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for Lévy processes

Jan Bergenthum, Ludger Rüschendorf1

Department of Mathematical Stochastics, University of Freiburg, Eckerstr. 1, 79104 Freiburg,

Germany; E-Mail: ruschen@stochastik.uni-freiburg.de

Summary Modelling financial and insurance time series with Lévy processes or with
exponential Lévy processes is a relevant actual practice and an active area of research.
It allows qualitatively and quantitatively good adaptation to the empirical statistical
properties of asset returns. Due to model incompleteness it is a problem of considerable
interest to determine the dependence of option prices in these models on the choice
of pricing measures and to establish nontrivial price bounds. In this paper we review
and extend ordering results of stochastic and convex type for this class of models.
We also extend the ordering results to processes with independent increments (PII)
and present several examples and applications as to α-stable processes, NIG-processes,
GH-distributions, and others. Criteria are given for the Lévy measures which imply
corresponding comparison results for European type options in (exponential) Lévy
models.
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1 Introduction

Since the proposition of α-stable Lévy processes by Mandelbrot (1960) in the early
sixties as models for cotton prices it took until the nineties that these models were
investigated thoroughly as adequate models that are able to reproduce the stylized
properties of asset prices. This class of models allows to deal with the complete spec-
trum of pricing, of statistical analysis and risk measurement. An impressive presenta-
tion of stable modelling in finance and econometrics and corresponding empirical and
statistical analysis is given in the comprehensive volume of Rachev and Mittnik (2000).
Later on beginning in the mid nineties further classes of Lévy processes and exponential
Lévy processes were proposed as adequate models for financial and econometric data
allowing a great flexibility concerning tail behaviour, jumps, diffusion, and unsymme-
try. A comprehensive presentation of the importance of these models for financial time
series and the relevant development of option pricing, hedging, and statistical analysis
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is given in the treatise of Cont and Tankov (2004). There one also finds an outlook to
modelling beyond Lévy processes as to processes with independent increments (PII) or
to stochastic volatility models with jumps.

A continuous time stochastic process X = (Xt)t≥0 is called Lévy process if it has
stationary, independent increments, stochastically continuous paths and X0 = 0. The
distribution of X1 is infinitely divisible and the charactersitic function of Xt is given by
Φt(s) = EeisXt = etΨ(s), where the characterstic exponent Ψ has the Lévy–Khintchine
representation

Ψ(s) = ibs− σ2

2
s +

∫ (
eisy − 1− isy1{|y|≤1}

)
F (dy) (1)

for s ∈ R. Here b is a drift parameter, σ2 ≥ 0 is a diffusion parameter and F is the Lévy
measure. Thus the distribution of the process is uniquely characterized by the triplet
of local characteristics (b, σ2, F ). A similar representation holds in the multivariate
case. The truncation function h(y) = y1{|y|≤1} can be replaced by other versions of the
truncation function. Only the drift term b = b(h) depends on this choice.

Lévy type models typically are incomplete and thus it is a problem of interest to
investigate the dependence of option prices or insurance risks on the choice of the
pricing measure in the class of martingale measures which describe consistent prices
and do not allow arbitrage opportunities. A particular problem in this context is to
find relevant upper and lower bounds for the pricing interval {EQf(ST ); Q ∈ M(P )},
where the option Y = f(ST ) is a function of the price process at time T and Q runs
through the class of P -continuous martingale measures. For the class of European
style options as puts or calls these questions lead naturally to the consideration of the
increasing and the (increasing or decreasing) convex ordering of the price processes as
these options often are (increasing or decreasing) convex functions of terminal values
of the underlying processes. It is also of interest to consider path dependent options
which are (increasing or decreasing) convex functions of the path of the underlyings.

Since for Lévy processes typically (marginal) distributions or densities are not avail-
able in explicit form it is of interest to determine ordering conditions on the Lévy mea-
sures respectively the local characteristics of the processes which describe the drift part,
the diffusion part and the jump part. The triplet (b, σ2, F )h of local characteristics typ-
ically is known and it characterizes by the Lévy–Khintchine formula the distribution of
the Lévy process. Here F denotes the Lévy measure describing the jumps, b, b = b(h),
σ2 the drift and diffusion parameter, the truncation function h. An extensive statistical
theory has been developed to estimate these spectral parameters from financial data
(see Rachev and Mittnik (2000), Cont and Tankov (2004)).

Exponential Lévy models are given by

St = S0 exp(Xt), (2)

where (Xt) is a Lévy process, i.e. a process with stationary independent increments. For
financial modeling exponential Lévy models are typically better fitting the price pro-
cesses than Lévy processes, even if the original models of Bachelier (Brownian motion)
and Mandelbaum (α-stable processes) were Lévy models. The reason is that usually
the relative price changes (St+δ − St)/St are empirically found to be approximatively
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independent identically distributed (i.i.d.). This is by approximation essentially equiv-
alent to i.i.d. log returns and thus one gets as continuous time models exponential Lévy
processes St = S0 exp(Xt). For the statistical analysis and the analytical properties it is
however common and largely equivalent to analyze the Lévy process Xt = log(St/S0).
This is also the point of view in this paper. The analysis of X allows in many respects to
induce corresponding properties of S. Also it is pointed out throughout this paper that
Lévy processes themselves are important models in various applications as in the in-
surance risk processes or in queuing systems which justify to investigate their ordering
propertis also with respect to general physical (not necessarily martingale) measures.
A more general class of processes are the PII-processes with independent increments
or the corresponding exponential PIIs, which are still analytically tractable but allow
an even better adaptation to empirical data.

In our paper we derive ordering criteria for Lévy type models X. In particular we
consider stochastic and (increasing) convex ordering. The results imply also ordering
criteria for the corresponding exponential Lévy models as the exponential function
itself is convex and increasing. In fact by so-called ‘duality arguments’ also ordering of
further classes of options can be reduced to these cases. For example the calculation of
the price of a put option E(K − ST )+ in exponential Lévy model can be equivalently
formulated as price of a call option E(S′T −K ′)+ of the ‘dual’ process, which is again an
exponential Lévy process. Thus ordering of decreasing convex type for Lévy processes
can be reduced to ordering of increasing convex type for a related dual Lévy process.

Some interesting convex comparison results for exponential stochastic models have
been developed in recent papers in financial mathematics (see El Karoui, Jeanblanc-
Picqué, and Shreve (1998), Hobson (1998), Bellamy and Jeanblanc (2000), Gushchin
and Mordecki (2002), Henderson and Hobson (2003), Bergenthum and Rüschendorf
(2006)). The main aim in these papers is to derive sharp upper or lower bounds for
option prices in incomplete market models. The methods used in these papers are based
on stochastic calculus (Itô formula) and the propagation of convexity property (see
El Karoui et al. (1998), Bellamy and Jeanblanc (2000), Gushchin and Mordecki (2002),
Bergenthum and Rüschendorf (2006)) as well as on the coupling method (see Henderson
and Hobson (2003), Hobson (1998)). Extensions to the comparison of multivariate
semimartingales and Lévy processes are given in Bergenthum and Rüschendorf (2007)
(abbreviated as BR (2007) in the following) on which this paper is based.

The basic results in the above mentioned papers state that ordering properties of
the Lévy triplets imply under some regularity conditions ordering of the finite dimen-
sional distributions of the Lévy processes. In this paper we give a short review of these
results and in particular we establish in a systematic way several cut criteria for one
dimensional Lévy measures which allow to verify the ordering criteria for the Lévy
triplets which are postulated in the above mentioned papers. As a consequence this
allows to establish various explicit ordering results for the stochastic ordering and the
(increasing) convex ordering.

The main aim of this paper is to give easy to verify ordering criteria which allow us
to apply these results to concrete models and further to extend these ordering results
to the class of PII processes because of their particular relevance for modelling. We
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consider orderings w.r.t. one of the following order generating function classes F
Fst := {f : Rd → R, f is increasing},
Fcx := {f : Rd → R, f is convex},
Fdcx := {f : Rd → R, f is directionally convex},
Fsm := {f : Rd → R, f is supermodular},
Ficx := Fcx ∩ Fst, Fidcx := Fdcx ∩ Fst, Fism := Fsm ∩ Fst,

(3)

where for d-dimensional random vectors X, Y we define

X ≤F Y if Ef(X) ≤ Ef(Y ) (4)

for all f ∈ F such that f(X), f(Y ) are integrable. While the class of increasing convex
functions is well motivated considering convex claims, the directionally convex order
and the supermodular order are particulary well suited to describe risk arising from
positive dependence (for definition and properties see Müller and Stoyan (2002)) Note
that for the classes of ordering functions in (3) it is sufficient to establish the inequality
in (4) for some suitable generating subclass of F , as for example for smooth functions
etc.

In this paper we consider orderings of infinite divisible distributions and of the finite-
dimensional distributions of the corresponding Lévy processes. Thereto, we introduce
the class of functions F (m) := {f := (Rd)m → R : f(s1, . . . , si−1, ·, si+1, . . . , sm) ∈
F , si ∈ Rd, i ≤ m}, m, d ∈ N, that are componentwise in F . A d-dimensional process
S(1) is said to have smaller finite-dimensional distributions with respect to the product
ordering induced by F than a d-dimensional process S(2), if for every m ∈ N and all
0 ≤ t1 < · · · < tm ≤ T it holds true that

Eg
(
S

(1)
t1 , . . . , S

(1)
tm

) ≤ Eg
(
S

(2)
t1 , . . . , S

(2)
tm

)
, (5)

for all g ∈ F (m). We denote this ordering by
(
S

(1)
t

) ≤F
(
S

(2)
t

)
. (6)

For time-homogeneous Markov processes the existence of a ≤F -monotone transition
kernel that separates the transition kernels of S(i) is sufficient to establish ordering of
the finite-dimensional distributions. Here a kernel Q is ≤F -monotone if f ∈ F implies
that Qf ∈ F . A useful tool is the following separation result (see BR (2007)).

Lemma 1 (Separation lemma). Two time-homogeneous Markov processes
(S(1)

t )t∈[t1,T ] and (S(2)
t )t∈[t1,T ] with transition kernels Q

(1)
t and Q

(2)
t satisfy

(
S

(1)
t

) ≤F
(
S

(2)
t

)
,

if S
(1)
t1 ≤F S

(2)
t1 and if a family (Qt) of ≤F -monotone transition kernels exists such that

Q
(1)
t (x, ·) ≤F Qt(x, ·) ≤F Q

(2)
t (x, ·), for all x and all t > 0.

(The ordering between probability measures is defined as in (4).)
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In Section 2 we develop in detail several cut criteria for the Lévy measures of
compound Poisson processes. These criteria allow to verify the ordering conditions
for Lévy measures as postulated in the general comparison results in BR (2007). As
consequence we obtain stochastic and (increasing) convex ordering results for the cor-
responding compound Poisson processes. In Section 3 we extend these ordering results
to Lévy processes with infinite Lévy measures. For the proof we use approximation
by processes with finite Lévy measures obtained by truncation of the infinite Lévy
measures of the processes that we want to compare. These results need a careful con-
sideration of the consequences of truncating the Lévy measures on the corresponding
cutting criteria. Several of the more technical proofs in Sections 2 and 3 are defered to
the appendix.

Section 4 is concerned with extensions of the ordering results to PII processes. This
class of models has been suggested in several recent papers on financial modelling.
(Exponential) Lévy models do not allow for time inhomogeneity. As a consequence Lévy
models yield strong scaling properties for marginal distributions of returns. They allow
to calibrate to implied volatility patterns for single maturity but fail to reproduce option
prices correctly over a range of different maturities. The PII models in particular allow
to take into account inhomogeneities described by deterministic local time behaviour.
At the same time much of the analytical tractability of Lévy processes is preserved
for the PII processes. In the final part of our paper we give several applications to
comparison results for α-stable processes, NIG processes and GH distributions. In this
part and throughout the first part of the paper we also include some examples and
review and apply some general results of our previous paper BR (2007) .

2 Ordering results for compound Poisson processes

The first section of this paper is concerned with ordering results for compound Poisson
processes. This is the most simple class of Lévy processes with finitely many jumps in
finite time corresponding to a finite Lévy measure. On the other hand it is a rich class
of models allowing to approximate general Lévy processes. In particular in insurance
compound Poisson processes are common models for the insurance risk process, de-
scribing the accumulated premiums minus the claims of some insurance contract. The
corresponding traded price process is of the form

Xt = X0 +
Nt∑

j=1

Yj − κt = X0 + Ut − κt,

where N is a homogeneous Poisson process, (Yi) are iid claim size variables with Ut the
corresponding compound Poisson process and κ is the premium rate. This leads to an
incomplete market model consisting of the savings account and the price process X.
The relevance of financial (no-arbitrage and martingale) pricing concepts in insurance
and conversely the importance of insurance premium principles in financial pricing has
been detailed in several papers (see Delbaen and Haezendonck (1989), Møller (2002),
Embrechts (2000)). Contingent claims, equivalently reinsurance contracts cannot be
priced uniquely by no arbitrage theory. Different martingale measures lead to different
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prices. There are basically two main principles how to choose a martingale measure.
One is to minimize some distance to the underlying physical market measure, the other
one is based on utility principles. Both types or principles are essentially equivalent (see
Goll and Rüschendorf (2001)). Thus it is of interest for dynamic reinsurance markets to
establish comparison results for different martingale measures. Møller (2004) has given
in this context several comparison results between some specific martingale measures, as
the minimal martingale measure, the minimal entropy martingale measure, and others.
In this section we extend some of Møller’s results and establish general comparison
criteria for compound Poisson models.

For the ordering of two compound Poisson processes we begin with some normal-
ization. Our ordering criterion for compound Poisson processes with Lévy measures
F (k) of different finite total mass, is given in terms of the modified Lévy measures F̃ (k)

which for k ∈ {1, 2} such that ‖F (k)‖ ≤ ‖F (3−k)‖ are defined as

F̃ (k)(dx) = F (k)(dx) +
(‖F (3−k)‖ − ‖F (k)‖)+

δ{0}(dx), (7)

where a+ = max{0, a} is the positive part of a ∈ R and δ{0} denotes the Dirac measure
in the origin. Thus we add some point mass in zero to the Lévy measure with the
smaller mass such that the modified measures F̃ (k) have equal total mass. By the
Lévy–Khintchine formula S(i) has Lévy triplet S(i) ∼ (b(i)(0), 0, F̃ (i))0, i = 1, 2. Here
(b, σ2, F )h, b = b(h) denotes generally the triplet of local characteristics with respect
to the truncation function h, (b, σ2, F )0 the triplet for the case of no truncation, i.e.
h ≡ 0. Even though the standard convention that the jump kernel has no point mass
in the origin is left aside, the modified Lévy measures F̃ (i) uniquely characterize the
distributions of S(i) modulo this point mass. The results in this section are based on
the following comparison result for multivariate compound Poisson processes in BR
(2007, Lemma 3.2).

Proposition 2 (Ordering of compound Poisson processes). Let S(i) ∼ (b(i)(0), 0,
F (i))0, i = 1, 2, be d-dimensional compound Poisson processes and assume that the
Lévy measures F (i) satisfy

∫
{|x|>1} |x|F (i)(dx) < ∞. Let the modified Lévy measures

F̃ (i) be given by (7).
If F̃ (1) ≤F F̃ (2) holds true for

1. F ∈ {Fst,Ficx,Fidcx,Fism} and, additionally, b(1)(0) ≤ b(2)(0),

or

2. F ∈ {Fcx,Fdcx,Fsm} and, additionally, b(1)(0) = b(2)(0),

then (S(1)
t ) ≤F (S(2)

t ).

The conditions in Proposition 2 on the ordering of the drift and Lévy measures are
natural. The proof of Proposition 2 uses a natural coupling representation and some
wellknown closure properties of the involved orders under mixtures and convolutions.

In the following we consider one-dimensional compound Poisson processes S(i) ∼
(b(i)(0), 0, F (i))0. In order to establish

(
S

(1)
t

) ≤F
(
S

(2)
t

)
for F ∈ {Fst,Ficx,Fcx} we

derive sufficient conditions for the drifts b(i) and Lévy measures F (i) in order to establish
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the comparison criteria of Proposition 2 for the modified Lévy measures F̃ (i). This needs
a careful discussion of the consequences of adding some mass to the origin as in (7).
First we establish three versions of a cut criterion that is parallel to the classical cut
criterion for probability distribution functions due to Karlin and Novikoff (1963). If a
Lévy measure F (2) has more mass in the tails than a Lévy measure F (1), and less mass
near the center, then it is bigger with respect to the (increasing) convex order. In our
case of Lévy measures with different finite total mass the comparison depends on the
locus where the ordering of the Lévy measures changes. This is due to the fact that the
corresponding modified Lévy measure F̃ (k) may have some point mass in the origin.

In the first case where the two order changes of the Lévy measures F (i) take place
on the negative half axis, we obtain the following result.

Proposition 3 (Cut criterion for compound Poisson processes, k` < kr ≤ 0). Let
S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson processes and
assume that

∫
{|x|>1} |x|F (i)(dx) < ∞. For k` < kr ≤ 0 assume that

F (1)(A) ≤ F (2)(A), ∀A ∈ B((−∞, k`)), (8)
F (1)(A) ≥ F (2)(A), ∀A ∈ B((k`, kr)), (9)
F (1)(A) ≤ F (2)(A), ∀A ∈ B((kr,∞)). (10)

In the case ‖F (1)‖ < ‖F (2)‖ additionally assume that

F (1)(R−) ≥ F (2)(R−), if F (1)((−∞, kr]) > F (2)((−∞, kr]).

1. If b(1)(0) ≤ b(2)(0) and
∫

xF (1)(dx) ≤ ∫
xF (2)(dx), then (S(1)

t ) ≤icx (S(2)
t ).

2. If b(1)(0) = b(2)(0) and
∫

xF (1)(dx) =
∫

xF (2)(dx), then (S(1)
t ) ≤cx (S(2)

t ).

For the proof see the Appendix.

Remark 4. We did not make any assumptions on the ordering of F (i) in the points
of order changes k`, kr. Note also that the proof does not make use of the full strength
of conditions (8)–(10). In fact weaker conditions can be given in terms of the increase
of the distribution function of the Lévy measures F (i). But the formulation of the
conditions in (8)–(10) is more intuitive and simpler.

If the pointwise ordering of the Lévy measures changes once on the negative and
once on the positive half axis, we obtain a similar result. The proof is similar to the
proof of Proposition 3. (For details see Bergenthum (2005, Theorem 2.1.4).)

Proposition 5 (Cut criterion for compound Poisson processes, k` ≤ 0 ≤ kr). Let
S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson processes and
assume that

∫
{|x|>1} |x|F (i)(dx) < ∞. For k` ≤ 0 ≤ kr assume that

F (1)(A) ≤ F (2)(A), ∀A ∈ B((−∞, k`)),
F (1)(A) ≥ F (2)(A), ∀A ∈ B((k`, kr)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((kr,∞)).



8 J. Bergenthum, L. Rüschendorf

In the case ‖F (1)‖ > ‖F (2)‖ additionally assume that

F (1)(R−) ≥ F (2)(R−) + ‖F (1)‖ − ‖F (2)‖,
if there is a κ ∈ [k`, 0) s.th. F (1)((−∞, k]) ≤ F (2)((−∞, k]), for all k < κ and
F (1)((−∞, k]) ≥ F (2)((−∞, k]), for all k ∈ [κ, 0).

1. If b(1)(0) ≤ b(2)(0) and
∫

xF (1)(dx) ≤ ∫
xF (2)(dx), then (S(1)

t ) ≤icx (S(2)
t ).

2. If b(1)(0) = b(2)(0) and
∫

xF (1)(dx) =
∫

xF (2)(dx), then (S(1)
t ) ≤cx (S(2)

t ).

A third version of this assertion is given in the case when the dominance changes
of the Lévy measures take place on the positive half axis. The proof is parallel to the
proof of Proposition 3 (cf. Bergenthum (2005, Theorem 2.1.5)).

Proposition 6 (Cut criterion for compound Poisson processes, 0 ≤ k` < kr). Let
S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson processes and
assume that

∫
{|x|>1} |x|F (i)(dx) < ∞. For 0 ≤ k` < kr assume that

F (1)(A) ≤ F (2)(A), ∀A ∈ B((−∞, k`)),
F (1)(A) ≥ F (2)(A), ∀A ∈ B((k`, kr)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((kr,∞)).

In the case ‖F (1)‖ < ‖F (2)‖ additionally assume that

F (2)(R−) ≥ F (1)(R−) + ‖F (2)‖ − ‖F (1)‖,
if F (1)((−∞, k`]) + ‖F (2)‖ − ‖F (1)‖ < F (2)((−∞, k`]).

1. If b(1)(0) ≤ b(2)(0) and
∫

xF (1)(dx) ≤ ∫
xF (2)(dx), then (S(1)

t ) ≤icx (S(2)
t ).

2. If b(1)(0) = b(2)(0) and
∫

xF (1)(dx) =
∫

xF (2)(dx), then (S(1)
t ) ≤cx (S(2)

t ).

Remark 7. 1. The second part of Proposition 6 is a generalization of Theorem 6.1 in
Møller (2004), which is the main comparison tool for compound Poisson processes of
that paper. The condition b(1)(0) = b(2)(0) is implicitly assumed there, as Møller con-
siders S(i) under martingale measures and assumes

∫
xF (1)(dx) =

∫
xF (2)(dx) =: d,

hence b(i)(0) = − ∫
xF (i)(dx) = d, i = 1, 2. In addition to condition

∫
xF (1)(dx) =∫

xF (2)(dx), Møller assumes that 1
‖F (1)‖

∫
xF (1)(dx) ≤ 1

‖F (2)‖
∫

xF (2)(dx), hence

‖F (1)‖ ≥ ‖F (2)‖, to obtain ordering of the terminal values S
(1)
T ≤cx S

(2)
T .

2. Similar to the results in Møller (2004) as mentioned in the introduction of this section
our comparison results imply ordering criteria for several well-established martingale
measures like the minimal martingale measure and the minimal entropy martingale
measure in incomplete compound Poisson models (see Bergenthum (2005)). These
measures correspond to the so-called market price of jump risk w.r.t. the physical
measure. This risk parameter is identical to the density of the Lévy measure under
the martingale measure w.r.t. the underlying physical measure and is obtained by
the Girsanov theorem.
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The following domination criterion is a corollary of Proposition 5 with k` = kr = 0.
If a finite Lévy measure F (2) dominates a Lévy measure F (1) in every jump height in
the sense that F (1)(A) ≤ F (2)(A) for all A ∈ B then (increasing) convex ordering of
the corresponding compound Poisson processes is implied. We denote this ordering of
F (1), F (2) by F (1) ≤ F (2).

Corollary 8 (Domination criterion for compound Poisson processes). Let S(i) ∼
(b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson processes and assume
that the Lévy measures F (i) satisfy

∫
{|x|>1} |x|F (i)(dx) < ∞ and F (1) ≤ F (2).

1. If b(1)(0) ≤ b(2)(0) and
∫

xF (1)(dx) ≤ ∫
xF (2)(dx), then (S(1)

t ) ≤icx (S(2)
t ).

2. If b(1)(0) = b(2)(0) and
∫

xF (1)(dx) =
∫

xF (2)(dx), then (S(1)
t ) ≤cx (S(2)

t ).

Next, we establish three versions of a domination criterion for finite Lévy measures
F (i), i = 1, 2, that imply stochastic ordering of the corresponding compound Poisson
processes S(i). If F (1) has more mass on small values than F (2) and less mass on big
values, then under a suitable drift condition stochastic ordering (S(1)

t ) ≤st (S(2)
t ) is

implied, i.e. the ordering with respect to the class Fst of increasing functions. Again,
the statement of this comparison result depends on the locus of the dominance change.
If the dominance change takes place on the negative half axis, the result is as follows.

Proposition 9 (Criterion for stochastic ordering of compound Poisson processes,
k ≤ 0). Let S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson
processes. Assume that

∫
{|x|>1} |x|F (i)(dx) < ∞ and that for k ≤ 0 it holds true that

F (1)(A) ≥ F (2)(A), ∀A ∈ B((−∞, k)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((k,∞)),

and b(1)(0) ≤ b(2)(0). In the case ‖F (1)‖ < ‖F (2)‖ additionally assume that F (1)(R−) ≥
F (2)(R−). Then

(S(1)
t ) ≤st (S(2)

t ).

For the proof see the Appendix.
If the dominance change of the Lévy measures takes place on the positive half axis,

we obtain the following result. The proof is similar to the proof of the previous theorem
(see Bergenthum (2005, Theorem 2.1.9)).

Proposition 10 (Criterion for stochastic ordering of compound Poisson processes,
k ≥ 0). Let S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson
processes. Assume that

∫
{|x|>1} |x|F (i)(dx) < ∞ and that for k ≥ 0 it holds true that

F (1)(A) ≥ F (2)(A), ∀A ∈ B((−∞, k)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((k,∞)),

and b(1)(0) ≤ b(2)(0). In the case ‖F (2)‖ < ‖F (1)‖ additionally assume that F (1)(R+) ≤
F (2)(R+). Then

(S(1)
t ) ≤st (S(2)

t ).
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Proposition 9 and 10 imply stochastic ordering without additional conditions, if the
dominance change takes place in k = 0.

Corollary 11 (Criterion for stochastic ordering of compound Poisson processes, k = 0).
Let S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional compound Poisson processes
and let

∫
{|x|>1} |x|F (i)(dx) < ∞. If b(1)(0) ≤ b(2)(0) and

F (1)(A) ≥ F (2)(A), ∀A ∈ B((−∞, 0)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((0,∞)),

then
(S(1)

t ) ≤st (S(2)
t ).

3 Lévy processes with infinite Lévy measures

More general price models containing a jump part and a diffusion part have already
been considered in Merton (1976). In Merton’s model jumps occur at the event times
of a Posson process and the jump sizes are normally distributed. Options were priced
in these incomplete models by assuming that the investors attitude to jump risk is
risk neutral or that the jump risk is unpriced and only the diffusion risk is taken into
account as in the classical Black–Scholes model. Later on these models were generalized
to jump diffusion models which are defined as solutions of the stochastic differential
equation

dSt

St−
= btdt + σtdWt +

∫

[0,1]

φt(y)ṽ(dt, dy), (11)

where Wt is a Brownian motion, ṽ(dt, dy) = v(dt, dy) − q(dt, dy) is a compensated
Poisson random measure on [0, T ]× [0, 1] with intensity measure q(dt, dy) = λtdtdy.

There are many equivalent martingale measures for this model. Each of these mea-
sures corresponds to a pair of choices for the market price of diffusion risk and the
market price of jump risk. Interesting questions then are to establish whether option
prices are monotone increasing in the market price of jump risk or if they are mono-
tone in the volatility. See El Karoui et al. (1998), Bellamy and Jeanblanc (2000), and
Henderson and Hobson (2003) for results in this direction.

The same question of price comparison also arises for Lévy process models with
infinite Lévy measures as for stable models (see Rachev and Mittnik (2000)), variance
Gamma models (see Madan and Seneta (1990)), the hyperbolic model (see Eberlein
and Keller (1995), the normal inverse Gaussian model (see Barndorff-Nielsen (1998)),
or the CGMY-model (see Carr et al. (2003)). In this section we derive comparison
results for Lévy processes with infinite Lévy measures.

We extend the cut and domination criteria for compound Poisson processes to Lévy
measures with infinite total mass. We obtain two variants of the assertions depending
on the regularity of the paths of the processes. For processes with paths of bounded
variation we can state comparison results under relaxed conditions on the Lévy mesures.

The proofs of the comparison results make use of the following steps. We truncate
the Lévy measures F (i) around the origin by sequences ε

(i)
n ↑ 0, ε

(i)
n ↓ 0 and obtain
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truncated Lévy measures

F (i)
n (dx) := 1

(ε
(i)
n ,ε

(i)
n )c(x)F (i)(dx), ε(i)

n ↑ 0, ε(i)
n ↓ 0, (12)

that have finite total mass ‖F (i)
n ‖. If the total mass of the truncated Lévy measures

is unequal, ‖F (1)
n ‖ 6= ‖F (2)

n ‖, then we add some mass at zero in order to equalize the
total mass. We define the modified truncated Lévy measures by

F̃ (k)
n (dx) := F (k)

n (dx) + (‖F (3−k)
n ‖ − ‖F (k)

n ‖)+δ{0}(dx). (13)

Then we establish ordering of the corresponding compound Poisson processes S
(i)
n ∼

(ES
(i)
1 , 0, F̃

(i)
n )id by the cut and domination criteria of the previous section. Establish-

ing functional weak convergence S
(i)
n

L→ S(i) yields finite-dimensional ordering of the
limit processes, if the ordering ≤F is stable under weak convergence (property (W)).
Property (W) is satisfied by the orders ≤st,≤ism,≤sm, whereas the orders generated
by Fcx,Ficx,Fdcx,Fidcx are not stable with respect to weak convergence. If for these
orders additionally convergence of the expectations ES

(i)
n,t → ES

(i)
t holds true, then the

ordering (S(1)
n,t) ≤F (S(2)

n,t) is propagated to the limit processes (cp. Müller and Stoyan
(2002, Theorems 3.4.6 and 3.12.8)). A suitable functional weak convergence result is
the following lemma which is a consequence of Jacod and Shiryaev (2003, Corollary
VII.3.6). For the proof see the Appendix.

Lemma 12 (Functional weak convergence). Let S ∼ (b(h), 0, F )h be a d-dimensional
Lévy process whose Lévy measure F has infinite total mass and for εn ↑ 0, εn ↓ 0 let
Fn be the corresponding truncated Lévy measure given in (12). If bn(h) → b(h) then
for the compound Poisson processes Sn ∼ (bn(h), 0, Fn)h functional weak convergence

Sn
L→ S

holds true.

For a Lévy process S with Lévy measure F the existence of the first moments ESt

is equivalent to the statement
∫
{|x|>1} |x|F (dx) < ∞, which we will assume for all

of the next assertions. In this case S has the representation S ∼ (ES1, 0, F )id. The
fact that a Lévy process S has paths of finite variation, is characterized in terms of
the Lévy measure by

∫
{|x|<1} |x|F (dx) < ∞. In this case, S has the representation

S ∼ (b(0), 0, F )0, and we implicitly assume that S has paths of finite variation, if we
use this representation. In the sequel we make use of the following corollary of Lemma
12. For the proof see the Appendix.

Corollary 13 (Functional weak convergence). Let F be a Lévy measure with infinite
total mass and for sequences εn ↑ 0, εn ↓ 0 let Fn be the corresponding truncated Lévy
measure as in (12).

1. If
∫
{|x|>1} |x|2F (dx) < ∞, then for S ∼ (ES1, 0, F )id and Sn ∼ (ES1, 0, Fn)id it

holds true that Sn
L→ S.
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2. If for some continuous truncation function h it holds true that
∫ |h(x)|F (dx) < ∞,

then for S ∼ (b(0), 0, F )0 and Sn ∼ (b(0), 0, Fn)0 it follows that bn(h) → b(h) and
thus Sn

L→ S.

Our results make essential use of the following theorem, from BR (2007, Theorems
3.3 and 3.6), which gives a general result for orderings of Lévy processes with infinite
Lévy measures in terms of their modified truncated Lévy measures, of the additional
drift and of moment conditions on the Lèvy measures.

Theorem 14 (Ordering of Lévy processes with infinite Lévy measures). Let S(i) ∼
(ES

(i)
1 , 0, F (i))id, i = 1, 2, be d-dimensional Lévy processes with Lévy measures F (i) that

have infinite total mass. Let ε
(i)
n ↑ 0, ε

(i)
n ↓ 0 be sequences such that for the modified

truncated Lévy measures F̃
(i)
n it holds true that

F̃ (1)
n ≤F F̃ (2)

n .

Additionally assume in the case

1. F ∈ {Fst,Ficx,Fidcx,Fism} that 0 ≤ ∫
xF

(2)
n (dx)− ∫

xF
(1)
n (dx) ≤ ES

(2)
1 − ES

(1)
1 ,

and

2. F ∈ {Fcx,Fdcx,Fsm} that ES
(1)
1 = ES

(2)
1 and

∫
xF

(1)
n (dx) =

∫
xF

(2)
n (dx).

Then it follows that (
S

(1)
t

) ≤F
(
S

(2)
t

)
.

Remark 15 (Finite variation). For Lévy processes with infinite Lévy measure that
have paths of finite variation a variant of the previous theorem is given in BR (2007,
Theorem 3.7). In this case, the drift components b(i)(0) w.r.t. zero truncation exist
and the drift and the Lévy moment condition for the monotone convex type orders
are given by b(1)(0) ≤ b(2)(0) and

∫
xF

(2)
n (dx) − ∫

xF
(1)
n (dx) ≥ 0, respectively. Ac-

cordingly no upper bound for the difference of the Lévy moments is required. For the
convex type orders the drift and Lévy moment condition are b(1)(0) = b(2)(0) and∫

xF
(1)
n (dx) =

∫
xF

(2)
n (dx), respectively, which in this case are equivalent to the drift

and Lévy moment condition of Theorem 14.

Based on Proposition 5 and an approximation argument we establish the following
cut criterion for Lévy processes with infinite Lévy measures.

Proposition 16 (Cut criterion for Lévy processes). Let S(i) ∼ (ES
(i)
1 , 0, F (i))id, i =

1, 2, be one-dimensional Lévy processes and assume that ‖F (1)‖ = ∞. For k` < 0 < kr

assume that

F (1)(A) ≤ F (2)(A), ∀A ∈ B((−∞, k`)),

F (1)(A) ≥ F (2)(A), ∀A ∈ B((k`, 0)),

F (1)(A) ≥ F (2)(A), ∀A ∈ B((0, kr)),

F (1)(A) ≤ F (2)(A), ∀A ∈ B((kr,∞)),

(14)

Assume that ES
(1)
1 ≤ ES

(2)
1 and that there are sequences ε

(i)
n ↑ 0, ε

(i)
n ↓ 0, such that
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(a) ε
(2)
n ≤ ε

(1)
n < 0 < ε

(1)
n < ε

(2)
n ,

(b) 0 ≤ ∫
xF

(2)
n (dx)− ∫

xF
(1)
n (dx) ≤ ES

(2)
1 − ES

(1)
1 , and further

(c) in case that ‖F (1)
n ‖ > ‖F (2)

n ‖ and if F
(1)
n ((−∞, k]) ≤ F

(2)
n ((−∞, k]), for all k <

κ for some κ ∈ [k`, 0), and F
(1)
n ((−∞, k]) ≥ F

(2)
n ((−∞, k]), for all k ∈ [κ, 0),

additionally assume that F
(1)
n (R−) ≥ F

(2)
n (R−) + ‖F (1)

n ‖ − ‖F (2)
n ‖.

Then (S(1)
t ) ≤icx (S(2)

t ).

For the proof see the Appendix.

Remark 17. 1. As in Proposition 16 we do not require F (2) to have infinite total mass.
The assertion also includes the case where S(1) is a Lévy process with infinite Lévy
measure and S(2) has paths of finite variation or is a compound Poisson process.

2. The previous Proposition does not include the case where S(1) has paths of finite
variation and at the same time S(2) has paths of infinite variation. In this case,
condition (14) is violated as F (2) > F (1) around the origin.

In the case where both Lévy processes S(i) have paths of finite variation, we obtain
a variant of the cut criterion with a relaxed Lévy moment condition. We omit the proof,
which is similar to the proof of Proposition 16.

Proposition 18 (Cut criterion for Lévy processes with paths of finite variation). Let
S(i) ∼ (b(i)(0), 0, F (i))0, i = 1, 2, be one-dimensional Lévy processes and assume that
‖F (1)‖ = ∞. For k` < 0 < kr assume that

F (1)(A) ≤ F (2)(A), ∀A ∈ B((−∞, k`)),
F (1)(A) ≥ F (2)(A), ∀A ∈ B((k`, 0)),
F (1)(A) ≥ F (2)(A), ∀A ∈ B((0, kr)),
F (1)(A) ≤ F (2)(A), ∀A ∈ B((kr,∞)),

Assume that b(1)(0) ≤ b(2)(0) and that there are sequences ε
(i)
n ↑ 0, ε

(i)
n ↓ 0, such that

(a) ε
(2)
n ≤ ε

(1)
n < 0 < ε

(1)
n < ε

(2)
n ,

(b)
∫

xF
(1)
n (dx) ≤ ∫

xF
(2)
n (dx), and

(c) if ‖F (1)
n ‖ > ‖F (2)

n ‖ and if there is a κ ∈ [k`, 0) such that F
(1)
n ((−∞, k]) ≤

F
(2)
n ((−∞, k]), for all k < κ and F

(1)
n ((−∞, k]) ≥ F

(2)
n ((−∞, k]), for all k ∈ [κ, 0),

then additionally assume that F
(1)
n (R−) ≥ F

(2)
n (R−) + ‖F (1)

n ‖ − ‖F (2)
n ‖.

Then (S(1)
t ) ≤icx (S(2)

t ).

The following majorization criterion is an extension of Corollary 8 for compound
Poisson processes to Lévy processes with infinite Lévy measures F (i). In this case,
majorization F (1) ≤ F (2) is defined by F (1)(A) ≤ F (2)(A) for all A ∈ B((−∞, 0)) and
for all A ∈ B((0,∞)). Thus the Lévy measure F (2) dominates the Lévy measure F (1)

in every jump height. Under some conditions on the moments, the cutting sequences,
and the masses, we obtain that (S(1)

t ) ≤icx (S(2)
t ).
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Proposition 19 (Majorization criterion for Lévy processes). Let S(i) ∼ (ES
(i)
1 , 0,

F (i))id, i = 1, 2, be one-dimensional Lévy processes. Assume that the Lévy measure
F (2) has infinite total mass and that F (2) majorizes F (1), F (1) ≤ F (2). Assume that
ES

(1)
1 ≤ ES

(2)
1 and that there are sequences ε

(i)
n ↑ 0, ε

(i)
n ↓ 0, i = 1, 2, such that

(a) 0 ≤ ∫
xF

(2)
n (dx)− ∫

xF
(1)
n (dx) ≤ ES

(2)
1 − ES

(1)
1 .

(b) In the case ε
(2)
n < ε

(1)
n < 0 < ε

(1)
n < ε

(2)
n and ‖F (1)

n ‖ > ‖F (2)
n ‖ further assume that

F
(1)
n (R−) ≥ F

(2)
n (R−)+‖F (1)

n ‖−‖F (2)
n ‖ if F

(1)
n ((−∞, k]) ≤ F

(2)
n ((−∞, k]), ∀k < κn

for some κn ∈ [ε(2)
n , 0) and F

(1)
n ((−∞, k]) ≥ F

(2)
n ((−∞, k]), ∀k ∈ [κn, 0).

Then (S(1)
t ) ≤icx (S(2)

t ).

For the proof see the Appendix.

Remark 20. Also for this assertion a variant for Lévy processes S(i), i = 1, 2, that
have paths of finite variation holds true. This is similar to the relationship between
Propositions 16 and 18 (see Bergenthum (2005)).

Proposition 19 implies a domination criterion for Lévy processes that have paths
of infinite variation and whose Lévy measures are absolutely continuous w.r.t. the
Lebesgue measure (see also BR (2007, Corollary 3.4)). Here the conditions reduce to
some easy check conditions on the densities of F (i).

Corollary 21 (Domination criterion for Lévy processes with paths of infinite vari-
ation). Let S(i) ∼ (ES

(i)
1 , 0, F (i))id, i = 1, 2, be one-dimensional Lévy processes and

assume that
∫

A
|x|F (i)(dx) = ∞ for A = (−1, 0) and for A = (0, 1). Let F (i) be abso-

lutely continuous with densities f (i). If ES
(1)
1 ≤ ES

(2)
1 and

0 < f (1)(x) ≤ f (2)(x), ∀x ∈ R, (15)

then (S(1)
t ) ≤icx (S(2)

t ).

Remark 22. The integrability condition
∫

A
|x|F (i)(dx) = ∞ for A = (−1, 0) and

A = (0, 1) implies that the paths of the corresponding Lévy processes have infinite
variation.

The following result is an extension of the stochastic ordering result in Corollary
11 to Lévy processes with infinite activity.

Proposition 23 (Criterion for stochastic ordering of Lévy processes with infinite Lévy
measures). Let S(i) ∼ (ES

(i)
1 , 0, F (i))id, i = 1, 2, be one-dimensional Lévy processes.

Assume that the Lévy measures F (i) have infinite total mass and are ordered as

F (1)(A) ≥ F (2)(A), ∀A ∈ B(
(−∞, 0)

)
, and

F (1)(A) ≤ F (2)(A), ∀A ∈ B(
(0,∞)

)
.

Assume that ES
(1)
1 ≤ ES

(2)
1 and that there are sequences ε

(i)
n ↑ 0, ε

(i)
n ↓ 0, i = 1, 2,

s.th.
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(a) 0 ≤ ∫
xF

(2)
n (dx)− ∫

xF
(1)
n (dx) ≤ ES

(2)
1 − ES

(1)
1 .

(b) Not both of the conditions ε
(1)
n < ε

(2)
n and ε

(1)
n < ε

(2)
n hold simultaneously.

(c) In case ε
(1)
n < ε

(2)
n < 0 < ε

(2)
n ≤ ε

(1)
n and ‖F (1)

n ‖ < ‖F (2)
n ‖ it holds true that

F
(1)
n (R−) ≥ F

(2)
n (R−),

(d) In case ε
(2)
n ≤ ε

(1)
n < 0 < ε

(1)
n < ε

(2)
n and ‖F (1)

n ‖ > ‖F (2)
n ‖ it holds true that

F
(1)
n (R+) ≤ F

(2)
n (R+).

Then (S(1)
t ) ≤st (S(2)

t ).

For the proof see the Appendix.

Remark 24. 1. If
∫
(−1,0)

|x|F (i)(dx) = ∞ and
∫
(0,1)

xF (i)(dx) = ∞ and F (i) are

absolutely continuous, then one can construct sequences ε
(i)
n ↑ 0, ε

(i)
n ↓ 0 such that

condition (a) of the previous theorem is satisfied. At first, we fix ε
(1)
n and ε

(2)
n . If

∫

R\(ε(1)
n ,ε

(2)
n )

xF (2)(dx)−
∫

R\(ε(1)
n ,ε

(2)
n )

xF (1)(dx) ≤ ES
(2)
1 − ES

(1)
1 , (16)

then condition (a) is satisfied with ε
(2)
n := ε

(1)
n and ε

(1)
n := ε

(2)
n . If (16) is not

satisfied, we choose ε
(2)
n > ε

(1)
n and ε

(1)
n := ε

(2)
n or ε

(1)
n < ε

(2)
n and ε

(2)
n := ε

(1)
n (but

not simultaneously, cp. condition (b)) such that condition (a) holds. This is possible,
due to the assumptions on F (i). Additionally, we have to check if conditions (c) and
(d), respectively, are satisfied. In the next step we fix ε

(1)
n+1 > ε

(2)
n and ε

(2)
n+1 < ε

(1)
n

and restart the algorithm.

2. In BR (2007, Corollary 3.8) a variant for Lévy processes with infinite Lévy measures
and paths of finite variation is given:
If F (i) have densities f (i) monotonically increasing to infinity as x tends to zero, if
b(1)(0) ≤ b(2)(0) and f (1)(x) ≥ f (2)(x) for all x ∈ R− and f (1)(x) ≤ f (2)(x) for all
x ∈ R+, then

(
S

(1)
t

) ≤st

(
S

(2)
t

)
.

Hitherto we have considered the comparison of pure jump Lévy processes. Next we
incorporate the Gaussian part. Firstly, we state a comparison result for continuous Lévy
processes. This is a corollary of well-known ordering results for normally distributed
random variables (cp. Müller and Stoyan (2002, Section 3.13) and Corollary 2.11 in
BR (2007)).

Proposition 25 (Ordering of Gaussian Lévy processes). Let S(i) ∼ (ES
(i)
1 , c(i), 0)id,

i = 1, 2, be d-dimensional continuous Lévy processes.

1. If ES
(1)
1 ≤ ES

(2)
1 and c(1) = c(2), then (S(1)

t ) ≤st (S(2)
t ).

2. If ES
(1)
1 ≤ ES

(2)
1 and c(1) ≤psd c(2), then (S(1)

t ) ≤icx (S(2)
t ).

3. If ES
(1)
1 ≤ ES

(2)
1 and c(1)ij ≤ c(2)ij

, ∀i, j ≤ d, then (S(1)
t ) ≤idcx (S(2)

t ).
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4. If ES
(1)
1 ≤ ES

(2)
1 and c(1)ij ≤ c(2)ij

, ∀i, j ≤ d, i 6= j, then (S(1)
t ) ≤ism (S(2)

t ).

The corresponding convex type orderings hold true if ES
(1)
1 = ES

(2)
1 .

As the Gaussian and the jump part of a Lévy process are independent, we obtain
ordering of Lévy processes that incorporate both, the Gaussian part and of the jump
part.

Proposition 26 (Ordering of Lévy processes). Let F be one of the order generat-
ing function classes in (3). Let the jump processes S

(i)
J ∼ (ES(i), 0, F (i))id and the

continuous process S
(i)
C ∼ (0, c(i), 0)id be independent. If

(S(1)
J,t ) ≤F (S(2)

J,t ) and (S(1)
C,t) ≤F (S(2)

C,t),

then S(i) := S
(i)
C + S

(i)
J ∼ (ES(i), c(i), F (i))id and (S(1)

t ) ≤F (S(2)
t ).

Proof. As the orders generated by F that are considered in (3) satisfy the convolu-
tion property and due to the fact that S(i) d= S

(i)
J + S

(i)
C , the result follows from the

convolution closedness property (C) (see Müller and Stoyan (2002)).

Remark 27. Propositions 25 and 26 imply also comparison results for exponential
Lévy processes for F ∈ {Fst,Ficx,Fidcx,Fism}. This also holds true for the finite-di-
mensional orderings w.r.t. F (m). For further implications of these ordering results via
‘duality’ arguments see the introduction.

4 Extension to PII

While Lévy processes resp. exponential Lévy models are analytically nice and allow to
calibrate to implied volatility patterns for single maturity they fail to reproduce option
prices and the time pattern over a range of different maturities. The problem is that
(exponential) Lévy models do not allow for time inhomogeneity. The class of processes
with independent increments (PII) is still analytically tractable and takes into account
the time inhomogeneities. PII processes have a Lévy–Khintchine representation of the
form E exp(iuXt) = exp Ψt(u) with

Ψt(u) = iu · b(t)− 1
2
u>C(t)u +

∫ (
eiux − 1− iuh(x)

)
K(t, dx) (17)

with local characteristics (b(t), C(t),K(t, dx)).
The local characteristics of PII processes are time dependent and deterministic.

This extension allows a good adaptation to inhomogeneities and gives similar freedom
of modelling as in local volatility models. Typical examples of PII-processes are time
inhomogeneous jump diffusions

Xt =
∫ t

0

σ(s)dWs +
NΛ(t)∑

i=1

Yi (18)
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where W is a Brownian motion, σ is a deterministic volatility, NΛ(t) is a Poisson process
with intensity Λ and (Yi) are iid jump variables. But also Lévy volatility models with
deterministic volatility σ(s)

Xt =
∫ t

0

σ(s)dLs (19)

and time changed Lévy processes

Xt = Lν(t) (20)

are interesting examples. For general results on PII processes we refer to Sato (1999)
and Jacod and Shiryaev (2003). Modelling aspects, calibration to prices and option
pricing is presented in a nice way in Cont and Tankov (2004).

For the ordering results for PII processes we begin with the case of finite Lévy kernels
K(s, dy) and drift and diffusion characteristics equal to zero. Then further on similarly
to the case of Lévy processes we consider infinite Lévy kernels by approximation and
include also diffusion and drift characteristics.

The nonstationarity makes the PII models more flexible and allows to adapt them
to essentially similar situations as possible by means of stochastic volatility models.
Thus the extension of ordering results to this class is of considerable importance.

We make use of the following representation result of Norberg (1993, Theorem 1).

Proposition 28 (Representation for finite Lévy kernels). Let S ∼ (0, 0,K(s; dy))0 be
a d-dimensional PII with λ(s) := K(s,Rd) < ∞ and let Yt be a random sum process
that is defined by

Yt =
N̂t∑

j=1

X̂t,j , t ∈ [0, T ],

where the extended Poisson process N̂t ∼ P(Λ(t)), Λ(t) :=
∫ t

0
λ(s)ds, is independent of

the iid sequence (X̂t,j) ∼ R̂t, R̂t(dy) = 1
Λ(t)

∫ t

0
K(s; dy)ds.

Then for all t ∈ [0, T ] it holds true that St
d= Yt.

To obtain a generalization of Proposition 2 that implies S
(1)
t ≤F S

(2)
t , for all t ∈

[0, T ], for PII S(i) ∼ (
b(i)(t; 0), 0, K(i)(t; ·))

0
, we make use of the modified Lévy kernels

K̃(i), which for t ∈ [0, T ] and k ∈ {1, 2} such that K(k)(t;Rd) ≤ K(3−k)(t;Rd) are
defined by

K̃(k)(t; dx) = K(k)(t; dx) +
(
K(3−k)(t;Rd)−K(k)(t;Rd)

)+
δ{0}(dx). (21)

Then by adding mass to the point zero the total masses of K̃(k) are equal and similarly
to the Lévy-case S(i) ∼ (

b(i)(t; 0), 0, K̃(i)(t; ·))
0
, i = 1, 2. We again do not use the

convention K̃(t; {0}) = 0, and the kernels are unique modulo the point mass in the
origin.

Proposition 29 (Ordering of PII with finite Lévy kernels). Let S(i) ∼ (
b(i)(t; 0), 0,

K(i)(t; ·))
0
, i = 1, 2, be d-dimensional PII with K(i)(t,Rd) < ∞, for all t ∈ [0, T ], and
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assume that
∫
{|x|>1} |x|K(i)(t; dx) < ∞, for all t ∈ [0, T ]. Let the modified Lévy kernels

K̃(i) be given by (21). Assume that for all t ∈ [0, T ] it holds true that K̃(1)(t; ·) ≤F
K̃(2)(t; ·).
1. If F ∈ {Fst,Ficx,Fidcx,Fism} then assume additionally b(1)(t; 0) ≤ b(2)(t; 0), and

2. if F ∈ {Fcx,Fdcx,Fsm} then assume additionally b(1)(t; 0) = b(2)(t; 0).

Then S
(1)
t ≤F S

(2)
t for all t ∈ [0, T ].

Proof. Let t ∈ [0, T ] and define λ(s) := K̃(i)(s,Rd), s ≤ t and Λ(t) :=
∫ t

0
λ(s)ds.

Proposition 28 implies that the random vectors S
(i)
t are distributed as random sums

with additional drift

S
(i)
t

d=
∫ t

0

b(i)(s; 0)ds +
N̂t∑

j=1

X̂
(i)
t,j ,

where N̂t ∼ P(Λ(t)) is independent of the iid sequences (X̂(i)
t,j ) ∼ R̂

(i)
t , R̂

(i)
t (dy) =

1
Λ(t)

∫ t

0
K̃(i)(s; dy)ds. Hence S(1) and S(2) are naturally coupled by the same extended

Poisson process N̂ . As R̂
(i)
t are mixtures of K̃(i)(s; ·), s ≤ t with mixing distribution

1
Λ(t)λ

\|[0,t], it follows from K̃(1)(s; ·) ≤F K̃(2)(s; ·), for all s ∈ [0, T ], and the stability

under mixtures property that R̂
(1)
t ≤ R̂

(2)
t . As b(1)(s; 0) ≤ b(2)(s; 0) for all s ∈ [0, T ]

implies
∫ t

0
b(1)(s; 0)ds ≤ ∫ t

0
b(2)(s; 0)ds, the result follows similarly to the proof of Propo-

sition 2.

Remark 30. 1. If one is only interested in the ordering of S(i) at a specific time point
t̄ ∈ [0, T ], the conditions in the first part of the previous lemma can be reduced to∫ t̄

0
b(1)(s; 0)ds ≤ ∫ t̄

0
b(2)(s; 0)ds and

∫ t̄

0
K̃(1)(s; ·)ds ≤F

∫ t̄

0
K̃(2)(s; ·)ds; similarly for

the conditions of the second part.

2. Proposition 29 allows to derive several cut and domination criteria for one-dimen-
sional PII S(i) ∼ (b(i)(t; 0), 0, K(i)(s; ·))0, i = 1, 2, in terms of the corresponding
Lévy kernels K(i)(t; ·) under appropriate drift conditions. These results are parallel
to the cut and domination criteria in Section 2.

To derive ordering of the finite dimensional distributions (S(1)) ≤F (S(2)) we can
as in Section 2 apply the separation lemma. In fact for PII processes the separation
lemma simplifies essentially.

Lemma 31. If S
(1)
0 ≤F S

(2)
0 for F as in (3) and for 0 ≤ t1 < t2

S
(1)
t2 − S

(1)
t1 ≤F S

(2)
t2 − S

(2)
t1 (22)

then (S(1)) ≤F (S(2)).

Proof. Let 0 ≤ t1 < t2 then (S(i)
t1 , S

(i)
t2 ) = (S(i)

t1 , S
(i)
t1 ) + (0, S

(i)
t2 − S

(i)
t1 ) is a sum of

independent variables. Thus by the convolution property of the≤F ordering it is enough
to ensure the≤F ordering of both summands in order to conclude that (S(1)

t1 , S
(1)
t2 ) ≤F(2)

(S(2)
t1 , S

(2)
t2 ). This ordering condition however is obtained from our assumptions. The

general finite dimensional case follows from induction.
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Assuming (eventually after modification as above) that the kernels K(1)(t, ·) and
K(2)(t, ·) have the same total mass we obtain for the differences S

(i)
t2 − S

(i)
t1 by Propo-

sition 28 a representation as compound Poisson distribution

S
(i)
t2 − S

(i)
t1 =

N̂
(i)
t1,t2∑

j=1

X̂
(i)
j (23)

where N̂
(1)
t1,t2

d= N̂
(2)
t1,t2 ∼ P(Λ(t1, t2)), Λ(t1, t2) =

∫ t2
t1

λ(s)ds and (X(i)
j ))j ∼ R̂

(i)
t1,t2 with

R̂
(i)
t1,t2(dy) =

1
Λ(t1, t2)

∫ t2

t1

K(i)(s, dy)ds. (24)

Since ≤F ordering is preserved under mixtures we obtain as corollary.

Corollary 32. Let S(i) ∼ (b(i)(t, 0), 0,K(i)(t, ·))0 be d-dimensional PII with K(1)(t,Rd)
= K(2)(t,Rd) < ∞ for all t ≥ 0. Then under the assumptions of Propositon 29 we have
that

(S(1)) ≤F (S(2)). (25)

To obtain ordering results for PII with infinite Lévy kernels that correspond to the
results of Section 3, for t ∈ [0, T ] we introduce the truncated Lévy kernels Kn(t; ·),
similarly to the truncated Lévy measures given in (12), by

Kn(t; dx) := 1(εt,n,εt,n)c(x)K(t; dx), εt,n ↑ 0, εt,n ↓ 0. (26)

As in Section 3, ordering of the truncated Lévy kernels K
(i)
n (t; ·) implies ordering of the

limit processes that have Lévy kernels K(i)(t; ·), if an appropriate weak convergence
holds true. The proof of the following lemma is given in the Appendix. Let B, C, ν
denote the characteristics of a PII process w.r.t. some specified truncation function h,
while b, c, K denote the differential characteristics.

Lemma 33 (Functional weak convergence, PII case). For a continuous truncation
function h let S ∼ (

b(t; h), 0, K(t; ·))
h

be a d-dimensional PII process whose Lévy
kernel K has infinite total mass and for εt,n ↑ 0, εt,n ↓ 0 let Kn be the corresponding
truncated Lévy kernel introduced in (26). If sups≤t |Bn(s)−B(s)| → 0, for all t ∈ [0, T ],
then for Sn ∼

(
bn(t), 0,Kn(t; ·))

h
functional weak convergence

Sn
L→ S

holds true.

Similar to Corollary 13 we obtain a weak convergence result that fits to our situa-
tion. Observe that the first part is formulated in terms of the characteristics of S, while
part b) is stated in terms of the differential characteristics. The proof is similar to that
of Corollary 13. It is based on the square-integrable version of the convergence theorem
in Jacod and Shiryaev (2003, VII.3.7). For details of the proof see Bergenthum (2005,
Corollary 2.3.5).
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Corollary 34 (Functional weak convergence, PII case). Let K(t; ·) be a Lévy kernel
with infinite total mass for all t ∈ [0, T ], and for sequences εt,n ↑ 0, εt,n ↓ 0 let Kn(t; ·)
be the corresponding truncated Lévy kernel given in (26).

1. If |x|2 ∗ νt < ∞, then for S ∼ (
ESt, 0, νt

)
id

and Sn ∼
(
ESt, 0, νn,t

)
id

, it holds true

that Sn
L→ S.

2. If for some continuous truncation function h it holds true that
∫ |h(x)|K(t; dx) < ∞,

for all t ∈ [0, T ], then for S ∼ (
b(t; 0), 0,K(t; ·))

0
and Sn ∼

(
b(t; 0), 0, Kn(t; ·))

0
it

follows that Sn
L→ S.

To obtain an extension of Theorem 14 to the PII case we introduce the modified
truncated Lévy kernels K̃

(k)
n , k = 1, 2, by

K̃(k)
n (t; dx) := K(k)

n (t; dx) +
(
K(3−k)

n (t;Rd)−K(k)(t,Rd)
)+

δ{0}(dx).

The comparison result for d-dimensional PII with infinite Lévy kernels is stated as
follows.

Theorem 35 (Ordering of PII with infinite Lévy kernels). Let S(i) ∼ (ES
(i)
t , 0, νt)id,

i = 1, 2, be d-dimensional PII with Lévy kernels K(i) that satisfy K(i)(t;Rd) = ∞ and
|x|2 ∗ νt < ∞, for all t ∈ [0, T ]. Let εt,n ↑ 0, εt,n ↓ 0 be sequences such that for the

modified truncated Lévy kernels K̃
(i)
n it holds true that

K̃(1)
n (t; ·) ≤F K̃(2)

n (t; ·), ∀t ∈ [0, T ], n ∈ N.

1. If F ∈ {Fst,Ficx,Fidcx,Fism} then additionally, assume that

0 ≤
∫

xK(2)
n (t; dx)−

∫
xK(1)

n (t; dx) ≤ ES
(2)
t − ES

(1)
t , ∀t ∈ [0, T ], n ∈ N,

2. if F ∈ {Fcx,Fdcx,Fsm} then additionally assume that ES
(1)
t = ES

(2)
t and∫

xK
(1)
n (t; dx) =

∫
xK

(2)
n (t; dx), for all t ∈ [0, T ], n ∈ N.

Then (S(1)) ≤F (S(2)) and Corollary 32 follows.

Proof. The claim follows from Proposition 29 and Corollary 34 in the same manner as
in the proof of Theorem 14.

Remark 36. Theorem 35 can be used to derive cut and domination criteria that are
parallel to the results obtained in Section 3.

Similarly as in Proposition 25 we also obtain orderings for continuous PII. This
is due to the fact that a PII S ∼ (0, c, 0) is a Gaussian process with deterministic
covariance function c (see Jacod and Shiryaev (2003, Theorems II.4.4 and II.4.15)).
As in Proposition 25 the orderings follow from the comparison results for multivariate
normal distributions (see Müller and Stoyan (2002, Section 1.13) or BR (2007)).

Lemma 37 (Ordering of Gaussian PII). Let S(i) ∼ (ES
(i)
t , c(i)(t), 0)id, i = 1, 2, be

d-dimensional PII.
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1. If ES
(1)
t ≤ ES

(2)
t and c(1)(t) = c(2)(t), for all t ∈ [0, T ], then (S(1)) ≤st (S(2)).

2. If ES
(1)
t ≤ ES

(2)
t and c(1)(t) ≤psd c(2)(t), for all t ∈ [0, T ],

then (S(1)) ≤icx (S(2)).

3. If ES
(1)
t ≤ ES

(2)
t and c(1)ij

(t) ≤ c(2)ij
(t), for all t ∈ [0, T ], ∀i, j ≤ d, then

(S(1)) ≤idcx (S(2)).

4. If ES
(1)
t ≤ ES

(2)
t and c(1)ij

(t) ≤ c(2)ij
(t), for all t ∈ [0, T ], ∀i, j ≤ d, i 6= j, then

(S(1)) ≤ism (S(2)).

The corresponding convex type orderings hold true if ES
(1)
t = ES

(2)
t , for all t ∈ [0, T ].

Finally, similarly to Proposition 26 the stability under convolutions property (C)
implies an ordering result for PII that incorporate continuous martingale and jump
parts.

Corollary 38 (Ordering of PII). Let F be one of the order generating function classes
in (3) and assume that S(i) ∼ (ES

(i)
t , c(i)(t), ν(i))t)id, i = 1, 2, are d-dimensional

PII. Let the jump process S
(i)
J ∼ (ES

(i)
t , 0, ν

(i)
t )id and the continuous process S

(i)
C ∼

(0, c(i)(t), 0)id be independent and assume that
(
S

(1)
J

) ≤F
(
S

(2)
J

)
and

(
S

(1)
C

) ≤F
(
S

(2)
C

)
, ∀t ∈ [0, T ],

then (S(1)) ≤F (S(2)).

5 Examples

In this section we derive increasing convex ordering results for finite-dimensional distri-
butions of univariate α-stable processes for α ∈ (1, 2) and for univariate and multivari-
ate normal inverse Gaussian (NIG) processes. The ordering criteria are formulated in
terms of parameters of the models. For the proofs of the univariate ordering results we
apply the cut criteria for Lévy measures of Sections 2, 3. We end this section by stating
an increasing convex ordering result for generalized hyperbolic (GH) distributions. This
ordering result is based on a representation of GH distributions as variance mixtures of
multivariate normal distributions with a generalized inverse Gaussian (GIG) distribu-
tion as mixing distribution (see BR (2007)). This approach also works for some further
classes of particular interest for financial mathematical models as e.g. multivariate t
distributions or elliptically contoured distributions.

We start with the ordering result for univariate α-stable processes.

Theorem 39 (Comparison of α-stable processes). For c(i), d(i) > 0, and α(i) ∈ (1, 2),
i = 1, 2, let

S(i) ∼ (
ES(i), 0, (c(i)x−1−α(i)

1R+(x) + d(i)|x|−1−α(i)
1R−(x))dx

)
id

be one-dimensional α-stable Lévy processes. If α(2) ≤ α(1) and ES(1) ≤ ES(2), then

(S(1)
t ) ≤icx (S(2)

t ).
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Proof. For x < 0 it holds true that d(1)|x|−1−α(1)
< d(2)|x|−1−α(2)

if and only if

x < −
(

d(2)

d(1)

) 1
α(2)−α(1)

. For x > 0 we have c(1)x−1−α(1)
< c(2)x−1−α(2)

if and only

if x >
(

c(2)

c(1)

) 1
α(2)−α(1)

. Hence the cut criterion of Proposition 16 is satisfied with

k(1) = −
(

d(2)

d(1)

) 1
α(2)−α(1)

and k(2) =
(

c(2)

c(1)

) 1
α(2)−α(1)

. It remains to verify the condi-

tions stated in the second part of that theorem. We choose the sequences ε
(i)
n ↑ 0,

ε
(i)
n ↓ 0 such that

∫ ε(1)
n

−∞
xF

(1)
− (dx) !=

∫ ε(2)
n

−∞
xF

(2)
− (dx) and

∫ ∞

ε
(1)
n

xF
(1)
+ (dx) !=

∫ ∞

ε
(2)
n

xF
(2)
+ (dx).

(27)

This is possible as
∫

A
xF (i)(dx) = ∞ for A = (−1, 0) and A = (0, 1). From (27) we

obtain

|ε(1)
n | =

(
d(2)

d(1)

(
1− α(1)

1− α(2)

)) 1
1−α(1)

|ε(2)
n |

1−α(2)

1−α(1) ,

ε(1)
n =

(
c(2)

c(1)

(
1− α(1)

1− α(2)

)) 1
1−α(1)

ε(2)
n

1−α(2)

1−α(1) .

As 1−α(2)

1−α(1) > 1 and |ε(2)
n |, ε(2)

n ↓ 0, it follows that there are N, N ∈ N, such that

ε
(1)
n < ε

(2)
n , for all n ≥ N and |ε(1)

n | < |ε(2)
n |. Hence ε

(1)
n > ε

(2)
n , for all n ≥ N . Therefore,

the conditions of the second part of Proposition 16 are satisfied and it follows that
(S(1)

t ) ≤icx (S(2)
t ).

Remark 40. Despite the fact that we can establish the domination criterion also for
the Lévy measures of α-stable processes with stability parameters 0 < α(1) ≤ α(2) < 1,
an analogous ordering result does not hold true in this case. This is due to the fact
that the first moments do not exist, cp. Sato (1999, Proposition 3.14.5).

Next, we establish ordering of one-dimensional normal inverse Gaussian processes in
the shape and scaling parameters α and δ. The Lévy density of an NIG = NIG(α, β, δ, µ)
distributed random variable S is given by

fα,β,δ(x) =
δαK1(α|x|)eβx

π|x| , (28)

where K1 denotes the modified Bessel function of third kind with index 1, α > 0,
0 ≤ |β| ≤ α and δ > 0 and S has expectation ES = µ + δβ√

α2−β2
.

Theorem 41 (Ordering of NIG processes). Let S(i) ∼ (ES(i), 0, f (i)(x)dx)id, i = 1, 2,
be one-dimensional NIG processes.

1. Ordering in α. Let f (i)(x) := fα(i),β,δ(x), i = 1, 2. If |β| ≤ α(2) ≤ α(1) and ES(1) ≤
ES(2), then (S(1)

t ) ≤icx (S(2)
t ).
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2. Ordering in δ. Let f (i)(x) := fα,β,δ(i)(x), i = 1, 2 . If δ(1) ≤ δ(2) and ES(1) ≤ ES(2),
then (S(1)

t ) ≤icx (S(2)
t ).

Proof. 1. Let δ > 0 and β, |β| ≤ α(2) be given. For fixed x > 0 and α ≥ α(2) we consider
g(α) := fα,β,δ(x). As g′(α) = − δeβx

π αK0(αx) ≤ 0, it follows that f (1)(x) ≤ f (2)(x),
for all x ∈ R+. For fixed x < 0 we similarly obtain g′(α) = − δeβx

π αK0(−αx) ≤ 0,
thus f (1)(x) ≤ f (2)(x), for all x ∈ R−. As NIG processes have paths of infinite
variation, Theorem 21 implies (S(1)

t ) ≤icx (S(2)
t ).

2. As δ(1) ≤ δ(2) implies f (1)(x) ≤ f (2)(x), for all x ∈ R, Theorem 21 yields (S(1)
t ) ≤icx

(S(2)
t ).

Remark 42. If in the previous theorem it holds true that µ(1) = µ(2), then the ordering
condition for the expectations is satisfied.

For some cases of interest it is possible to obtain comparison results by using mixing
type representations. GH distributions are variance mixtures of multivariate normal
distributions with a generalized inverse Gaussian distribution as mixing distribution.
For µ(i), β(i) ∈ Rd, ∆(i) ∈ M(d,R) with det(∆(i)) = 1 i = 1, 2, and N (i) ∼ N (0, ∆(i))
we consider the d-dimensional random variable

S(i) = µ(i) + X(i)∆(i)β(i) +
√

X(i)N (i), (29)

where X(i) are generalized inverse Gaussian random variables with densities

dGIG(λ,δ,γ)(x) :=
(γ

δ

)λ 1
2Kλ(δγ)

xλ−1e
− 1

2

“
δ2
x +γ2x

”
1R+(x), (30)

where δ ≥ 0, α2 > β∆βT and γ =
√

α2 − β∆βT . Then S is generalized hyper-
bolic distributed with parameters d, λ, α, β, δ, µ and covariance matrix ∆ and we write
GH(d, λ, α, β, δ,∆) (cp. Barndoff-Nielsen (1977)).

The following lemma from BR (2007) states a comparison result for GIG distri-
butions with respect to the likelihood ratio order ≤lr, if the parameters λ, δ, γ are
ordered.

Lemma 43 (Likelihood ratio ordering of GIG random variables). Let X(i) be GIG
distributed with density dGIG(λ(i),δ(i),γ(i))(x).
If λ(1) ≤ λ(2), δ(1) ≤ δ(2) and γ(1) ≥ γ(2), then X(1) ≤lr X(2).

As consequence this implies increasing convex ordering of multivariate GH pro-
cesses using the mixing type representation (29) of GH distributions. We consider the
following three cases for β(i) and ∆(i):

0 ≤ β(1) ≤ β(2), ∆(i) = I, (31)
β(i) = 0, ∆(1) ≤psd ∆(2), (32)

0 ≤ β(1) ≤ β(2), ∆(1) ≤psd ∆(2), 0 ≤ ∆(1)
ij ≤ ∆(2)

ij , ∀i, j ≤ d. (33)
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Theorem 44 (Increasing convex comparison of GH).
Let S(i) be GH(d, λ(i), α(i), β(i), δ(i), ∆(i)) distributed. If

λ(1) ≤ λ(2), δ(1) ≤ δ(2), α(1) ≥ α(2), µ(1) ≤ µ(2)

and one of the cases (31)–(33) holds true for β(i) and ∆(i), then

S(1) ≤icx S(2) for all t > 0.

For the proof see BR (2007, Theorem 4.2). In the case λ = − 1
2 , S(i) is normally

inverse Gaussian distributed. NIG distributed random variables are stable under con-
volutions,

NIG(d, α, β, δ, µ,∆; t) = NIG(d, α, β, tδ, tµ, ∆; 1).

Therefore, Theorem 44 together with the separation lemma in Section 1 also implies
an increasing convex comparison result of the finite-dimensional distributions of NIG
processes. NIG processes have a mixing type representation

S
(i)
t := µ(i)t + X

(i)
t ∆(i)β(i) +

√
X

(i)
t N (i), (34)

where X
(i)
t ∼ GIG(− 1

2 , tδ(i), γ(i)).

Corollary 45 (Increasing convex comparison of NIG processes). Let S
(i)
t be

NIG(d, α(i), β(i), δ(i), µ(i), ∆(i); t) processes. If

δ(1) ≤ δ(2), α(1) ≥ α(2), µ(1) ≤ µ(2)

and one of the cases (31)–(33) holds true for β(i) and ∆(i), then
(
S(1)

) ≤icx

(
S(2)

)
.

Appendix

The Appendix contains some of the technical proofs of the paper.

Proof of Proposition 3

Proof. We consider the increasing convex comparison result, the convex case is treated
similarly. Let F̃ (i), i = 1, 2, be the modified Lévy measures introduced in (7). As
‖F̃ (i)‖ = λ, i = 1, 2, we are in the position to apply the classical cut criterion to the
corresponding distribution functions G(i)(x) := F̃ (i)((−∞, x]). As on R− it holds true
that F̃ (i) = F (i), it follows from (8) that

G(2) ≥ G(1) on (−∞, k`).

For x ∈ (0,∞), condition (10) yields λ − G(1)(x) = F (1)((x,∞)) ≤ F (2)((x,∞)) =
λ − G(2)(x), hence G(1) ≥ G(2) on (0,∞) and from right-continuity of G(i) it follows
that

G(1) ≥ G(2), on [0,∞).

For the comparison of G(1) and G(2) on [k`, 0) we consider two different cases.
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i. Assume that ‖F (2)‖ ≤ ‖F (1)‖. Then F̃ (2)(dx) = F (2)(dx) + (‖F (1)‖ − ‖F (2)‖)
δ{0}(dx) and F̃ (1) = F (1). This implies w.l.g. that G(1)(0−) = G(1)(0), thus
G(1)(0−) = G(1)(0) ≥ G(2)(0) = G(2)(0−) + ‖F (1)‖ − ‖F (2)‖ ≥ G(2)(0−) and from
(10) it follows for x ∈ (kr, 0) that G(1)(0−)−G(1)(x) = F (1)((x, 0)) ≤ F (2)((x, 0)) =
G(2)(0−) − G(2)(x), thus G(1)(x) ≥ G(2)(x). Right-continuity of G(i) implies that
also G(1)(kr) ≥ G(2)(kr), hence

G(1) ≥ G(2) on [kr, 0).

As G(1)(kr) ≥ G(2)(kr) and G(1)(k`−) ≤ G(2)(k`−) it follows from (9) that there
is a κ ∈ [k`, kr) s.th. G(1)(k) ≤ G(2)(k), for all k < κ and G(1)(k) ≥ G(2)(k), for
all k ∈ [κ, kr]. Consequently, G(1) and G(2) cross once and the sign sequence of the
difference G(1) − G(2) is −, +, hence the cut criterion implies F̃ (1) ≤icx F̃ (2), as∫

xF̃ (1)(dx) =
∫

xF (1)(dx) ≤ ∫
xF (2)(dx) =

∫
xF̃ (2)(dx) by assumption.

ii. Assume that ‖F (1)‖ < ‖F (2)‖. Then F̃ (1)(dx) = F (1)(dx) + (‖F (2)‖ − ‖F (1)‖)
δ{0}(dx) and F̃ (2) = F (2). Again, we denote the corresponding distribution func-
tions by G(i).

First consider the case where G(1)(kr) ≤ G(2)(kr). In this case it follows from (9)
and right-continuity of G(i) that

G(1) ≤ G(2) on [k`, kr].

As (10) then implies G(1) ≤ G(2) on (kr, 0) it follows that G(1) and G(2) cross once,
namely in the origin. The cut criterion implies F̃ (1) ≤icx F̃ (2), as additionally it
holds true that

∫
xF̃ (1)(dx) ≤ ∫

xF̃ (2)(dx).

In the case when G(1)(kr) ≥ G(2)(kr) we make the additional assumption that
F (1)(R−) ≥ F (2)(R−), which is G(1)(0−) ≥ G(2)(0−) in terms of G(i). From (10)
and right-continuity of G(i) it then follows that

G(1) ≥ G(2) on [kr, 0),

as for x ∈ (kr, 0) it holds true that G(1)(0−)−G(1)(x) = F (1)((x, 0)) ≤ F (2)((x, 0))
= G(2)(0−)−G(2)(x). As G(1)(kr) > G(2)(kr) and G(1)(k`−) ≤ G(2)(k`−) it follows
from (9) that G(1) and G(2) cross once in [k`, kr] with sign sequence −,+ for
G(1)−G(2). The cut criterion implies F̃ (1) ≤icx F̃ (2), as

∫
xF̃ (1)(dx) ≤ ∫

xF̃ (2)(dx)
by assumption.

Then the drift condition b(1)(0) ≤ b(2)(0) and the Lévy moment condition
∫

xF (1)(dx)
≤ ∫

xF (2)(dx) imply (S(1)
t ) ≤icx (S(2)

t ), due to Proposition 2.

Proof of Proposition 9

Proof. We establish that the distribution functions G(i) corresponding to the modified
Lévy measures F̃ (i), i = 1, 2, are ordered as G(1) ≥ G(2). Then F̃ (1) ≤st F̃ (2) holds true
and the result follows from Proposition 2.
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From F (1)(A) ≥ F (2)(A) for all A ∈ B((−∞, k)) it follows that

G(1) ≥ G(2) on (−∞, k).

For the comparison of G(i) on [k,∞) we consider two cases.

1. Assume that ‖F (1)‖ < ‖F (2)‖ and let F̃ (1)(dx) = F (1)(dx) + (‖F (2)‖ − ‖F (1)‖)
δ{0}(dx), F̃ (2) = F (2) and λ := ‖F̃ (i)‖. For A := (x,∞), x ∈ (0,∞), it holds true that
λ−G(2)(x) = F (2)(A) ≥ F (1)(A) = λ−G(1)(x), hence G(2)(x) ≤ G(1)(x), x ∈ (0,∞),
and from right-continuity of G(i) it follows that

G(2) ≤ G(1) on [0,∞).

Assumption F (1)(R−) ≥ F (2)(R−) is G(1)(0−) ≥ G(2)(0−) in terms of distribu-
tion functions and a consideration that is similar to the step that yielded G(2) ≤
G(1) on [0,∞) implies

G(2) ≤ G(1) on [k, 0);

hence G(2) ≤ G(1) and thus F̃ (1) ≤st F̃ (2).

2. Assume that ‖F (2)‖ ≤ ‖F (1)‖ and let F̃ (2)(dx) = F (2)(dx) + (‖F (1)‖ − ‖F (2)‖)
δ{0}(dx) and F̃ (1) = F (1). Similar to the previous case it follows from F (1)(A) ≤
F (2)(A), for all A ∈ B((k,∞)), that

G(2) ≤ G(1) on [0,∞)

and G(2)(0−) = G(2)(0)− (‖F (1)‖ − ‖F (2)‖) ≤ G(1)(0) = G(1)(0−). A similar argu-
ment as in the previous case yields

G(2) ≤ G(1) on [k, 0)

and the result follows.

Proof of Lemma 12

Proof. We establish convergence of c̃n(h) and Fn(g), g ∈ C2(Rd), where the modified
second characteristic c̃n(h) is given by c̃kl

n (h) =
∫

hk(x)hl(x)Fn(dx) and C2(Rd) :=
{f : Rd → R : f is bounded, continuous and 0 around 0}. Then the result follows
from Jacod and Shiryaev (2003, Corollary VII.3.6). From hk(x)hl(x)1(εn,εn)c(x) →
hk(x)hl(x) and

∫
{|x|<1} |x|2F (dx) < ∞ it follows that c̃n → c̃, due to the Lebesgue

Theorem. As g ∈ C2(Rd) is zero around the origin, there is a N ∈ N such that Fn(g) =∫
g(x)1(εn,εn)c(x)F (dx) =

∫
g(x)F (dx) = F (g), for all n ≥ N .

Proof of Corollary 13

Proof. 1. As Bn(s; id) = sES1 = B(s; id), for all s ≤ T , the result follows from
Lemma 12 or from Jacod and Shiryaev (2003, Theorem VII.3.7). Observe that in
this case C̃ij

t = xixj ∗ νt, therefore we need the additional integrability condition∫ |x|2F (dx) < ∞.
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2. An extension of Jacod and Shiryaev (2003, Proposition II.2.24) to the“truncation
function” h′ ≡ 0 implies b(h) = b(0) +

∫
h(x)F (dx) and C̃(h) = C̃(0) + (hihj ∗ ν),

similar for the truncated characteristics b̃n(h), C̃n(h). As C̃(0) = C = 0 it remains
to establish bn(h) → b(h), then the result follows from Lemma 12. As bn(0) = b(0)
and h(x)1(εn,εn)c(x) → h(x) this follows from the Lebesgue Theorem.

Proof of Proposition 16

Proof. Let F
(i)
n denote the truncated Lévy measures and let S

(i)
n ∼ (ES

(i)
1 , 0, F

(i)
n )id

be the corresponding compound Poisson processes. From (14) and as ε
(2)
n ≤ ε

(1)
n < 0 <

ε
(1)
n < ε

(2)
n there is a N ∈ N such that

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B((−∞, k`)),
F (1)

n (A) ≥ F (2)
n (A), ∀A ∈ B((k`, kr)),

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B((kr,∞)),

for all n ≥ N . Due to conditions (b) and (c), Proposition 5 implies (S(1)
n,t) ≤icx (S(2)

n,t).

The result follows from Corollary 13 and the fact that ES
(i)
n,1 = ES

(i)
1 .

Proof of Proposition 19

Proof. Let ε
(i)
n ↑ 0, ε

(i)
n ↓ 0 be sequences such that the conditions (a) and (b) hold true.

Let S
(i)
n ∼ (ES

(i)
1 , 0, F

(i)
n )id, i = 1, 2, be compound Poisson processes corresponding

to the truncations of F (i). The main part of the proof is to establish that for any
choices of the truncating sequences the conditions of Propositions 5, 6 are fulfilled for
the truncated Lévy measures F

(i)
n and as consequence (S(1)

n,t) ≤icx (S(2)
n,t). The result

then follows by the weak convergence result in Corollary 13.
We consider several different cases depending on the relative location of ε

(i)
n ↓ 0.

If ε
(1)
n ≤ ε

(2)
n < 0 < ε

(2)
n ≤ ε

(1)
n it holds true that F

(1)
n ≤ F

(2)
n and Corollary 8

implies (S(1)
n,t) ≤icx (S(2)

n,t).

In the case ε
(1)
n ≤ ε

(2)
n < 0 < ε

(1)
n ≤ ε

(2)
n the domination of the truncated Lévy measures

is as follows

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B(
(−∞, ε(2)

n )
)
,

0 = F (1)
n (A) = F (2)

n (A), ∀A ∈ B(
(ε(2)

n , ε(1)
n )

)
,

F (1)
n (A) ≥ F (2)

n (A), ∀A ∈ B(
(ε(1)

n , ε(2)
n )

)
,

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B(
(ε(2)

n ∞)
)
.

If ‖F (1)
n ‖ ≤ ‖F (2)

n ‖, Proposition 5 yields (S(1)
n,t) ≤icx (S(2)

n,t), and if ‖F (1)
n ‖ ≥ ‖F (2)

n ‖ the
result follows from Proposition 6.

The case ε
(2)
n ≤ ε

(1)
n < 0 < ε

(2)
n ≤ ε

(1)
n follows from Proposition 3 and 5, depending

on the ordering of the total masses of F
(i)
n .
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If ε
(2)
n ≤ ε

(1)
n < 0 < ε

(1)
n ≤ ε

(2)
n it holds true that

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B(
(−∞, ε(2)

n

)
,

F (1)
n (A) ≥ F (2)

n (A), ∀A ∈ B(
(ε(2)

n , ε(2)
n )

)
,

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B(
(ε(2)

n ,∞)
)
.

Proposition 5 implies (S(1)
n,t) ≤icx (S(2)

n,t), due to condition (b).

Proof of Proposition 23

Proof. Let ε
(i)
n ↑ 0, ε

(i)
n ↓ 0 be sequences s.th. the conditions (a)–(d) are satisfied. For the

compound Poisson processes S
(i)
n ∼ (ES

(i)
1 , 0, F

(i)
n )id we establish stochastic ordering

of the finite dimensional distributions (S(1)
n,t) ≤st (S(2)

n,t). Then the result follows from
the weak convergence, result in Corollary 13.

For ε
(2)
n ≤ ε

(1)
n < 0 < ε

(2)
n ≤ ε

(1)
n it follows from the ordering condition on F (i) that

F (1)
n (A) ≥ F (2)

n (A), ∀A ∈ B((−∞, ε(1)
n )),

0 = F (1)
n (A) = F (2)

n (A), ∀A ∈ B((ε(1)
n , ε(2)

n )),
F (1)

n (A) ≤ F (2)
n (A), ∀A ∈ B((ε(2)

n ,∞)).

Therefore, Corollary 11 implies (S(1)
n,t) ≤st (S(2)

n,t).

In case ε
(1)
n ≤ ε

(2)
n < 0 < ε

(2)
n ≤ ε

(1)
n it holds true that

F (1)
n (A) ≥ F (2)

n (A), ∀A ∈ B((−∞, ε(1)
n )),

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B((ε(1)
n , ε(2)

n )),
0 = F (1)

n (A) = F (2)
n (A), ∀A ∈ B((ε(2)

n , ε(2)
n )),

F (1)
n (A) ≤ F (2)

n (A), ∀A ∈ B((ε(2)
n ,∞)).

Hence Proposition 9 implies (S(1)
n,t) ≤st (S(2)

n,t), due to the additional assumption in the

case ‖F (1)
n ‖ < ‖F (2)

n ‖. Similarly, the case ε
(2)
n ≤ ε

(1)
n < 0 < ε

(1)
n ≤ ε

(2)
n follows from

condition (d) and Proposition 10.

Proof of Lemma 33

Proof. Similar to the proof of Lemma 12 we establish appropriate converence of the
characteristics to obtain the result from Jacod and Shiryaev (2003, Theorem VII.3.4).
Let t ∈ [0, T ] and (x, s) ∈ Rd × [0, t]. As εs,n ↑ 0, εs,n ↓ 0, it holds true that
|hk(x)hl(x)|1(εs,n,εs,n)(x) → 0, hence it follows from the Lebesgue Theorem that

C̃k,l
n,t =

∫ t

0

∫
hk(x)hl(x)1(εt,n,εt,n)c(x)K(s; dx)ds

→
∫ t

0

∫
hk(x)hl(x)K(s; dx)ds = C̃k,l.
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For g ∈ C1(Rd) := {f ∈ C2(Rd) : f ≥ 0}, where the function classes Ci(Rd) are
defined as in Jacod and Shiryaev (2003, VII.2.7), it holds true that g is zero around
the origin. For t ∈ [0, T ] let (x, s) ∈ Rd × [0, t]. As εn ↑ 0, εs,n ↓ 0, it holds true that
there is a N ∈ N such that g(x)1(εs,n,εs,n)(x) = 0, hence g(x)1c

(εs,n,εs,n)(x)− g(x) = 0,

for all n ≥ N. As g ∈ C1(Rd) is bounded, it follows from the Lebesgue Theorem that
g ∗ νn,t → g ∗ νt.
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J. Bergenthum and L. Rüschendorf. Comparison of option prices in semimartingale
models. Finance and Stochastics, 10(2):222–249, 2006.
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T. Goll and L. Rüschendorf. Minimax and minimal distance martingale measures and
their relationship to portfolio optimization. Finance Stoch., 5:557–581, 2001.



30 J. Bergenthum, L. Rüschendorf
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