measures related to the allocation
problem like to monotonicity properties of optimal allocations, to optimal invest-
ment problems or to an appropriate definition of the conditional value at risk. We
then consider the risk allocation problem for convex risk measures %i. In general the
optimal risk allocation problem is well defined only under an equilibrium condition.
This condition can be characterized by the existence of a common scenario measure.
We formulate a meaningful modification of the optimal risk allocation problem also
for markets without assuming the equilibrium condition and characterize optimal
solutions. The basic idea is to restrict the class of admissible allocations in a proper
way.

1 Introduction

The optimal risk allocation problem or equivalently the problem of optimal risk sharing has
a long history in mathematical economics and insurance and is of considerable practical
and theoretical interest. In early papers the construction of linear reinsurance treaties has
been based on minimizing the individual and the aggregate variance of risk (for references
see Seal (1969)). Borch (1960a, 1960b, 1962) showed that based on utility functions Pareto
optimal risk exchanges can be characterized and in many cases lead to familiar linear
quota-sharing of the total pooled losses or to stop loss contracts and to mixtures of both.
Solutions are however typically not uniquely determined which may lead to substantial
fixed side payments. In several papers authors have added game theoretic considerations
or additional concepts (like the concept of fairness) to arrive at a specific element in the
set of Pareto optimal rules (see Borch (1960b), Lemaire (1977), Bühlmann and Jewell
(1979)).

Since risk pools redistribute only actual losses and possibly the associated premiums
but not the individual wealth of the company it is natural to include side constraints in
the exchange protocol of the form Yi ≥ Ai for the components Yi of the allocation and
some constant or random bounds Ai, to limit negative charges or payouts of company
i. Similarly also upper constraints of the form Yi ≤ Ai + Bi have been introduced to
protect the liquidity of the individual companies. The importance of side constraints has
been suggested by Borch (1968) and has formally been introduced and applied in Gerber
(1978, 1979).

Several authors have extended the framework as e.g. to include more general utili-
ties, to consider incomplete preferences, or to include the presence of background risk.
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The allocation problem has also been considered in the context of financial risks. For
some of the large number of references see Leland (1980), Chavallier and Müller (1994),
and Barrieu and El Karoui (2002a, 2002b, 2003, 2004, 2005), Dana and Scarsini (2005),
Chateauneuf, Dana, and Tallon (2000), Gerber (1979), Landsberger and Meilijson (1994),
Denault (2001), Dana and Meilijson (2003), Heath and Ku (2004), Carlier and Dana
(2003), Burgert and Rüschendorf (2005), Jouini, Schachermayer, and Touzi (2005), Dana
(2005) and references therein. Also more general types of risk measures (distortion type,
coherent, convex, comonotone risk measures) have been considered for the allocation prob-
lem. For the background literature on risk measures and their applications to finance and
insurance we refer to Kaas, Goovaerts, Dhaene, and Denuit (2001), Delbaen (2002), and
Föllmer and Schied (2004).

In our paper which is based on these developments we consider the following formula-
tion of the optimal risk allocation problem. Let (Ω,A, P ) be a nonatomic probability space
and consider a market whith n traders endowed with convex risk measures %1, . . . , %n. The
problem is to characterize optimal allocations of a risk X ∈ L∞(P ) to the n traders, i.e.
to determine solutions of the problem

n∑

i=1

%i(Xi) = inf ! (1.1)

under all allocations of X to the traders, i.e. under all decompositions X =
∑n

i=1 Xi,
Xi ∈ L∞(P ). (The same problem can also be considered in Lp(P ) for any 1 ≤ p ≤ ∞.)
Solutions of the risk allocation problem are not unique but in fact are given under an
equilibrium condition by the set of all Pareto optimal allocations, as follows from a general
separation argument and the translation invariance of the %i (see Gerber (1979, pg. 88–
96). Thus the optimal allocation problem can be interpreted as problem to minimize the
total risk of a risk sharing contract but also as a basic tool to determine Pareto optimal
allocations. The value of the optimal allocation problem is given by the infimal convolution
%̂ = %1 ∧ · · · ∧ %n defined by

%̂(X) = inf
{ n∑

i=1

%i(Xi); Xi ∈ L∞(P ),
n∑

i=1

Xi = X

}
(1.2)

for X ∈ L∞(P ) (or more generally X ∈ Lp(P ), 1 ≤ p ≤ ∞).
In the first part of the paper we show that the general formulation of the optimal risk

allocation problem in (1.1) (1.2) makes only sense under a Pareto equilibrium condition
(E). In vague form (E) can be stated as follows. A market is in equilibrium if in a bal-
ance of supply and demand it is not possible to lower the risk of some traders without
increasing that of some other traders. This equilibrium condition (E) has been character-
ized for coherent risk measures %1, . . . , %n in Heath and Ku (2004) and in Burgert and
Rüschendorf (2005) in terms of the scenario measures of the %i. We give an extension of
this characterization to convex risk measures and establish that %̂ is a convex risk measure
if and only if the Pareto equilibrium condition (E) holds true.

The main new part of this paper is concerned with the allocation problem in the
case that the equilibrium condition does not hold. In this case the above formulation
of the optimal allocation problem leads to inconsistencies. We introduce a new class of
restrictions on the set of allocations which we call admissible allocations and consider the
problem of optimal allocations with respect to this restricted class. In comparison to the
constraints as dealt with in Gerber (1978) we postulate constraints on the compensation
structure of the allocation Xi motivated as above to limit negative charges or payouts
and to protect the liquidity. The bounds depend on the absolute size of the total risk X.
From a mathematical point of view our side constraints are connected with a similar idea
in portfolio theory, where one considers (lower bounded) admissible strategies in order
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to exclude strategies which allow arbitrage. As consequence we obtain a new convex risk
measure – called the convex admissible infimal convolution risk measure – which describes
the optimal total admissible risk

∑n
i=1 %i(Xi) in the market.

The risk sharing problem is a problem where the traders minimize the total risk by
some kind of exchange contracts. This can be considered as an optimistic attitude towards
risk. It aims to construct an optimal admissible exchange which is typical for insurance
and reinsurance contracts. In the final part of our paper we consider the opposite view
from the perspective of a regulatory agent in a financial market who takes care that the
individual agents (traders) have enough capital reserves to cover their part of the risk
Xi in any allocation X =

∑n
i=1 Xi to the n traders. The regulatory agent considers any

possible (admissible) allocation and determines the total risk in the worst case which is
the necessary total capital reserve. Therefore, we describe this situation as a situation
with a cautious risk attitude. Again as a result we obtain a new coherent risk measure
describing the worst case total admissible risk.

In section 2 of this paper we review some mathematical tools and in particular discuss
the relevance of the generalized distribution transform as well as the Hoeffding–Fréchet
bounds and the comonotone improvement result for various risk measure problems. These
are in particular useful tools for establishing natural monotonicity properties of optimal
allocations. They also simplify arguments for optimal investment problems and lead in a
natural way to a correct definition of the conditional value at risk measure. In section 3
we then consider the optimal allocation problem which corresponds to an optimistic risk
attitude. In section 4 we discuss the allocation problem under a cautious risk attitude,
i.e. under the view of a regulatory agent. In both cases as a result we obtain convex risk
measures which are relevant and correspond to the risk attitude.

2 Generalized distribution transform, Hoeffding–Fré-
chet bounds, and the comonotone improvement re-
sult

This section deals with some mathematical tools which are useful for deriving monotonic-
ity properties of optimal allocations but also are useful for various further problems on
risk measures. We assume throughout this paper that the underlying probability space
(Ω,A, P ) is nonatomic.

For any real random variable X on Ω let for x ∈ IR and λ ∈ [0, 1]

F (x, λ) := P (X < x) + λP (X = x) (2.1)

be the modified distribution function. For a random variable V uniformly distributed on
(0, 1) (V ∼ U(0, 1)) and independent of X (which we assume to exist on (Ω,A, P )) we
define the (generalized) distribution transform of X by

U := F (X,V ). (2.2)

Then it is not difficult to check that

U ∼ U(0, 1) (2.3)

and

X = F−1
X (U) [P ] (2.4)

The generalized distribution transform in (2.2) can be found in Ferguson (1967, Lemma 1,
p. 216). An extension of this transform to multivariate random vectors is in Rüschendorf
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(1981). (2.2), (2.4) gives an explicit construction for a result of Ryff (1970), which states
the existence of some U ∼ U(0, 1) with (2.4). We will give some examples of the usefulness
of this distribution transform.

A second tool of considerable importance are the Hoeffding–Fréchet bounds (holding
true also without assuming (Ω,A, P ) to be nonatomic): For any X,Y such that X · Y ∈
L1(P ) and any U ∼ U(0, 1) holds
Hoeffding–Fréchet bounds

EF−1
X (1− U)F−1

Y (U) ≤ EXY ≤ EF−1
X (U)F−1

Y (U). (2.5)

Remark: Inequality (2.5) is due to Hoeffding (1940). The related bounds for the joint
distribution functions are given independently at the same time by Fréchet (1940). Using
the above mentioned result of Ryff (1970) the Hoeffding–Fréchet bounds (2.5) also follow
from rearrangement inequalities for real functions on [0, 1] due to Hardy, Littlewood, and
Pólya (1952). The literature on rearrangement inequalities in function spaces making this
connection to random variables however came up only in the 70’s and, therefore, it seems
appropriate to assign this fundamental inequality to Hoeffding and Fréchet. 2

A third important tool in connection with the allocation problem is the following
comonotone improvement result of Landsberger and Meilijson (1994): Let X1, . . . , Xn ∈
L1(P ) and X :=

∑n
i=1 Xi, then there exist X∗

i ≤cx Xi, such that

X =
n∑

i=1

X∗
i and X∗

1 , . . . , X∗
n are comonotone. (2.6)

Here ≤cx denotes the convex stochastic ordering and (X∗
1 , . . . , X∗

n) are called comono-
tone if for all i 6= j

(X∗
i (w)−X∗

i (w′))(X∗
j (w)−X∗

j (w′)) ≥ 0 [P ⊗ P ], (2.7)

i.e. all components are similarly ordered. Comonotonicity of (X∗
i ) is known to be equivalent

to the existence of nondecreasing functions fi, such that X∗
i = fi(X∗), 1 ≤ i ≤ n, for

X∗ =
∑n

i=1 X∗
i =

∑n
i=1 Xi = X.

A risk measure is called consistent w.r.t. ≤cx , if it is monotone w.r.t. the partial convex
order ≤cx . Consistent risk measures are law invariant. Consistency of a risk measure %
w.r.t. convex ordering is close to convexity of %.

Proposition 2.1 Let % be a law invariant risk measure on L∞(P ).

a) If % is a convex risk measure then % is ≤cx-consistent.

b) If % is convex on any class of comonotone risks and ≤cx-consistent, then % is a convex
risk measure.

Proof: For a) see Föllmer and Schied (2004), Burgert and Rüschendorf (2004), and Dana
(2005).

b) For any X,Y ∈ L∞(P ) and α ∈ (0, 1) holds αX + (1 − α)Y ≤cx αF−1
X (U) + (1 −

α)F−1
Y (U). Therefore, using convexity of % on sets of comonotone risks and ≤cx -

consistency of % we obtain %(αX + (1− α)Y ) ≤ α%(X) + (1− α)%(Y ). 2

In case % is comonotone additive and coherent part b) follows from Wang, Young, and
Panjer (1997). As consequence of the comonotone improvement result we thus obtain
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Proposition 2.2 (Monotonicity result) Let %i be convex, law invariant risk measures
and let (Xi) be an allocation of X in L∞(P ), then there exists an allocation (X∗

i ) of X
with %i(X∗

i ) ≤ %i(Xi), 1 ≤ i ≤ n, and X∗
i = fi(X) for some monotonically nondecreasing

functions fi.

It is obvious that this result also holds true for risk measures on Lp(P ), 1 ≤ p ≤ ∞.
The monotone improvement result implies the existence of optimal allocations (X∗

i ),
such that X∗

i = fi(X), fi nondecreasing (see Carlier and Dana (2003), Jouini, Schacher-
mayer, and Touzi (2005, Theorem 6)) provided the infimum over all allocations is finite,
%i are convex law invariant and X ∈ L∞(P ).

The same monotone structure of optimal solutions remains true if we add an individual
rationality constraint to the problem, i.e.: Let X =

∑n
i=1 Xi be an allocation of X and

consider the problem

(AR)





∑n
i=1 %i(Yi) = min !

∑
Yi = X

Yi ≤cx Xi.

(2.8)

Again a solution (X∗
i ) exists such that X∗

i = fi(X), fi nondecreasing. The additional
condition Yi ≤cx Xi is motivated by the argument, that trader i will only accept the new
risk Yi in exchange to his risk Xi if Yi is preferable to Xi for trader i, i.e., Yi has a smaller
risk than Xi.

We discuss briefly some further interesting applications of these tools relevant in risk
theory.

I. Copulas
Let X = (X1, . . . , Xd) be a d-dimensional random vector with marginal d.f.s Fi = FXi ,
1 ≤ i ≤ d. Then applying the generalized distribution transform to the components
Ui := Fi(Xi, V ) we obtain a random vector

U = (U1, . . . , Ud) (2.9)

with uniform marginals. Further,

Xi = F−1
i (Ui) [P ] (2.10)

and the d.f. FX of X is given by

FX(x) = FU (F1(x1), . . . , Fd(xd)). (2.11)

Thus U is a copula of X.
The generalized distribution transform allows a simple construction of the copula which

is an important tool for the analysis of the dependence structure of risk vectors. Thus
Sklar’s theorem is a direct consequence of the generalized distribution transform. For
the application of the distributional transform to obtain bounds for risk functionals of
portfolio vectors see the survey paper Rüschendorf (2005).

II. Conditional value at risk
Let xα = gα(X) = inf{x : P (X ≤ x) ≥ α} denote the lower α-quantile of the risk X. It is
well known that the conditional tail expectation

TCEα(X) := −E(X | X ≤ x(α)) (2.12)
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in general does not define a coherent risk measure except when restricted to continuous
distributions. From the point of view of the generalized distributional transform it is
natural to define the conditional value at risk by

CVRα(X) := −E(X | U ≤ α), (2.13)

where U = F (X,V ) ∼ U(0, 1) is the distribution transform of X. With this definition we
obtain

CVRα(X) = − 1
α

EX1(U ≤ α)

= − 1
α

[
E

(
X1(X < x(α)) + x(α)1(X = x(α), U ≤ α)

)]

= − 1
α

[
EX1(X < x(α))

+ x(α)1
(
X = x(α), P (X < x(α)) + V P (X = x(α)) ≤ α

)]

= − 1
α

[
EX1(X< x(α)) + x(α)P (X = x(α))1

(
V ≤ α− P (X < x(α))

P (X = x(α))

)]

= − 1
α

[
EX1(X < x(α)) + x(α)

(
α− P (X < x(α))

)]

= ESα(X). (2.14)

The modified definition of conditional value at risk is identical to the expected shortfall
ESα(X); it therefore is also identical to the average value at risk AVaRα(X), and thus is
a coherent risk measure. As a result the definition of conditional value at risk in (2.13)
appears to be appropriate and leads to a coherent risk measure.

III. Optimal investment problem
The following optimal investment problem is a classical problem in portfolio theory (see
Dana (2005) with many references on this problem).

For X ′ ∈ L1(Ω), X ∈ L∞(Ω) consider

(E)





EX ′C = min !

C ≤cx X

C ∈ L∞(P ).

Considering X ′ as a price density the problem is to find under all investments C which are
more attractive than X one with the lowest price. The solution e(X,X ′) of (E) is called
reservation price of X (see Jouini and Kallal (2000)). Its value is given by

e(X, X ′) =
∫ 1

0

F−1
X′ (1− t)F−1

X (t)dt (2.15)

(see also Dana (2005, Theorem 1)).
The proof of the following lemma, which is crucial for this problem, is simplified by

the general distribution transform.

Lemma 2.3 For any r.v.s X,Y holds

inf{EXY ′; Y ′ ∼ Y } = e(X, Y ) =
∫ 1

0

F−1
X (t)F−1

Y (1− t)dt (2.16)
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Proof: By the Hoeffding–Fréchet inequality the r.h.s of (2.16) is a lower bound. Con-
versely, let V ∼ U(0, 1) be independent of X and define U := FX(X,V ). Then F−1

X (U) =
X [P ] and the r.h.s is attained by the admissible pair = (F−1

X (U), F−1
Y (1−U)) = (X,F−1

Y (1−
U)). 2

Now (2.15) follows from the monotonicity of e(·, X ′) with respect to ≤cx , which is a
well known result in stochastic ordering. Note that the optimal investment C∗ is given by
F−1

Y (1−U) = g(X,V ). C∗ is a decreasing function of X and V . An equivalent investment
is C = E(C∗ | X) =

∫ 1

0
g(X, v)dv =: ϕ(X) which is decreasing in X.

IV. Minimal liability risk problem
The following minimal liability risk problem of Schied (2004) is similar to the optimal
investment problem in III:

(L)
{

%(−X) = inf !
EϕX ≥ v,

(2.17)

where % is a law invariant risk measure and ϕ is a pricing density 0 ≤ ϕ, E
P
ϕ = 1. The aim

is to minimize the risk of the liability −X under all X with price of −X smaller than −v.
There exists a solution X∗ of (L) as shown in Schied (2004) if % is lower semicontinuous.

Proposition 2.4 (Monotone solutions of the liability problem) a) There exists a
solution X∗ of the minimal liability problem (L) such that (X∗, ϕ) are comonotone.

b) If % is a convex, law invariant risk measure, then there exists a solution X∗ of the form
X∗ = g(ϕ) with g nondecreasing.

Proof:

a) Let V ∼ U(0, 1) be independent of X, ϕ and let Uϕ := Fϕ(ϕ, V ) ∼ U(0, 1) be the gen-
eralized distributional transform and X∗ := F−1

eX (Uϕ), where X̃ is a solution of (2.17).

Then X̃ ∼ X∗ and thus %(−X̃) = %(−X∗). Further, using F−1
ϕ (Uϕ) = ϕ [P ], we ob-

tain from the Hoeffding–Fréchet inequality v ≤ EϕX̃ ≤ EF−1
ϕ (Uϕ)F−1

eX (Uϕ) = EϕX∗.
Thus also X∗ is a solution and X∗ = h(ϕ, V ), where h is monotonically nondecreasing
in ϕ, V . Thus X∗, ϕ are comonotone.

b) If % is a convex law invariant risk measure, and if we define

X := E(X∗ | ϕ) =
∫

h(ϕ, v)dPV (v) =
∫

h(ϕ, v)dv = g(ϕ), g ↑ (2.18)

then we obtain EϕX = EϕX∗ ≥ v and %(−X) ≤ %(−X∗) = %(−X̃), since % is ≤cx -
consistent. Thus we obtain a solution which is a monotonically nondecreasing function
of ϕ. 2

3 Optimal allocation of risks with optimistic risk atti-
tude

In this and in the following section we assume that %i are convex risk measures on L∞(P ),
i.e. monotone, translation invariant convex functionals on L∞(P ). The acceptance set
A = A% of a convex risk measure % is given by the convex set

A% = {X ∈ L∞(P ); %(X) ≤ 0}. (3.1)
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Convex risk measures are characterized by a representation of the form

%(X) = sup
Q∈ba(P )

EQ(−X − α(Q)), ∀X ∈ L∞(P ), (3.2)

where ba(P ) is the set of finitely additive P -continuous measures and α : ba(P ) →
(−∞,∞] is a convex penalty function, which can be chosen as Fenchel–Legendre conjugate
of %

α(Q) = sup
X∈L∞(P )

(EQ(−X)− %(X)) (3.3)

(see Föllmer and Schied (2004)). Further the sup can be restricted to the class M1(P ) of
probability measures absolutely continuous w.r.t. P if the acceptance set

A% = {X ∈ L∞(P ); %(X) ≤ 0} is σ(L∞(P ), L1(P )) closed, (3.4)

or equivalently if % is Fatou continuous (i.e. |Xn| ≤ K, ∀n and Xn
P→ X implies %(X) ≤

lim%(Xn)) resp., if % is lower semicontinuous w.r.t. σ(L∞(P ), L1(P )).
We will introduce a meaningful general formulation of the optimal allocation problem

and derive some properties of optimal allocations. It was observed in the case of coherent
risk measures %i in Heath and Ku (2004) and Burgert and Rüschendorf (2005) that the
optimal allocation problem as in (2.1) is well defined only under an additional Pareto
equilibrium condition. This observation extends to the case of convex risk measures %i

with penalty functions αi as in (3.3).

Definition 3.1 (Pareto Equilibrium) A market model with risk %1, . . . , %n is in Pareto
equilibrium, if

(E) Xi ∈ L∞(P ) with
n∑

i=1

Xi = 0 and %i(Xi) ≤ %i(0), 1 ≤ i ≤ n,

implies %i(Xi) = %i(0), 1 ≤ i ≤ n.

In a balance of supply and demand the market is in Pareto equilibrium not possible
to lower the risk of some traders without increasing that of others. Vaguely one could say
that there is no arbitrage situation concerning risk. There is a seemingly stronger version
of the equilibrium condition:

(SE) Strong equilibrium

If Xi ∈ L∞(P ) with
n∑

i=1

Xi = 0, then
n∑

i=1

%i(Xi) ≥
n∑

i=1

%i(0).

It is immediate to see that (SE) ⇒ (E), but in fact both conditions are equivalent.

Proposition 3.2 The equilibria conditions (E) and (SE) are equivalent.

Proof: Assume that for some Xi ∈ L∞(P ) with
∑n

i=1 Xi = 0 holds
∑n

i=1(%i(Xi) −
%i(0)) =: c < 0. Then with ci := %i(Xi)− %i(0) and Zi := Xi + ci − c

n holds:
∑n

i=1 Zi = 0
and

%i(Zi) = %i(Xi)− ci +
c

n
= %i(0) +

c

n
< %i(0), 1 ≤ i ≤ n.
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Thus we obtain a contradiction to (E). 2

Thus under the Pareto equilibrium condition (E) the sum of all risks in a balance
situation is greater than the cumulative risk of zero. The infimal convolution %̂ = %1 ∧
· · ·∧%n as defined in (1.2) describes the optimal allocation of risk. %̂ itself is, as a functional
of X, a risk measure.

If %̂ is a convex risk measure, then by Theorem 3.6 in Barrieu and El Karoui (2003)
the penalty function αb% of %̂ is given by

αb% =
n∑

i=1

αi.

A characterization of Pareto equilibrium is given in the following proposition in terms of
the penalty functions αi.

Proposition 3.3 Let Pi := {Q ∈ ba(P ) : αi(Q) < ∞} denote the ‘scenario sets’ of %i,
1 ≤ i ≤ n. Then the following conditions 1), 2), and 3) are equivalent:

1) %̂ is a convex risk measure.

2) %̂(0) > −∞.

3)
⋂n

i=1 Pi 6= Ø.

Further conditions 4) and 5) are equivalent and imply 1)–3):

4) %̂(0) =
∑n

i=1 %i(0).

5) (SE) holds.

Proof: The first group of equivalences is obvious. The equivalence of 4) and 5) follows
from the definition of %̂ since

%̂(0) = inf
{ n∑

i=1

%i(Xi);
n∑

i=1

Xi = 0
}

=
n∑

i=1

%i(0)

is equivalent to

n∑

i=1

Xi = 0 ⇒
n∑

i=1

%i(Xi) ≥
n∑

i=1

%i(0)

i.e. to condition (SE). 2

Remark: In the case of coherent risk measures %i, αi(Q) ∈ {0,∞} for all i and the sets
Pi = {Q ∈ ba(P ), αi(Q) = 0} defined in Proposition 3.3 are identical with the sets of
scenario measures of %i. In this case 1) is also equivalent to 4). This follows from the
fact that under 1) the penalty function αb% of %̂ is given by αb% =

∑n
i=1 αi and using the

representation theorem of convex risk measures. Thus Proposition 3.3 implies the charac-
terization of Heath and Ku (2004) resp. Burgert and Rüschendorf (2005) in this case. The
equilibrium condition (E) is equivalent to the condition

⋂n
i=1 Pi 6= Ø, i.e., there exists a

scenario measure Q which is shared by all traders in the market. 2

In the case that the Pareto equilibrium condition does not hold we introduce the
following formulation of the optimal allocation problem which makes sense also without
assuming condition (E).
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Define a decomposition X =
∑n

i=1 Xi to be admissible if X(ω) ≥ 0 implies that
0 ≤ Xi(ω) and X(ω) ≤ 0 implies that Xi(ω) ≤ 0. Let A(X) denote the set of admissible
decompositions (Xi) of X. We define the admissible infimal convolution %∗ as the
value of the allocation problem restricted to admissible allocations

%∗(X) := inf
{ n∑

i=1

%i(Xi); (Xi) ∈ A(X)
}

. (3.5)

Obviously, we have

%∗(X) ≤ min(%i(X)− %i(0)) +
n∑

i=1

%i(0).

The restriction to admissible decompositions of risks excludes, similarly as the re-
striction to admissible strategies in portfolio theory, that effects like doubling strategies
paradoxes may occur in risk allocation.

In the following theorem we derive a representation of %∗ in terms of the representation
scenarios Pi := {Q ∈ ba(P ); αi(Q) < ∞} of %i. For Pi ∈ Pi define by P1 ∧ · · · ∧ Pn the
lattice infimum of (Pi) in the lattice ba(P ) and by P1 ∨ · · · ∨ Pn the lattice supremum of
(Pi) in ba(P ) (see Rao and Rao (1983, Theorem 2.2.1)). If Pi are probability measures
with densities fi w.r.t. µ then P1∧· · ·∧Pn resp. P1∨· · ·∨Pn have densities min{fi} resp.
max{fi} w.r.t. µ.

Theorem 3.4 Let %j be convex risk measures with penalty functions αj. The admissible
infimal convolution %∗ is given by

%∗(X) = sup
{ ∫

X−d
∧
j

Pj −
∫

X+d
∨
j

Pj −
∑

j

αj(Pj); Pj ∈ Pj , 1 ≤ j ≤ n

}
. (3.6)

Proof: The proof is similar to that for coherent risk measures in Burgert and Rüschendorf
(2005). The class of admissible decompositions has an alternative description like in mul-
tiple decision problems:

A(X) =
{

(ϕiX); 0 ≤ ϕi ≤ 1,

n∑

i=1

ϕi = 1
}

; (3.7)

thus we consider decompositions of the form (ϕiX).
For Pi ∈ Pi, 1 ≤ i ≤ n and Y := −X ∈ L∞(P ) holds

aP1,...,Pn(Y ) := inf
{ n∑

i=1

∫
ϕiY dPi; 0 ≤ ϕi,

n∑

i=1

ϕi = 1
}

has a solution (ϕ∗i ) and if Y (ω) > 0, then {ϕ∗i > 0} ⊂ {Pi =
∧n

j=1 Pj} and if Y (ω) < 0,
then {ϕ∗i > 0} ⊂ {Pi =

∨n
j=1 Pj}. Thus

aP1,...,Pn(Y ) =
∫

Y≥0

Y d
n∧

j=1

Pj +
∫

Y <0

Y d
n∨

j=1

Pj

=
∫

Y+d
∧

Pj −
∫

Y−d
∨

Pj

=
∫

X−d
∧

Pj −
∫

X+d
∨

Pj .
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Therefore, we obtain

%∗(X) = inf
(ϕi)

∑

i

%i(ϕiX) = inf
(ϕi)

∑

i

sup
Pi∈Pi

( ∫
(−ϕiX)dPi − αi(Pi)

)

= inf
(ϕi)

[
−

n∑

i=1

inf
Pi∈Pi

(
∫

ϕiXdPi + αi(Pi))
]

= − sup
(ϕi)

∑

i

inf
Pi∈Pi

(
∫

ϕiXdPi + αi(Pi)).

We now apply the minimax theorem for games (A,B, f) of concave–convex type, (see
Müller (1971)). Let f : A×B → IR, A,B 6= Ø and assume that

1) ∀ b1, b2 ∈ B, α ∈ [0, 1] there exists a b ∈ B such that for all a ∈ A holds

f(a, b) ≤ (1− α)f(a, b1) + αf(a, b2).

2) ∀ a1, a2 ∈ A, α ∈ [0, 1] there exists an a ∈ A such that for all b ∈ B holds

f(a, b) ≥ (1− α)f(a1, b) + αf(a2, b).

If f < ∞ and if for some topology τ on A holds A is τ -compact and ∀ b ∈ B,
f(·, b) : A → IR is upper semicontinuous, then

inf
b∈B

sup
a∈A

f(a, b) = sup
a∈A

inf
b∈B

f(a, b). (3.8)

We choose A = {(ϕi); 0 ≤ ϕi,
∑

ϕi = 1}, which is compact in weak∗-topology,
B = P1 × · · · × Pn and f((ϕi), (Pi)) =

∑n
i=1(

∫
ϕiXdPi + αi(Pi)). By linearity of f

and convexity of Pi and A the conditions of the minimax theorem are fulfilled and we
obtain from the first part of the proof

%∗(X) = − inf
Pi∈Pi

sup
(ϕi)

∑

i

( ∫
ϕiXdPi + αi(Pi)

)

= − inf
Pi∈Pi

( ∫
X+d

∨
Pi −

∫
X−d

∧
Pi +

∑

i

αi(Pi)
)

= sup
Pi∈Pi

( ∫
X−d

∧
Pi −

∫
X+d

∨
Pi −

∑

i

αi(Pi)
)

.
2

As consequence of Theorem 3.4 we obtain a further characterization of the Pareto
equilibrium condition (E) and under condition (E) the identity of %̂ and %∗. Therefore,
the representation of (3.6) holds true for %̂ under condition (E).

Proposition 3.5 Let %i be convex risk measures and let %∗ denote the admissible infimal
convolution, then it holds:

%∗ is a convex risk measure ⇔ %∗(1) = %∗(0)− 1

⇔
n⋂

i=1

Pi 6= Ø.

Under the equilibrium condition (E) we have %∗ = %̂.
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Proof: The first equivalence is obvious since the condition %∗(1) = %∗(0) − 1 implies
translation invariance of %∗. By Theorem 3.4

%∗(1) = sup
{
− |∨

j

Pj | −
∑

j

αj(Pj); Pj ∈ Pj

}

= − inf
{
|∨

j

Pj |+
∑

j

αj(Pj); Pj ∈ Pj

}
.

Thus %∗(1) = %∗(0)−1 if and only if there exists a common scenario measure Q ∈ ⋂n
i=1 Pi.

By Proposition 3.3 the equilibrium condition (E) implies that
⋂Pi 6= Ø. 2

Remark: The condition %∗(1) = %∗(0) − 1 has the following interpretation. The traders
in the market try to allocate their risk in the best possible way which leads to a risk
%∗(1) ≤ %∗(0)− 1 for any risk measures %i. On the other hand from a regulatory point of
view the risk measures should be chosen by the traders in a most cautious way in order
not to underestimate the whole risk. This game theoretic consideration suggests that in
order to obtain that the optimal admissible total risk is reasonable i.e. in our context is a
convex risk measure one might expect that the condition %∗(1) = %∗(0) − 1 should hold.
This idea is confirmed by Proposition 3.5. 2

%∗ is a convex monotone risk functional – in particular %∗(0) =
∑n

i=1 %i(0) – but %∗ is
not translation invariant in general. From the definition of %∗ we obtain

%∗(1) = inf
{ n∑

i=1

%i(Xi); 0 ≤ Xi,

n∑

i=1

Xi = 1
}

(3.9)

≤ %1(1) +
n∑

i=2

%i(0) = %∗(0)− 1.

As we have seen the modified allocation problem given by %∗ leads to a senseful version
of the allocation problem also when (E) does not hold. We finally get by a modification
of %∗ a convex risk measure %̂∗ which we call convex admissible infimal convolution.

Definition 3.6 (Convex admissible infimal convolution) We define the convex ad-
missible infimal convolution risk measure %̂∗ by

%̂∗(X) := inf{m ∈ IR; X + m ∈ A} (3.10)
= inf{m ∈ IR; %∗(X + m) ≤ 0}

where A = A%∗ = {X; %∗(X) ≤ 0}.
From the definition %̂∗ is a convex risk measure with Ab%∗ ⊃ A%∗ = A and

%̂∗ ≤ %∗ (3.11)

Theorem 3.7 Let %1, . . . , %n be convex risk measures, then:

1) %̂∗ is the largest convex risk measure % with % ≤ %∗.

2) Under condition (E) holds

%̂∗ = %̂.

Proof:

1) This follows from the definition of %̂∗.

2) Under condition (E) %∗ is a convex risk measure by Proposition 3.5. Therefore %̂∗ =
%∗ = %̂ by 1). 2
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4 Risk allocation with cautious risk attitude

In this section we take an opposite regulatory point of view on risk allocation corre-
sponding to a cautious risk attitude. The natural allocation problem then is given by the
supremal convolution

τ̂(X) := sup
{ n∑

i=1

%i(Xi);
n∑

i=1

Xi = X

}
, (4.1)

where %i are convex risk measures. It turns out however, that except in the trivial situation
where P1 = P2 = · · · = Pn = {P1} we do not get by (4.1) a convex risk measure.

As in section 3 it seems natural to restrict the class of decompositions. Let

A(X) :=
{

(Xi) = (ϕiX); 0 ≤ ϕi ≤ 1,

n∑

i=1

ϕi = 1
}

(4.2)

denote the class of admissible decompositions and define the value of the allocation prob-
lem with cautious risk attitude which we call the admissible supremal convolution
by

τ∗(X) := sup
{ n∑

i=1

%i(Xi); (Xi) ∈ A(X)
}

. (4.3)

τ∗ is a convex monotone risk functional (with τ∗(0) =
∑n

i=1 %i(0)) but τ∗ is not translation
invariant in general. Obviously

τ∗ ≤ τ̂ . (4.4)

As in Theorem 3.4, τ∗ can be calculated explicitly in terms of the representation scenarios
Pi of %i.

Theorem 4.1 Let %i be convex risk measures with penalty functions αi and τ∗ the cor-
responding admissible supremal convolution. Let Pi := {Q ∈ ba(P ) : αi(Q) < ∞}. Then

τ∗(X) = sup
{ ∫

X−d
∨
i

Pi −
∫

X+d
∧
i

Pi −
∑

i

αi(Pi); Pi ∈ Pi, 1 ≤ i ≤ n

}
.

Proof: As in the proof of Theorem 3.4 we obtain

τ∗(X) = sup
(ϕi)

∑

i

%i(ϕiX)

= sup
(ϕi)

∑

i

sup
Pi∈Pi

(EPiϕiY − αi(Pi)), with Y := −X

= sup
(Pi)∈(Pi)

sup
(ϕi)

∑

i

( ∫
ϕiY dPi − αi(Pi)

)

= sup
(Pi)

( ∫
Y+d

∨
i

Pi −
∫

Y−d
∧
i

Pi −
∑

i

αi(Pi)
)

= sup
(Pi)

( ∫
X−d

∨
i

Pi −
∫

X+d
∧
i

Pi −
∑

i

αi(Pi)
)

. 2

Remark: As consequence of Theorem 4.1 we see that

τ∗(1) = − inf
{∣∣ ∧

Pi

∣∣ +
∑

αi(Pi); Pi ∈ Pi

}
(4.5)
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and thus

τ∗(1) =
∑

%i(0)− 1 ⇔
∣∣ ∧

Pi

∣∣ = 1, ∀Pi ∈ Pi (4.6)

⇔ P1 = P2 = · · · = Pn and |Pi| = 1.

2

As in section 3 we obtain from the modified allocation problem a meaningful convex
risk measure.

We define the convex admissible supremal convolution risk measure τ̂∗ by

τ̂∗(X) = inf{m ∈ IR; X + m ∈ Aτ∗} = inf{m ∈ IR; τ∗(X + m) ≤ 0}, (4.7)

where Aτ∗ = {X ∈ L∞(P ); τ∗(X) ≤ 0}. Then we obtain

Proposition 4.2 The convex admissible supremal convolution risk measure τ̂∗ is the
largest coherent risk measure % such that

%i ≤ % ≤ τ∗ for 1 ≤ i ≤ n.

The admissibility of a decomposition seems to be a natural postulate. Thus the ad-
missible supremal convolution risk measure offers a solution to the risk measure problem
for markets under a cautious attitude towards risk.
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