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Abstract

We propose a new algorithm to compute numerically sharp lower and upper bounds on the distribution of
a function of d dependent random variables having fixed marginal distributions. Compared to the existing
literature, the bounds are wide applicable, more accurate and more easily obtained.
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1. Introduction and preliminaries

Let X1, . . . , Xd be d real-valued random variables on some probability space (Ω,A, P). Given
a measurable function ψ : Rd → R, we calculate numerical bounds on P(ψ(X1, . . . , Xd) ≥ s),
when we assume that each X j has known distribution F j(x) = P(X j ≤ x), 1 ≤ j ≤ d, but the
dependence structure of the vector (X1, . . . , Xd)

′

is unknown. Thus, for a fixed s ∈ R, we look for

Mψ(s) = sup
{
P(ψ(X1, . . . , Xd) ≥ s) : X j ∼ F j, 1 ≤ j ≤ d

}
, (1.1a)

mψ(s) = inf
{
P(ψ(X1, . . . , Xd) > s) : X j ∼ F j, 1 ≤ j ≤ d

}
. (1.1b)

Note that the probabilities in (1.1a) and (1.1b) are defined differently in order to guarantee that
the infimum and the supremum are attained. From mass transportation theory a dual representa-
tion is known for problems of type (1.1) (see Rü (1982)). This dual representation, however, is
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typically difficult to evaluate. For the case that ψ = + is the sum operator, problems (1.1) are of
particular interest in risk analysis (see EP (2006a)) and reliable dual bounds related to the dual
representation were given in EP (2006b) for the case of homogeneous marginals. These were
extended to the non homogenous case and to overlapping marginals in EP (2006a, 2010a). While
these bounds are well computable for any dimension d in the homogeneous case, the numerical
evaluation in the non homogeneous case poses serious problems. For the case that ψ = max, the
sharp upper bound Mψ(s) has been given analytically in Lai and Robbins (1978) for the case of
homogeneous marginals. Note that, in general, the sharp bound Mψ(s) is not attained when the
structure of dependence of the vector (X1, . . . , Xd)

′

is comonotonic, that is when each risk is a.s.
an increasing function of any of the others. Analogously, the sharp bound mψ(s) is not attained
when the risks are countermonotonic.

In this paper, we propose a new method to approximate numerically the sharp bounds mψ(s)
and Mψ(s) for certain classes of functions ψ which include in particular the sum, min, max and
product operators. This method is based on rearrangement arguments and on a simple rearrange-
ment algorithm introduced in special cases in Rü (1983a,b). In comparison to the method of dual
bounds, our method is easy and fast. It can handle reasonable dimensions d and, in particular,
also the inhomogeneous case. A numerical evaluation and comparison is given in Section 5 of
this paper. The fact that this algorithm is computationally less demanding should be relevant for
practical applications. It is interesting to note that, in the homogeneous examples considered, the
approximate sharp bounds calculated by this method provide evidence for the sharpness of the
analytical dual bounds in EP (2006b).

2. Assumptions on the function ψ

Given a vector x ∈ Rd, let x− j be the vector in Rd−1 obtained by deleting the j-th component
of x. Troughout the paper, we assume that the function ψ : Rd → R is defined recursively. We
assume that:

– ψ is measurable, symmetric and increasing in each coordinate;
– ψ = ψd, where the functions ψi : Ri → R, 3 ≤ i ≤ d can be iteratively defined as

ψi(x j, x− j) = ψ2(ψ1(x j), ψi−1(x− j)), for all j = 1, . . . i,

for some measurable, symmetric and increasing functions ψ2 : R2 → R and ψ1 : R→ R.
Typical examples of such ψ are the sum, product, min and max operators.

3. A combinatorial problem

In this section, we describe a combinatorial problem which will turn out to be strictly con-
nected to (1.1). Let X = (xi, j), xi, j ∈ R ∪ {−∞,+∞}, 1 ≤ i ≤ n, 1 ≤ j ≤ d, be a matrix n × d. Let
X− j the matrix n×(d−1) obtained by X by deleting its j-th column. Denote by ψ(X) (respectively,
ψ− j(X)) the N-dimensional vectors obtained by applying the function ψ (resp., ψd−1), to each row
of X (resp., X− j). Formally,
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ψ(X) =



ψ(x1,1, . . . , x1,d)
...

ψ(xi,1, . . . , xi,d)
...

ψ(xn,1, . . . , xn,d)


,ψ− j(X) =



ψd−1(x1,1, . . . , x1, j−1, x1, j+1, . . . , x1,d)
...

ψd−1(xi,1, . . . , xi, j−1, xi, j+1, . . . , xi,d)
...

ψd−1(xn,1, . . . , xn, j−1, xn, j+1, . . . , xn,d)


.

Analogously, we set ψ j(X) = (ψ1(x1, j), . . . , ψ1(xn, j))t the vector obtained applying the function
ψ1 to the j−th column of X. Using the assumptions on ψ, note that, for 1 ≤ j ≤ d, we have

ψ(X)i = ψ2(ψ j(X)i,ψ− j(X)i), 1 ≤ i ≤ n.

Let P(X) be the set of all matrices (n × d) obtained by X by rearranging a number of its columns
in a different order, that is

P(X) =
{
X̃ = (x̃i, j) : x̃i, j = xi,π j(i), π1, . . . , πd are permutations of {1, . . . , n}

}
.

Now, we study the problem of how to rearrange the columns of X such that the minimal com-
ponent of ψ(X) is maximized. Using the notation introduced above, this problem can be written
as

Gψ(X) = max
X̃∈P(X)

min
1≤i≤n

ψ(X̃)i. (3.1)

Similarly, we consider the problem of how to rearrange the columns of X such that the maximal
component of ψ(X) is minimized, that is

Hψ(X) = min
X̃∈P(X)

max
1≤i≤n

ψ(X̃)i. (3.2)

Given two vectors a, b ∈ Rn, we denote by a[i] the i-largest component of a (a[n] is the minimal)
and we write a ⊥ b to indicate that the components of a and b are oppositely ordered. Let

Oψ(X) =
{
X∗ ∈ P(X) is such that ψ j(X

∗) ⊥ ψ− j(X
∗), 1 ≤ j ≤ d

}
be the set of those permutation matrices X∗ such that ψ j(X

∗) is oppositely ordered to ψ− j(X
∗).

Theorem 3.1 It is possible to rewrite the problems (3.1) and (3.2) as

Gψ(X) = max
X∗∈Oψ(X)

ψ(X̃)[n] and Hψ(X) = min
X∗∈Oψ(X)

ψ(X̃)[1].

Proof. Take X̃ ∈ P(X) \ Oψ(X). Then, it is possible to find an index j ∈ {1, . . . , d} such that
a = ψ j(X̃) is not oppositely ordered to b = ψ− j(X̃). Therefore, there exist two indexes i1, i2 ∈
{1, . . . , n} such that ai1 ≤ ai2 and bi1 ≤ bi2 . Since ψ2 is increasing in each coordinate, we have that

ψ2(ai1 , bi1 ) ≤ ψ2(ai1 , bi2 ) and ψ2(ai1 , bi1 ) ≤ ψ2(ai2 , bi1 ).

Then, we obtain

min
{
ψ2(ai1 , bi1 ), ψ2(ai2 , bi2 )

}
= ψ2(ai1 , bi1 ) ≤ min

{
ψ2(ai1 , bi2 ), ψ2(ai2 , bi1 )

}
.

Thus, if we rearrange a by switching the indexes i1 and i2, min1≤i≤n ψ
2(ai, bi) is increased. Re-

peating this procedure on the columns of X̃, we can pass from the matrix X̃ to a matrix X∗ ∈
Oψ(X) in a finite number of times, having that

min
1≤i≤n

ψ(X∗)i = min
1≤i≤n

ψ2(ψ j(X
∗)i,ψ− j(X

∗)i) ≥ min
1≤i≤n

ψ2(ψ j(X̃)i,ψ− j(X̃)i) = min
1≤i≤n

ψ(X̃)i.
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As a consequence, we can restrict the domain of the max in (3.1) to the set Oψ(X). A similar
proof shows that the domain of the min in (3.2) can be reduced to the set Oψ(X). �

The proof of Theorem (3.1) indicates a simple algorithm to find elements in Oψ(X) and, hence,
possible solutions to (3.1) and (3.2). This algorithm is a more general version of the algorithm
described in Section 3 in Rü (1983a).

Rearrangement algorithm to find elements in Oψ(X). Start with any X̃ ∈ P(X). Define X̃1
by iteratively rearranging its j − th column x̃ j such that x̃ j ⊥ ψ− j(X̃), for 1 ≤ j ≤ d. Then,
repeat using X̃1 as the initial matrix until an element X∗ ∈ Oψ(X) is found.

4. Numerical approximation

In the remainder, let F−1
j (α) := sup

{
x ∈ R : F j(x) ≤ α

}
, α ∈ [0, 1] be the generalized inverse

of F j, 1 ≤ j ≤ d. For a subset A ⊂ [0, 1], we denote by F−1
j |A the restriction of F−1

j to A. We write
f j ∼ F−1

j |A to indicate that the function f j : A → R is a rearrangement of F−1
j |A. We refer to Rü

(1983b) for a basic introduction to the theory of rearrangements. The following representation
of (1.1) is given in Theorem 2 in Rü (1983b).

If U is a random variable uniformly distributed in [0, 1], then

Mψ(s) = sup
{
P(ψ( f1(U), . . . , fd(U)) ≥ s) : f j ∼ F−1

j , 1 ≤ j ≤ d
}
, (4.1a)

mψ(s) = inf
{
P(ψ( f1(U), . . . , fd(U)) > s) : f j ∼ F−1

j , 1 ≤ j ≤ d
}
. (4.1b)

In order to establish a link between (4.1) and the rearrangement algorithm described in Sec-
tion 3 we need the following theorem.
Theorem 4.1 If the function ψ is increasing in each coordinate, then, for all real threshold s, we
have that

Mψ(s) = 1− inf
{
α : there exist f αj ∼ F−1

j |[α, 1], 1 ≤ j ≤ d s.t. ψ( f α1 , . . . , f αd ) ≥ s
}
, (4.2a)

mψ(s) = 1− sup
{
α : there exist f αj ∼ F−1

j |[0, α], 1 ≤ j ≤ d s.t. ψ( f α1 , . . . , f αd ) ≤ s
}
. (4.2b)

Proof. First, we prove (4.2a). If there exist such f αj ’s, we can easily extend them to rearrange-
ments of F−1

j |[0, 1] and, by (4.1), Mψ(s) ≥ 1−α, hence (4.2a) holds with ≥. For the ≤ inequality,
we use a similar argument as in Proposition 3(c) in Rü (1982). Let f ∗j ∼ F−1

j be solutions of (4.1a)
and define the set

A = {u ∈ [0, 1] : ψ( f ∗1 (u), . . . , f ∗d (u)) ≥ s}.

Then, the Lebesgue measure of A is λ(A) = Mψ(s). With α = 1 − Mψ(s), there exists a λ-
preserving transformation φ : [0, 1] → [0, 1] such that A = φ([α, 1]). Therefore, we can assume
w.l.g. that A = [α, 1]. Moreover, there exist φ j : [0, 1] → [0, 1], φ j ∼ F−1

j , 1 ≤ j ≤ d, such that
f αj = φ j|[α, 1] ∼ F−1

j |[α, 1] and f αj (u) ≥ f ∗j (u), u ∈ [α, 1]. Define, for example,

A∗j = {u ∈ [α, 1] : f ∗j (u) ≥ F−1
j (α)},

and f αj |[α, 1] = f ∗j 1{A∗j }+F−1
j 1{[α,1]\A∗j }, 1 ≤ j ≤ d. For the functions φ j, we can use an extension of

f αj |[α, 1] to [0, 1] such that f αj ∼ F−1
j . This implies, by monotonicity of ψ, and since A = [α, 1],

that, for u ∈ [α, 1], we have

ψ( f α1 (u), . . . , f αd (u)) ≥ ψ( f ∗1 (u), . . . , f ∗d (u)) ≥ s.
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The proof for (4.2b) is analogous, considering that mψ(s) = 1 − sup{P(ψ(X1, . . . , Xd) ≤ s) : X j ∼

F j, 1 ≤ j ≤ d}. �
The rearrangement algorithm can be applied to find solutions of (4.2) when the marginal dis-

tributions F j are (rational) discrete. Assume that each F−1
j |[α, 1] takes only the n real values

xαj = {xαi, j, 1 ≤ i ≤ n}, for 1 ≤ j ≤ d. We may assume, by using repetitions, that all the xαi, j’s
have the same probability 1/n. The rearrangements f αj of F−1

j |[α, 1] are then replaced by the re-
arrangements of the components of xαj . For instance, if the componentsof each xαj are arranged
in increasing order, the columns of the matrix Xα = (xαi, j) represent the increasing rearrangement
(F−1

1 |[α, 1], . . . , F−1
d |[α, 1]). Since in the following we only consider order induced rearrange-

ments like increasing or decreasing order rearrangements, the transition to rearrangements of the
components of the discrete vectors is justified.

Therefore, all the possible rearrangements ( f α1 , . . . , f αd ) in (4.2a) can be represented by a rear-
rangement of the columns of Xα, that is, using the notation introduced in Section 3 by a matrix
X̃α ∈ P(Xα). Thus, the condition ψ( f α1 , . . . , f αd ) ≥ s becomes ψ(X̃α)[n] ≥ s. In conclusion, de-
noting by Xα the matrix having as columns the increasing rearrangements of the points of the
domains F−1

j ([α, 1]), 1 ≤ j ≤ d we can rewrite (4.2a) as

Mψ(s) = 1 − inf
{
α : there exist X̃α ∈ P(Xα) s.t. ψ(X̃α)[n] ≥ s

}
= 1 − inf

{
α : Gψ(Xα) ≥ s

}
. (4.3)

Analogously, denoted by Xα the matrix having as columns the increasing rearrangements of the
points of the domains F−1

j ([0, α]), 1 ≤ j ≤ d, we can rewrite (4.2b) as

mψ(s) = 1 − sup
{
α : there exist X̃α ∈ P(Xα) s.t. ψ(X̃α)[1] ≤ s

}
= 1 − sup

{
α : Hψ(Xα) ≤ s

}
. (4.4)

The representations (4.3) and (4.4) hold only when the F j’s are discrete, yet they are useful also
in the case of arbitrary marginals. Indeed, it is always possible to define two discrete distribution
functions which approximate any F j from below and from above. For instance, we define the
discrete dfs F j and F j as

F j(x) =
1
n

n−1∑
r=0

1[qr ,+∞)(x) and F j(x) =
1
n

n∑
r=1

1[qr ,+∞)(x), (4.5)

where the jump points qr are defined by qr := F−1
j (r/n), 0 ≤ r ≤ n. Since F j ≤ F j ≤ F j and ψ is

non-decreasing, it follows that, for every real s,

Mψ(s) ≤ Mψ(s) ≤ Mψ(s),

mψ(s) ≤ mψ(s) ≤ mψ(s).

where mψ(s) (respectively mψ(s)) is the analogous of (1.1b) when F j = F j (resp. F j = F j).
Analogously, Mψ(s) (resp. Mψ(s)) is the analogous of (1.1a) whenF j = F j(resp. F j = F j).

Note that we can always choose a different number of points n j in the support of the discrete
distributions F j and F j so that, for 1 ≤ j ≤ d, the increasing rearrangement of the supports

F−1
j ([α, 1]) and F

−1
j ([α, 1]) have all the same number n of components. Using (4.3), it is possible

to write
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Mψ(s) = 1 − inf{α : Gψ(Xα) ≥ s},

Mψ(s) = 1 − inf{α : Gψ(X
α
) ≥ s},

where Xα, respectively X
α
, are the matrix (n×d) having as columns the increasing rearrangements

of the supports F−1
j ([α, 1]), respectively F

−1
j ([α, 1]), for 1 ≤ j ≤ d.

Similarly,

mψ(s) = 1 − sup{α : Hψ(Xα) ≤ s},

mψ(s) = 1 − sup{α : Hψ(Xα) ≤ s},

where Xα, respectively Xα, are the matrix (n×d) having as columns the increasing rearrangements

of the supports F−1
j ([0, 1]), respectively F

−1
j ([0, 1]), for 1 ≤ j ≤ d.

At this point, the algorithm described at the end of Section 3 can be used to find numerical
ranges for the sharp bounds Mψ and mψ. Define

Gψ(X) =
{
ψ(X∗)[n] : X∗ ∈ Oψ(X)

}
and Hψ(X) =

{
ψ(X∗)[1] : X∗ ∈ Oψ(X)

}
,

the set of possible values for the max in (3.1) and, respectively, the min in (3.2). First, we illustrate
how to obtain a range on Mψ(s). Start selecting randomly a matrix X̃α ∈ P(Xα). Define X̃α

1 by
rearranging its j − th column x̃αj such that x̃αj ⊥ ψ− j(X̃

α), for all j = 1, . . . , d. Then, repeat using
X̃α

1 as the initial matrix, until an element g(α) ∈ Gψ(Xα) is found. Denote by

α(s) = inf{α ∈ [0, 1] : g(α) ≥ s}.

α(s) can be computed numerically in several ways, as for example by iteratively bisecting the
interval [0, 1] and checking the condition g(α) ≥ s. From (3.1), we have that Gψ(Xα) ≥ g(α).
Therefore, it follows that inf{α : Gψ(Xα) ≥ s} ≤ α(s) and, finally,

Mψ(s) ≥ Mψ(s) ≥ 1 − α(s). (4.6)

In order to find an upper bound on Mψ, we proceed analogously by finding an element g(α) ∈
Gψ(X

α
). Denote by

α(s) = inf{α ∈ [0, 1] : g(α) ≥ s}.
If g(α) is optimal, that is g(α) = Gψ(X

α
), we obtain

Mψ(s) ≤ Mψ(s) = 1 − α(s). (4.7)

Note that, while (4.6) is always satisfied, (4.6) may fail to hold if g(α) is not optimal. However,
if g(α) is a good approximation for Gψ(X

α
), α(s) represents a good approximation for Mψ(s). In

conclusion, combining (4.6) and (4.7), we obtain

1 − α(s) ≤ Mψ(s) ' 1 − α(s). (4.8)

In order to find a range for the sharp bound mψ(s), we proceed analogously. Applying the al-
gorithm to some matrices X̃α ∈ P(Xα) and X̃α ∈ P(Xα), we find elements h(α) ∈ Hψ(Xα) and
h(α) ∈ Hψ(Xα). Defining

β(s) = sup{α ∈ [0, 1] : h(α) ≤ s},

β(s) = sup{α ∈ [0, 1] : h(α) ≤ s},

it follows that
1 − β(s) ' mψ(s) ≤ 1 − β(s). (4.9)

For a fixed function ψ and marginals F j, 1 ≤ j ≤ d, the accuracy of the approximations given
in (4.8) and in (4.9) can be increased by choosing:
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– a larger value of n, so that the approximation to F j given by the discrete distributions F j

and F j is more accurate;
– a number of different random starting matrices in order to find different elements in the

sets Gψ(X) andHψ(X).
In the application to follow, we always find that any element in Gψ(X) and Hψ(X) yields a very
good approximation of the real solutions Gψ(X) and Hψ(X), and the algorithm works very well
with a single starting point and a high value for n.

5. Applications

In this section, we compute the ranges defined in (4.8) and in (4.9) for different functionals ψ
and set of marginals F j, 1 ≤ j ≤ d. In order to test the quality of the dual bound, EP (2006b)
calculate a numerical range for M+(s) via two linear problems and using a discretization of the
F j’s identical to the one described in (4.5). Note that EP (2006b) obtain bounds on P(X1 + · · · +

Xd < s) instead of P(X1 + · · · + Xd ≥ s).
Being only based on the iterative rearrangements of the columns of a matrix, an operation

which can efficiently performed with R, our algorithm turns out to be less demanding, in terms of
computational time and memory, than the numerical procedure described in EP (2006b). Indeed,
both methods use discrete versions of the marginals with n points in their supports, and calculate
M+(s) with an error that approximately decreases as o(1/n). However, here we were able to use
n = 105 with respect to n = 180 used in EP (2006b). In the case of ψ = +, using n = 105 reduces
the range in (4.8) to a single value with an absolute error of about 10−4.

In Figure 1, we plot the dual bound functional introduced in EP (2006b) for the sum of d
random variables being all Pareto(θ)-distributed, that is P(X j ≤ x) = 1 − (1 + x)−θ. We set θ = 2
and d = 3 (Figure 1, left) and d = 30 (right). In the same figure, we provide the range for M+(s)
obtained using (4.8), at some threshold of interest. Figure 1 seems to indicate that the dual bound
introduced in EP (2006b) is actually sharp.

In Table 1, we report the numerical range for m+(s) and M+(s), obtained using (4.8) and (4.9),
under the same marginal assumtpions, for d = 3. We used n = 105, and each figure is obtained
within two minutes. We also check the accuracy of our rearrangement algorithm for the case
ψ = max, where the sharp bound Mψ(s) has been given analytically in Lai and Robbins (1978)
for the case of homogeneous marginals. In Table 2, we report the numerical range for mmax(s)
and Mmax(s), as well as the sharp bound calculated in Lai and Robbins (1978). Finally, in Table 3,
we report the numerical range for m×(s) and M×(s), where ψ = × is the product operator. Here
we use different marginal distributions, for d = 5 and n = 105.

The results obtained for n = 105 and d = 3 in a two-minute time can be considered reasonably
accurate. However, an important feature of our algorithm is that it can handle larger values of
n and d without memory issues. Indeed, changing n and d means changing the dimensions of
the matrices representing the rearrangements of the discrete marginals used. If extra-accuracy
is required, with n = 106 one can obtain an estimate for Mψ(s) in about forty minutes. On the
other side, if one needs only two decimal digits for Mψ(s), using n = 104 provides one estimate
in about 3 seconds. An analogous reasoning can be applied to an increase of the number of
random variables d. With n = 105 we can handle up to d = 30 different marginals keeping
the computational time under 40 minutes. If one needs to compute Mψ(s) and mψ(s) at different
thresholds s, the average computational time for a single estimate can be reduced by knowing
the bounds calculated at a different threshold.
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Though the dual bound given in EP (2006b) is mainly analytic and the rearrangement method
in this paper is entirely numerical, it is useful to make a final comparison between the two. A dual
upper bound on Mψ(s) has been given in EP (2006b) for homogeneous marginals (F j = F, 1 ≤
j ≤ d), and extended to general marginal settings in EP (2006a) and EP (2010a). While the dual
bound is stated for arbitrary marginals, its computational complexity increases with the number
of different marginals used. It is easy to calculate the dual bound with an arbitrary number d of
homogeneus random variabes, while it is much more complicated to deal with a relatively small
number d ≤ 10 of non homogeneous marginals. Moreover, the dual bound functional has been
introduced only for the sum operator. The algorithm introduced in this paper, on the contrary,
can handle more general functionals ψ and inhomogeneous marginals. It approximates the sharp
upper and lower bounds Mψ(s),mψ(s) numerically while the dual bounds are constructed only
as upper bounds for Mψ(s). However, the rearrangement method in this paper cannot be used to
handle dimensions d > 100, where the computation of dual bounds is possible with homogeneous
marginals. In the examples considered, the dual bounds in EP (2006b) for Mψ(s) seem to be sharp.
It would be interesting to prove sharpness for certain classes of distributions.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

s
 

 

dual bound
rearrangement bound

40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

s
 

 

dual bound
rearrangement bound

Fig. 1. Upper dual bound on P[X1 + · · · + Xd ≥ s], calculated using Theorem 4.2 in EP (2006b), when the X′j s are all
Pareto(2)-distributed. We set d = 3 (left), and d = 30 (right). In both figures, the value of M+(s), calculated using (4.8),
is provided at some threshold of interest.

1 − β(s) 1 − β(s) 1 − α(s) dual bound 1 − α(s)

s=0.5 0.5101929 0.51025391 s=10 0.1419678 0.142011834319527 0.1420288

s=1.0 0.2500000 0.25006104 s=15 0.0740356 0.074074074074074 0.0740967

s=1.5 0.1599731 0.16003418 s=20 0.0453491 0.045368620037807 0.0454102

s=2.0 0.1110840 0.11114502 s=25 0.0305786 0.030612244897959 0.0306397

s=2.5 0.0816040 0.08166504 s=30 0.0220337 0.022038567493113 0.0220947

Table 1
Range for m+(s) and M+(s) for the sum of three Pareto(2) random variables. Values for the upper dual bound on M+(s),
as defined in EP (2006b), is also provided.
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1 − β(s) 1 − β(s) 1 − α(s) sharp bound 1 − α(s)

s=1 0.25000000 0.25000000 s=1 0.75000000 0.75000000 0.75000000

s=2 0.11035156 0.11132812 s=2 0.33300781 0.33333333 0.33398438

s=3 0.06250000 0.06250000 s=3 0.18750000 0.18750000 0.18750000

s=4 0.03906250 0.04003906 s=4 0.11914062 0.12000000 0.12011719

s=5 0.02734375 0.02832031 s=5 0.08300781 0.08333333 0.08398438

Table 2
Range for mmax(s) and Mmax(s) for the sum of three Pareto(2) random variables. Values for the sharp bound on Mmax(s),
as provided in Lai and Robbins (1978), is also provided.

1 − β(s) 1 − β(s) 1 − α(s) 1 − α(s)

s=0.001 0.16113281 0.16210938 s=100 0.2158203 0.2167969

s=0.002 0.09852281 0.09863281 s=200 0.1787109 0.1796875

s=0.003 0.06347656 0.06445312 s=300 0.1591797 0.1601562

s=0.004 0.04101562 0.04199219 s=400 0.1464844 0.1474609

s=0.005 0.02441406 0.02539062 s=500 0.1376953 0.1386719

Table 3
Range for m×(s) and M×(s) for the product of five Pareto(θ j) random variables. We set θ = (1.5, 1.8, 2.0, 2.2, 2.5).

6. Conclusions and forthcoming research

In this paper, we introduce the rerrangement algorithm to calculate numerically the sharp
bounds Mψ(s) and mψ(s) on the distribution of a function of dependent random variables having
fixed marginals. This algorithm is accurate, fast and can be used to handle random variables with
inhomogeneous marginals, in moderately high dimensions. It provides evidence that the dual
bounds in EP (2006b) are sharp for some classes of homogeneous distributions.

Problems (1.1) have a wide range of application in quantitative risk management. For an
overview of this kind of application we refer the reader to EP (2006a) and EP (2010b). In a
forthcoming paper, we will describe how to use the rearrangement algorithm also in the case
of overlapping marginals. Moreover, the authors propose to prove sharpness of the dual bounds
in EP (2006b) in the case of the sum of risks, for some classes of homogeneous distributions.
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