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Abstract

We show that the conservative estimate of the Value-at-Risk (VaR) for the sum of d random losses with given identical
marginals and finite mean is equivalent to the corresponding conservative estimate of the Expected Shortfall (ES), in
the limit as the number of risks becomes arbitrarily large. Examples of interest in quantitative risk management show
that the equivalence holds also for relatively small and inhomogeneous risk portfolios. When the individual random
losses have infinite first moment, we show that VaR can be arbitrarily large with respect to the corresponding VaR
estimate for comonotonic risks if the risk portfolio is large enough.
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1. Motivation and preliminaries

Under the Advanced Measurement Approach (AMA) within the Basel II (becoming Basel III) Accord, banks
must set aside a regulatory capital in order to offset their annual risk exposures. In the case of operational risk, the
risk capital is typically calculated as the Value-at-Risk (VaR) at a high confidence level for an aggregate loss random
variable L having the form

L =

d∑
i=1

Li,

where L1, . . . , Ld correspond to the loss random variables for different business lines and/or risk types, over a fixed
time period T . The VaR of the aggregate loss L, calculated at a probability level α ∈ (0, 1), is the α-quantile of its
distribution, defined as

VaRα(L) = F−1
L (α) = inf{x ∈ R : FL(x) ≥ α},

where FL(x) = P(L ≤ x) is the distribution function of L. Typical values used in the practice of operational risk within
Basel II are α = 0.99, 0.995, 0.999 and T = 1 year. The Solvency II Accord designed by the EU Commission sets
α = 0.995 and T = 1 year.

In the recent years VaR has become the most popular risk measure in financial risk measurement. However, a
number of shortcomings have been identified with VaR, including the fact that VaR is not a coherent risk measure (in
that it fails the subadditivity criterion) and its inability to capture the impact of low probability events. The recent
crisis brought up the question whether VaR is still suitable as a benchmark risk metric and a recent document from
the Basel Commitee (see Basel Committee on Banking Supervision (2012)) officially candidates Expected Shortfall
as a natural alternative for quantifying not only the low frequency but also the severity of extreme events.

If the loss random variable L satisfies E[|L|] < ∞, the Expected Shortfall (ES) computed at the confidence level
α ∈ (0, 1) is defined as

ESα(L) =
1

1 − α

∫ 1

α

VaRq(L) dq.
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In the literature, there exist several risk measures similar and under some conditions equivalent to ES. For continuous
random variables we have for instance that ES is equivalent to the Conditional Tail Expectation (CTE) and Tail Value-
at-Risk (TVaR) risk metrics; see Acerbi and Tasche (2002) and Rockafellar and Uryasev (2002).

Unlike VaR, ES accounts for tail risk in a more comprehensive manner considering both the size and likelihood of
losses above a certain threshold (e.g. the 0.995-quantile). ES is also a more pessimist risk measure, in the sense that

ESα(L) ≥ VaRα(L), for all α ∈ (0, 1).

Since ES overcomes the main disadvantages of VaR, the Basel Committee proposes in Basel Committee on Banking
Supervision (2012) the use of ES for the internal models-based approach and also intends to determine risk weights
for the standardised approach using an ES methodology.

The computation of both VaRα(L) and ESα(L) requires the knowledge of the joint distribution function of the
risk portfolio (L1, . . . Ld). This generally requires a d-variate dataset for the past occurred losses, which is often not
available. Typically, only the marginal distribution functions Fi of the Li can be statistically estimated. Therefore, it
is natural to ask for a conservative estimate of VaRα(L) and ESα(L) when the marginal distributions of the univariate
risks Li are given but no dependence information is known about the joint portfolio (L1, . . . , Ld). For a fixed α ∈ (0, 1),
and a set of d marginal distributions F1, . . . , Fd we define the worst-case VaR and the worst-case ES for the aggregate
position L as

VaRα(L) = sup {VaRα(L1 + · · · + Ld); Li ∼ Fi, 1 ≤ i ≤ d} , (1.1)

ESα(L) = sup {ESα(L1 + · · · + Ld); Li ∼ Fi, 1 ≤ i ≤ d} . (1.2)

Note that the two definitions (1.1) and (1.2) are particular cases of (6.11) in McNeil et al. (2005). VaRα(L) and ESα(L)
represent the largest estimates of VaRα(L) and ESα(L), respectively, if only the marginal distributions of the random
variables L1, . . . , Ld are known.

Equivalent definitions of VaRα(L) and ESα(L) can be given in terms of copulas. A copula C is a d-dimensional
distribution function (df) on [0, 1]d with uniform marginals. Given a copula C and d univariate marginals F1, . . . , Fd,
one can always define a df F on Rd having these marginals by

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), x1, . . . , xd ∈ R. (1.3)

Sklar’s Theorem (see Theorem 5.3 in McNeil et al. (2005)) states conversely that we can always find a copula C
coupling the marginals Fi of a fixed joint distribution F through the above expression (1.3). For continuous marginal
dfs, this copula is unique. Sklar’s Theorem implies that the copula C of a multivariate distribution F contains all
the dependence information of F. As a consequence, one can reformulate the two definitions (1.1) and (1.2) as
optimization problems over Cd, the set of all d-dimensional copulas:

VaRα(L) = sup
{
VaRα(LC

1 + · · · + LC
d ) : C ∈ Cd

}
, (1.4)

ESα(L) = sup
{
ESα(LC

1 + · · · + LC
d ) : C ∈ Cd

}
, (1.5)

where (LC
1 , . . . , L

C
d ) denotes a random vector with given marginals F1, . . . , Fd and copula C, i.e. with joint distribution

function given by C(F1, . . . , Fd).
Any copula C satisfies the so-called Fréchet bounds

max

 d∑
i=1

ui − d + 1, 0

 ≤ C(u1, . . . , ud) ≤ min{u1, . . . , ud},

for all u1, . . . , ud ∈ [0, 1]. The sharp upper Fréchet bound M(u1, . . . , ud) = min{u1, . . . , ud} is the so-called comono-
tonic copula, which represents perfect positive dependence among the risks. In fact, a risk vector (L1, . . . , Ld) has
copula M if and only if its marginal risks are all almost surely (a.s.) increasing functions of a common random factor.
The lower Fréchet bound W(u1, . . . , ud) = [u1 + · · · + ud − d + 1]+ is also sharp but it is a well-defined copula only in
dimension d = 2. In this case, it is called the countermonotonic copula and represents perfect negative dependence
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between two risks. A risk vector (L1, L2) has copula W if and only if its marginal risks are a.s. decreasing functions
of each other.

Fréchet bounds are important for finding optimal solutions in many optimization problems of interest in quantita-
tive risk management. For instance, it is well known that the upper bound in (1.5) (or, equivalently, in (1.2)) is attained
when the risk portfolio (LC

1 , . . . , L
C
d ) has comonotonic copula C = M, i.e.

ESα(L) = ESα(LM
1 + · · · + LM

d ) = ESα(L1) + · · · + ESα(Ld); (1.6)

see for instance Kusuoka (2001) and Section 1 in Puccetti (2013).
The computation of VaRα(L) is more challenging as it is well known that VaRα(LM

1 + · · · + LM
d ) is not the solution

of (1.1); see Embrechts and Puccetti (2006). There are several techniques available in the literature in order to
compute VaRα(L) for a fixed set of marginal distributions. To cite the most relevant: the dual bound technique
illustrated in Puccetti and Rüschendorf (2013) for the analytical computation of the worst VaR of the sum of identically
distributed risks; the rearrangement algorithm described in Embrechts et al. (2013) for the numerical computation
of the worst VaR in the general case of inhomogeneous portfolios. In this paper we are mostly interested in the
asymptotic properties of the conservative VaR- and ES-based capital charges (1.1) and (1.2) when the dimension of
the risk portfolio d increases. This case is of particular interest as internal models built by financial institutions to
fulfil the Basel and Solvency regulatory frameworks are using a rapidly growing number d of risk factors.

The main result presented in this paper is that when the marginal losses Li are nonnegative, identically distributed
random variables with finite mean, the worst-case estimate of VaR for the aggregate position L is equivalent to the
corresponding worst-case ES estimate, in the limit as d → ∞. Examples of interest in quantitative risk management
show that this equivalence holds also for relatively small risk portfolios, and for inhomogeneous portfolios. Roughly
speaking, if one uses a conservative rule for capital reserving, a VaR-based capital charge will be equivalent to a
ES-based reserve for the dimensions d typically used within quantitative risk management. From this worst-case
dependence perspective, our main result suggests that the problem of choice between VaR and ES risk metrics might
be less relevant than expected.

Under specific assumptions of interdependence among the risks some related results have been discussed in Asimit
et al. (2011) and in Mainik and Rüschendorf (2010), where asymptotics for the ratio ESα(L)/VaRα(L) are given in the
limit as α → 1 under some specific assumptions of interdependence among the risks. The comparison between ES
and VaR (worst-case) risk measures has a more general domain of application within the context of optimal capital
allocations as for instance recently studied in Furman and Landsman (2008); Dhaene et al. (2008); Bargès et al. (2009);
Dhaene et al. (2012).

Our main result also implies asymptotics for the so-called diversification benefit introduced in Cope et al. (2009).
We show that for a risk portfolio of d identically distributed, positive random variables with finite mean, the worst-
possible diversification benefit approaches a negative constant in the limit as d → ∞. This equivalently means that the
worst-case VaR of a sufficiently large portfolio is by a positive factor greater than one larger than the VaR obtained
when the risks are comonotonic.

The case of infinite mean is different. When the random losses Li have infinite first moment, we show that the
worst VaR can be arbitrarily large with respect to the corresponding VaR estimate for comonotonic risks if the risk
portfolio is large enough. We establish this result in the case of general inhomogeneous distributions.

2. Asymptotics for conservative capital charges: the finite mean case

Throughout this section we assume that the loss random variables L1, . . . , Ld have a common distribution function
F with tail function F = 1 − F. We also assume that F has a nonnegative support (the Li’s are interpreted as random
losses). It is straightforward to see that our results can be extended to the case in which the distribution F assumes
also negative values but is bounded from below.

Since ESα(L) ≥ VaRα(L) for any random loss L, for any portfolio (L1, . . . , Ld) we have that

ESα(L1 + · · · + Ld)

VaRα(L1 + · · · + Ld)
≥ 1.
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The main result of this paper is to show that for portfolios of identically distributed risks, the above inequality becomes
an equality in the limit as d → ∞. Formally, we prove that if Li ∼ F, 1 ≤ i ≤ d, we have

lim
d→∞

ESα(L1 + · · · + Ld)

VaRα(L1 + · · · + Ld)
= 1. (2.1)

This means that the worst-possible ES for the sum of random losses with marginal distributions identical to F is
equivalent to the corresponding worst-possible VaR, in the limit as d → ∞.

In order to prove (2.1), it is useful to study the behavior of the maximum tail probability of L1 + · · ·+ Ld evaluated
at s, i.e. to determine

M(s) = sup {P(L1 + · · · + Ld ≥ s); Li ∼ F, 1 ≤ i ≤ d} .

Embrechts and Puccetti (2006) show that for any nonnegative distribution F and any s ∈ R

M(s) ≤ D(s) = d inf
0≤t<s/d

min


∫ s−(d−1)t

t F(x) dx

s − dt
, 1

 . (2.2)

Note that under the notation used by Embrechts and Puccetti (2006) we have m+(s) = 1 − M(s). Under some extra
assumptions, Puccetti and Rüschendorf (2013) prove that the bound in (2.2) is sharp. For a fixed confidence level
α ∈ (0, 1), let Fα denote the set of nonnegative, unbounded continuous distribution having a positive density f which
is decreasing on the interval (F−1(α),∞). Note that the distributions in Fα cover a large domain of applications in
quantitative risk management, where ESα(L) and VaRα(L) are typically calculated for high quantiles α and positive,
unbounded loss random variables with a ultimately decreasing density.

Proposition 2.1 (Puccetti and Rüschendorf (2013)). Assume that F ∈ Fα. For a fixed real threshold s, suppose that
it is possible to find t∗ < s/d such that

D(s) = inf
0≤t<s/d

d
∫ s−(d−1)t

t F(x) dx

s − dt
=

d
∫ s−(d−1)t∗

t∗ F(x) dx

s − dt∗
,

and t∗ ≥ F−1(1 − D(s)). Then we have that
M(s) = D(s).

Puccetti and Rüschendorf (2013) show that the extra assumptions of Proposition 2.1 are satisfied by the distributions
commonly used in applications of quantitative risk management, for a threshold s large enough. For a distribution
F ∈ Fα with finite mean µ, we define the function h : [µ,∞) → [0,∞), where h(s), s ≥ µ is the unique solution of the
equation

E[X|X ≥ h(s)] = h(s) +

∫ ∞
h(s) F(x) dx

F(h(s))
= s. (2.3)

Note that if h(s) = F−1(α), for any random variable X ∼ F we obtain from Lemma 2.16 in McNeil et al. (2005) that

E[X|X ≥ F−1(α)] = ESα(X),

implying that
h−1(F−1(α)) = ESα(X). (2.4)

The key idea to prove our main result is to study the behavior of the maximum tail probability of L1 + · · ·+Ld evaluated
at the threshold ds. The following lemma is needed to prove the main result of our paper.

Lemma 2.2. Assume that (Ld, d ∈ N) is an infinite sequence of random variables identically distributed as F, where
F ∈ Fα has finite first moment µ. Then, for any s ≥ µ we have

lim sup
d→∞

M(ds) ≤ F(h(s)).
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Proof. Note that 0 ≤ h(s) < s, for any s ≥ µ. From (2.2) it follows that

M(ds) ≤ inf
0≤t<s

∫ d(s−t)+t
t F(x) dx

s − t
≤

∫ d(s−h(s))+h(s)
h(s) F(x) dx

s − h(s)
.

For d → ∞ we have using (2.3):

lim sup
d→∞

M(ds) ≤

∫ ∞
h(s) F(x) dx

s − h(s)
= F(h(s)). �

Theorem 2.3. Fix α ∈ (0, 1) and assume that (Ld, d ∈ N) is an infinite sequence of random variables identically
distributed as F, where F ∈ Fα has finite first moment µ. Suppose that for a fixed threshold s ≥ µ, the extra
assumptions of Proposition 2.1 are satisfied for any d ≥ d0. Then

lim
d→∞

VaRα(L1 + · · · + Ld)
d

= ESα(L1), (2.5)

and consequently

lim
d→∞

VaRα(L1 + · · · + Ld)

ESα(L1 + · · · + Ld)
= 1.

Proof. For any d ≥ d0, let td = arg inf0≤t<s f (t, d), where

f (t, d) =

∫ d(s−t)+t
t F(x) dx

s − t
.

From Proposition 2.1 we have that
M(ds) = inf

0≤t<s
f (t, d) = f (td, d). (2.6)

We prove that lim supd→∞ td < s. Assume, on the contrary, that lim supd→∞ td = s. Then it is possible to find a
subsequence tnd for which one of the following four cases occurs:

1. limd→∞ d(s − tnd ) = 0. In this case, we have that

lim
d→∞

f (tnd , d) = lim
d→∞

∫ d(s−tnd )+tnd

tnd
F(x) dx

s − tnd

= lim
d→∞

d F(s) = ∞;

2. limd→∞ d(s − tnd ) = K > 0. In this case, we have that

lim
d→∞

f (tnd , d) = lim
d→∞

d
∫ s+K

s F(x) dx

K
= ∞;

3. limd→∞ d(s − tnd ) = ∞. In this case, we have that

lim
d→∞

f (tnd , d) = lim
d→∞

∫ ∞
s F(x) dx

s − tnd

= ∞;

4. limd→∞ d(s − tnd ) does not exist. In this case, there exists a subsequence t′nd
of tnd such that t′nd

→ s and one of
the three cases 1.-3. above is fulfilled for t′nd

. As a consequence we obtain that

lim sup
d→∞

f (tnd , d) = ∞.

5



The above cases 1.-4. are in contrast with (2.6) as we know from Lemma 2.2 that lim supd→∞ M(ds) is finite. As a
consequence, there exist some positive ε, independent of d, such that lim supd→∞ td = s − ε. For d ≥ d0, it follows
therefore that

M(ds) = inf
0≤t≤s−ε

f (t, d).

Using the notation

f (t) =

∫ ∞
t F(x) dx

s − t
,

we have that

lim
d→∞

sup
0≤t≤s−ε

∣∣∣∣∣ f (t, d) − f (t)
∣∣∣∣∣ = lim

d→∞
sup

0≤t≤s−ε

∣∣∣∣∣
∫ d(s−t)+t

t F(x) dx

s − t
−

∫ ∞
t F(x) dx

s − t

∣∣∣∣∣
= lim

d→∞
sup

0≤t≤s−ε

∣∣∣∣∣
∫ ∞

d(s−t)+t F(x) dx

s − t

∣∣∣∣∣ ≤ lim
d→∞

∫ ∞
(d−1)ε+s F(x) dx

ε
= 0,

where the last inequality follows from the finiteness of µ =
∫ ∞

0 F(x) dx. As a result, the sequence f (t, d) converges
uniformly to f (t) and we finally obtain that

lim
d→∞

M(ds) = lim
d→∞

inf
0≤t≤s−ε

f (t, d) = inf
0≤t≤s−ε

lim
d→∞

f (t, d) = inf
0≤t≤s−ε

f (t).

Recalling the definition of the function h given in (2.3), it is elementary to check first and second order conditions for
f (t) and show that

lim
d→∞

M(ds) = inf
0≤t≤s−ε

f (t) = inf
0≤t≤s−ε

∫ ∞
t F(x) dx

s − t
=

∫ ∞
h(s) F(x) dx

s − h(s)
= F(h(s)),

from which it directly follows that
lim
d→∞

M
(
d h−1(F−1(α)

)
= 1 − α. (2.7)

From (2.7), using the definition of VaR and (2.4), we obtain equivalently that

lim
d→∞

VaRα(L1 + · · · + Ld)
d

= h−1(F−1(α)) = ESα(L1).

Using (1.6) one obtains ESα(L1 + · · · + Ld) = d ESα(L1), and hence the theorem. �

Though the approximation

ESα(L1 + · · · + Ld)
d→∞
' VaRα(L1 + · · · + Ld),

is proved to hold in the limit as d → ∞, applications show that the equivalence between conservative ES and VaR
estimates holds for relatively small portfolios. In Table 1 we give estimates for ESα(L) and VaRα(L), computed at
different quantile levels α, for the sum of d Pareto(2) marginals. We recall that a Pareto distribution with tail exponent
θ > 0 has tail function F(x) = (1 + x)−θ, x > 0. The VaR estimates are computed via the analytical method described
in Puccetti and Rüschendorf (2013). The equivalence of capital charges is already visible for d = 10. For portfolios of
lighter tailed risks, as the LogNormal marginals represented in Table 2, the equivalence of capital charges holds even
for small portfolios of d = 3 risks. Analogous behavior can be traced for distributions typically used in quantitative
risk management.

Additionally, we provide two numerical examples showing that the equivalence between conservative ES- and
VaR-based capital charges seems to hold also for portfolios of inhomogeneous marginals, for which an analytical tool
to compute VaRα(L) is not available yet. In Table 3 and Table 4 we give estimates for ESα(L) and VaRα(L), computed
at different quantile levels α, for the sum of the marginals of the following portfolios:
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d VaR0.995

(∑d
i=1 Li

)
ES0.995

(∑d
i=1 Li

)
ratio

3 66.2820 81.8528 1.2349
10 258.3281 272.8430 1.0562
50 1350.0000 1364.2140 1.0105

100 2714.2490 2728.4270 1.0052

d VaR0.999

(∑d
i=1 Li

)
ES0.999

(∑d
i=1 Li

)
ratio

3 151.9194 186.7367 1.2292
10 589.9999 622.4555 1.0550
50 3080.4950 3112.2780 1.0103

100 6192.8530 6224.5550 1.0051

Table 1: Ratio between the worst ES and the worst VaR for the sum of d Pareto(2) marginals.

d VaR0.995

(∑d
i=1 Li

)
ES0.995

(∑d
i=1 Li

)
ratio

3 399.0155 420.5341 1.0539
10 1398.8790 1401.7800 1.0021
50 7008.8790 7008.9020 1.0000

100 14017.8000 14017.8000 1.0000

d VaR0.999

(∑d
i=1 Li

)
ES0.999

(∑d
i=1 Li

)
ratio

3 640.0679 668.7629 1.0448
10 2225.8490 2229.2100 1.0015
50 11146.0300 11146.0500 1.0000

100 22292.1000 22292.1000 1.0000

Table 2: Ratio between the worst ES and the worst VaR for the sum of d LogNormal(2, 1) marginals.

d VaR0.995

(∑d
i=1 Li

)
ES0.995

(∑d
i=1 Li

)
ratio

3 29.30 39.07 1.3334
9 106.42 117.21 1.1014

30 379.79 390.70 1.0287
99 1278.42 1289.33 1.0085

d VaR0.999

(∑d
i=1 Li

)
ES0.999

(∑d
i=1 Li

)
ratio

3 59.87 82.74 1.3820
9 222.34 248.23 1.1164

30 801.38 827.43 1.0325
99 2704.50 2730.50 1.0096

Table 3: Ratio between the worst ES and the worst VaR for the sum of the marginals in Portfolio A.

d VaR0.995

(∑d
i=1 Li

)
ES0.995

(∑d
i=1 Li

)
ratio

3 114.70 150.49 1.3120
9 432.97 451.47 1.0427

30 1502.45 1504.91 1.0016
99 4966.10 4966.19 1.0000

d VaR0.999

(∑d
i=1 Li

)
ES0.999

(∑d
i=1 Li

)
ratio

3 186.49 237.33 1.2726
9 687.09 711.98 1.0362

30 2370.39 2373.26 1.0012
99 7831.72 7831.75 1.0000

Table 4: Ratio between the worst ES and the worst VaR for the sum of the marginals in Portfolio B.

• Portfolio A, in which the marginal distributions Fi(x) = 1 − (1 + x)−θi are of Pareto type with tail coefficients
θ3k+i = i + 1, 1 ≤ i ≤ 3, for k = 0, . . . , d/3 − 1 (d is a multiple of 3).

• Portfolio B, in which F3k+1 = Pareto(4), F3k+2 = LogN(2, 1), F3k+3 = Exp(1), for k = 0, . . . , d/3 − 1 (d is a
multiple of 3).

For these inhomogeneous portfolios, estimates for ESα(L) are still available analytically via (1.6), while estimates
for VaRα(L) are computed up to the second decimal digit via the Rearrangement Algorithm as described in Embrechts
et al. (2013). Similar results for the inhomogeneous case can also be found in Puccetti (2013, Table 3). The examples
indicate that our result on the asymptotic equivalence of worst case VaR and ES risk metrics is robust and also seems
to be valid in more general inhomogeneous frameworks.

3. Implications for the diversification benefit

Our limit result (2.5) implies asymptotics for the so-called diversification benefit introduced in Cope et al. (2009).
The diversification benefit for the aggregate loss L =

∑d
i=1 Li is defined as

Dα(d) = 1 −
VaRα

(∑d
i=1 Li

)
∑d

i=1 VaRα(Li)
. (3.1)
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The diversification benefit Dα(d) measures the ratio between the total risk of the portfolio and the sum of risks across
the marginal random losses. The diversification benefit depends on the selected level of α, and on the heaviness of the
tail of the marginal distributions. A diversification benefit between 0 and 1 indicates that positive diversification effects
occur in the portfolio, meaning that the aggregate position L is less risky, the risk being measured via VaR, than the sum
of the marginal exposures. This is the typical situation occurring in elliptically distributed risk portfolios, for which
it is well known that Dα(d) ∈ [0, 1]; see McNeil et al. (2005, Theorem 6.8). The case Dα(d) = 0 (no diversification)
occurs when the risks Li are comonotonic, and VaRα(L) =

∑d
i=1 VaRα(Li); see McNeil et al. (2005, Proposition 6.15).

This no-diversification, maximum correlation case is often considered as highly conservative based on the assump-
tion that the random variables Li are inhomogeneous in nature and cannot be maximally correlated in practice. Con-
trary to this common sense, the total risk for a financial institution may in general exceed the sum of risks across the
individual marginals. Negative diversification benefits are obtained in the case of heavy-tailed and/or skew marginals
and/or marginals coupled by a non-elliptical copula; see Nešlehová et al. (2006). This effect occurs even when the
losses are independent. For instance, if the random losses L1, . . . , Ld are independent and each Li is distributed like a
symmetric θ-stable distribution Fi, when θ < 1 we have that

VaRα(L1 + · · · + Ld) = d1/θ VaRα(L1) > d VaRα(L1) = VaRα(LM
1 + · · · + LM

d );

see Mainik and Rüschendorf (2010). The non-coherence of VaR as a measure of risk is a consequence of this effect.
A direct interpretation of the diversification benefit can be obtained by rewriting the definition (3.1) as:

VaRα

 d∑
i=1

Li

 = (1 − Dα(d))

 d∑
i=1

VaRα(Li)

 . (3.2)

From (3.2) it is clear that a negative diversification benefit will imply a superadditive risk within the portfolio. In
this sense it is clear what we mean with the term negative diversification: having Dα(d) = 1 − k, k > 1 means that
the aggregate VaR of the portfolio is k times the sum of the marginal VaRs. Analogously to what we have done
for the worst-case ES and VaR metrics, for α ∈ (0, 1) and d marginal distributions F1, . . . , Fd we define the worst
diversification benefit for L as

Dα(d) = inf

1 −
VaRα

(∑d
i=1 Li

)
∑d

i=1 VaRα(Li)
; Li ∼ Fi, 1 ≤ i ≤ d

 = 1 −
VaRα

(∑d
i=1 Li

)
∑d

i=1 VaRα(Li)
.

For random losses L1, . . . , Ld identically distributed as F, the expression for Dα(d) simplifies to

Dα(d) = 1 −
VaRα

(∑d
i=1 Li

)
d VaRα(L1)

,

and Theorem 2.3 implies that

lim
d→∞

Dα(d) = 1 −
ESα(L1)

VaRα(L1)
.

Since ESα(L1) ≥ VaRα(L1) holds always true, under the assumption of Theorem 2.3 we have that the worst diversifi-
cation benefit goes in the limit to a negative constant 1 − dα, where we set

dα =
ESα(L1)

VaRα(L1)
.

Recalling (3.2), this equivalently means that the VaR of a homogeneous risk portfolio could be dα times larger than
the VaR in the comonotonic portfolio. Formally, if Li ∼ F, 1 ≤ i ≤ d one obtains:

VaRα(L1 + · · · + Ld)
d→∞
' dα VaRα(LM

1 + · · · + LM
d ). (3.3)

Table 5 implies values of the factor dα in the range dα ∈ [1.4, 11.2] for Pareto distributions having tail exponent θ
varying between 4 and 1.1. It is also evident from the figures in Table 5 that dα settles down to a limit when α → 1−.
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α θ = 1.1 θ = 1.5 θ = 2 θ = 3 θ = 4

0.99 11.154337 3.097350 2.111111 1.637303 1.487492
0.995 11.081599 3.060242 2.076091 1.603135 1.454080
0.999 11.018773 3.020202 2.032655 1.555556 1.405266

Table 5: Values for the constant dα for Pareto(θ) distributions.

From (5.2) in Mainik and Rüschendorf (2010) we have indeed that if L1 has a Pareto distribution with tail exponent
θ > 1, then

lim
α→1−

dα = lim
α→1−

ESα(L1)
VaRα(L1)

=
θ

θ − 1
.

In Figure 1 we plot the quantity Dα(d) as a function of d for Pareto distributions having different tail exponents.
For a Pareto distribution a smaller exponent θ corresponds to a heavier tail; for θ ≤ 1, the Pareto distribution has
infinite first moment. Figure 1 clearly shows that the quantity Dα(d) settles down to the limit 1 − dα fairly fast for
all the Pareto distributions under study. However, the heavier the tail of the Pareto the slower the convergence. In
Figure 2 we confront the behavior of Dα(d) for Pareto, Gamma and LogNormal distributions. Again, the heaviness of
the tail seems to play a crucial role in determining the speed of convergence of Dα(d).

4. Asymptotics for VaR in the infinite mean case

In this section we drop the assumption of having identically distributed random variables and we show that if the
random losses Li have infinite mean, the worst-case VaR capital can be arbitrarily large with respect to

∑d
i=1 VaRα(Li),

the VaR for comonotonic risks. Formally, we state that

lim
d→∞

VaRα(L1 + · · · + Ld)∑d
i=1 VaRα(Li)

= ∞. (4.1)

This result marks the huge difference in risk diversification between the finite- and infinite-mean worlds of distribution
functions. Similar benchmark results can be found in Nešlehová et al. (2006) and Mainik and Rüschendorf (2010).

Theorem 4.1. Assume that (Ld, d ∈ N) is an infinite sequence of random variables and fix α ∈ (0, 1). Assume that Fi,
the distribution of Li, satisfies

lim
x→∞

inf
i≥1

x F i(x) = ∞, (4.2)

and, for some constant c,
F−1

i (α) ≤ c, i ≥ 1. (4.3)

Then

lim
d→∞

VaRα(L1 + · · · + Ld)∑d
i=1 VaRα(Li)

= ∞.

Proof. For notational simplicity we give the proof only in the case of continuous marginal distributions Fi. The proof
for the general case is similar. Lai and Robbins (1978, (3.4)) established that

A(x) := sup {P(max{L1, . . . , Ld} ≥ x); Li ∼ F, 1 ≤ i ≤ d} = min{1,G(x)}, for all x ∈ R, (4.4)

where G(x) :=
∑d

i=1 F i(x). The supremum in (4.4) is attained by a simple recursively defined dependence structure
called maximal dependence. This implies the inequality

M(x) ≥ A(x) ≥ min{1,G(x)}. (4.5)
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Figure 1: Plot of the function Dα(d) versus the dimensionality d for different homogeneous risk portfolios having Pareto marginals and α = 0.999.
The straight lines represents the corresponding limit constant (1 − d0.999).
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Figure 2: The same as Figure 1 for different homogeneous risk portfolios having Gamma, LogNormal and Pareto marginals.
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Now denote yd := G
−1

(1 − α), where for β ∈ (0, 1) we set G
−1

(β) = inf{x ∈ R : G(x) ≤ β}. From (4.5) and continuity
of the Fi’s, we have that

M(yd) ≥ min{1,G(yd)} = 1 − α.

As a consequence, we obtain that
VaRα(L1 + · · · + Ld) ≥ yd,

implying, using (4.3), that

VaRα(L1 + · · · + Ld)∑d
i=1 VaRα(Li)

≥
yd∑d

i=1 VaRα(Li)
≥

yd

d max1≤i≤d VaRα(Li)
≥

yd

d c
. (4.6)

Since yd = G
−1

(1 − α), we have

1 − α = G(yd) =

d∑
i=1

F i(yd) =

∑d
i=1 ydF i(yd)

yd
≥

d min1≤i≤d ydF i(yd)
yd

, (4.7)

for all d. By (4.2), we have min1≤i≤d ydF i(yd)→ ∞. It follows from (4.7) that d/yd converges to zero. Using (4.6) we
conclude that

lim
d→∞

VaRα(L1 + · · · + Ld)∑d
i=1 VaRα(Li)

≥ lim
d→∞

yd

d c
= ∞. �

Remark 4.2. We remark the following points about Theorem 4.1.

1. Condition (4.2) is a bit stronger than the assumption of an infinite first moment for all the marginal distributions
Fi. In the case F i(x) = (1+ x)−1, 1 ≤ i ≤ d, we have infinite first moment but limx→∞ xF i(x) = 1. It is possible to
construct in this case a coupling (L1, . . . , Ld) such that (4.1) holds. It is not clear from the construction whether
Theorem 4.1 holds under the assumption of infinite mean only.

2. In practice, Theorem 4.1 applies to the distributions Fi with infinite mean typically used in quantitative risk
management. For example, the Theorem is valid under the assumption that the tail function Fi is regularly
varying with tail index 0 < θi < 1, for all i ≥ 1, and supi≥1 θi < 1. For the definition of regularly varying
distributions we refer for instance to Foss et al. (2011).

3. Condition (4.3) is in particular satisfied in the case the Li’s are identically distributed, or if they assume only
a finite set of possible marginal models. In the homogeneous case where Fi = F, 1 ≤ i ≤ d, condition (4.2)
reduces to limx→∞ xF(x) = ∞.

4. Condition (4.2) can be relaxed to
lim
x→∞

inf
i∈J

x F i(x) = ∞,

where, for some fixed ε > 0, J ⊂ N satisfies #(J ∩ {1, . . . , n}) ≥ ε n, n ≥ 1. As an illustrative example, in
Table 6 we give an estimate (from below) of the ratio between the worst VaR and the sum of marginal VaRs for
a portfolio of Pareto(0.9,2,3)-distributed marginal random variables.

11



d
∑d

i=1 VaR0.995 (Li) VaR0.995

(∑d
i=1 Li

)
ratio

3 377.32 463.73 1.2290
9 1131.96 3502.01 3.0938

30 3773.20 20788.17 5.5094
99 12451.55 99600.49 7.9990

d
∑d

i=1 VaR0.999 (Li) VaR0.999

(∑d
i=1 Li

)
ratio

3 2193.06 2458.23 1.1209
9 6579.17 20323.17 3.0890

30 21930.57 122718.50 5.5958
99 72370.90 590636.20 8.1612

Table 6: Ratio between the worst VaR (lower bound) and the sum of marginal VaRs for the sum of Pareto type marginals with tail coefficients
θ3k+1 = 0.9, θ3k+2 = 2, θ3k+3 = 3, k = 0, . . . , d/3 − 1. The lower bound on the worst VaR has been computed via the Rearrangement Algorithm as
described in Embrechts et al. (2013).
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