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In a recent paper Broutin and Devroye (2005) have studied the height of a class of edge-weighted random trees. This
is a class of trees growing in continuous time which includes many well known trees as examples. In this paper we
derive a limit theorem for the internal path length for this class of trees. The application of this limit theorem to
concrete examples depends upon the possibility to obtain an expansion of the mean of the path length. For the proof
we extend a limit theorem in Neininger andisthendorf (2004) to recursive sequences of random variables with
continuous time parameter.
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1 Introduction

In this paper we derive a limit theorem for the internal path length of edge-weigrdedrandom trees.
For this class of trees which includes as particular cases many well known types of random trees as e.g.
random binary search trees, random recursive trees, random split trees and others in a recent paper by
Broutin and Devroy€2005), a general law of large numbers for the weighted height was established.
The weighted-ary tree is defined as follows. L&t denote an infinite complete rootédary tree. To
each node: in T, independently a random vect(z,, E1), ..., (Z, Ep)) is assigned corresponding to
the b outgoing edges ofi whereZ;, E; > 0, each painZ;, E;) is identically distributed a$Z, F) and
whereZ, E have finite expectations. We also assume g} and(E;) are independentZ, assigns a
weight andE, an age to edge. Then for nodes

G,:= Y E. istheageof (1)
ecm(u)

D, = Y Z isthe weighted depth of. 2)
eem(u)

Heren(u) is the set of edges iffi,, on the path of the root to node Theb-ary tree of age< ¢ then is
defined in continuous time> 0 by

T, :={u € Ty; Gy < t}. 3

Important parameters @i, are the height of ;

H; :=max{D, :u € T;} (4)
the path length of;,
v,:= 3 D, (5)
uweTy

andV; = |T;| the random number of nodes @f. Broutin and Devroyg2005) proved a strong law for
the height assuming that;, E; are independent. More precisely they established
Hy,

—— s
n P

; (6)

wherec = argmax{%;(p,®) € Czp}, With Czp = {(p,a); A} g(a,p) = logh,p < E(E),a =

E(Z)}. Here Ay, = supycpz{(t, \) — log Ee:(Z-E))} denotes the Cramer function ¢F, E). This

result applies to rBST, random recursive trees, plane oriented trees, oriented trees, split trees and others.
Their proof was based on Chernoff's theorem and extends earlier res@itggihs and Grey1997) and

Biggins (19771978 using branching random walks. The upper boundjncéin be extended to depen-

dent reproduction based on thé@er—Ellis theorem (seBchopp(2005). The lower bound however

needs a new Galton—Watson type result for the case of dependent reproduction which seems to be not
available in sufficient generally. The application of our limit theorem to concrete examples depends upon
an expansion of the first moment of the path length resp. in some cases of the first two moments.
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2 Limit theorem for the weighted internal path length

For the internal path length éfary weighted trees as introduced in Sectiowe obtain the following
recursive equation in continuous time which arises when splitting the tree at the root:

b
Yy i ZY;(?EL H{Eiﬁt} + by, t>0 (7)
1=1

whereb;, = Zle Z’in(—Z)Ei’ definingYy := 0, V5 := 0 for s < 0. Here(Yt(Z)) are independent copies of

the internal path length proce¥s, Vt(i)E is the number of nodes in subtréwith age< ¢t — E;, (Vt(z))

are independent copies of each other. To arguéfjdef u1, . . . , u, theb nodes off; below the root with
corresponding ages,, ..., Ey. If E; > t, thenV,_g, the number of nodes in the subtree with raet

is zero and we get no contribution of this subtree to the internal path length. Only the nodes in the subtree
of u; of age less than— E; contribute to the internal path length. For each of them we have to add the
weight Z, of the edge from the root toy, i.e. zlvfjgl. Similarly, the contribution of the other subtrees

is accounted in4) yielding the recursion

b
d i
Y, = ZYt(—)EZ Uip, <ty + be- (8)

=1
To deal with the recursive random variabl&§) with continuous time parametesms in 8) we derive in
the following an extension to continuous time of the contraction method as developkhimger and

Riischendoif2009) (see alsdRosler and Rschendoif2007)). Let0 < s < 3, letY; be s-integrable for
all t, and consider the normalized versi&n of Y; defined by

_ Y- M,
V(e

where forl < s < 3, M; := EY; and for2 < s < 3, C; := Var(Y;), C; > 0 else (for the motivation
of this normalization seBleininger and Rschendor{2004)). Convergence will be formulated w.r.t. the
Zolotarev metric

th

9)

G(X,Y) = sup |[E(f(X) — f(Y))], (10)
JEFs
wheres = m +a,0 < a < 1,m = [s] — 1 > 0is an integer andF, = {f € C™(R,R); || ") (x) —
FM ()| < |z —y|*} denotes the space of-fold continuously differentiable real functions @&t with
a Holder condition for then-th derivative. {;(X,Y) is finite if X, Y have finite absolute moments of
orders and the moments of ordér. .., m of X andY coincide.(, is an ideal metric of ordey, i.e. for
Z independent o, Y and anyc € R holds

GX+ZY +2Z) <G(XY), GleX,cY) = [c[*G(X,Y). (11)

The normalized versioX; of Y; satisfies a recursive equation of a form similar&p (

b
X 23 AOXT, b, (12)

r=1
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Ci_E,
o and

WhereAﬁt) =g, <n

b

1

bt = 7= (bt — M+ ]I{ETSt}Mt_ET) : (13)
t r=1

Theorem 1 Let0 < s < 3und X, € L* satisfy the recursive equatiofid) and assume thaLAS,t)HS <
00, [[b® |5 < 0o andsupg<,<; | Xulls < oo forall ¢ > 0. Assume further that

1) AW L 4% b0 B p* ast — oo (14)
b
2) EY |AjlP <1 (15)
r=1
b
3) Forall7 > 0holdsEY " 1 p, <AL — 0. (16)
r=1

ThenX; converges in distribution to a limik,
(s(X, X) — 0ast — oo a7)

and X is in law the unique solution of the fixpoint equation

b
x4 > AX 4 (18)

r=1

in Lswith EX =0forl <s<3andVarX =1for2 < s < 3.

Proof: Note that by the normalization far < s < 2 X, is centered, thu®b® = 0. For2 < s < 3
EX, =0, Var(X,) = 1 and thusEb®) = 0 and E(b®)? + EY"_, (A”)2 = 1. Thus from assumption
(14) we obtainEb* = 0,1 < s < 2and

b
Eb' =0, E(W*)’+EY (A})?=1,for2<s<3. (19)
r=1
This implies by Corollary 3.4 dleininger and Rschendoi{2004) existence and uniqueness of a solution

of (17) in M,(0,1), the class of distributions of alk € L® with moments as specified above. We
introduce as in the discrete time case an accompanying seqg@ermdeX; by

b
Q= ZA&” (]l{Ogt—ET<~r}Xt(i)E7_ + ﬂ{t—ETZT}X(T)) +b®, t>0, (20)

r=1

where(X ("), (Xt(")) are independent copies &f, X; andr is some suitable positive number specified
later in the proof. Thenfo? < s <3 Var(Q.) = Var(X;) and thusQ; € M,(0,1) and the distance
betweenX;, Q;, X w.r.t. the Zolotarev metric is finite for atl> 0.
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By the triangle inequality holds

di = Co( Xy, X) < Co( Xy, Q1) + Co(Qr, X). (21)

As in the discrete case we obtain that the remainder term ((Q:, X) — 0 ast — oo using (L6) and
the conditionsup,_, . || X¢||s < oc. Further, using the ideality properties of thiemetric we obtain

b
Cs(X1, Q) < EZ ﬂ{0§t7E7,>-r}|A5-t)|sdt—Er
r=1

and thus by21) fort > 7

b
EY Woci-pon A dip, + 1 (22)
r=1
b
<EY Moci—p>n|AY] sup dy +17,

T<u<t

dy

IN

r=1

wherer* = sup, ., 7, < oo. By an inequality due to Zolotarev

d; = suwp dy < C(IX]3+ sup [ X,]3) < oo
T<u<t T<u<

with some constant’ > 0. Thus we obtain by assumptichS) from (22)
dy <m-df+r*, t>71 (23)

for somen < 1if 7 is chosen large enough. This impliés < nd; + r* by monotonicity ofd}, i.e.

di < [_*n for all ¢t > 7. Thus we get that, is bounded.
Now we refine the estimate as in the discrete case to obtainithat 0. Letd := limsup,_, . d;.

Then for anye > 0 holdsd; < d + ¢ for all t > 7, and thus by20), (21) with d_ = sup d}
t

b b
de SEY Vpreiperpl AP + EY Loy | AV (d+€) + e (24)

r=1 r=1

Using assumptionslg), (16), this impliesd < &(d + ¢) whereé = EZ?:l |Af|* < 1 a contradiction
for e < ¢.
Since(,-convergence implies weak convergence we obtain the conclusion of the theorem. O

Remark.

a) In order to apply the limit theorem to concrétary weighted trees we have to control the first moment
of Y; for 1 < s < 2 and the first and second moment fox s < 3 (as typically in the case of normal
limits). In the case of discrete time recursive sequences several examples of this type have been
given inNeininger and Rschendor{2004). Broutin and Devroyd€2005) applied their results on the
height ofb-ary weighted trees to several trees. In the case where the age variables are exponential the
corresponding-ary tree has a Markov structure, the number of nddesan be determined by a law
of large numbers and so a transference to e.g. rBST's is possib(Br@etn and Devroy€2005)).
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b) Assumption 3) of Theoreili can be weakened a bit for the limit theorem (Sedopp(2005). Also
the randonsubtree sizes — E,. in the recursive equatioil?) can be replaced in the formulation of
Theoremnillby general subtree siZe(t) < t as in the discrete time caseleininger and Rschendoif
(2009). In a recent paper adanson and NeininggR00€) a similar extension of the limit theorem
of[Neininger and Rschendoif2004) to the continuous time case has been independently established
(even in the multivariate case) and has been applied to a fragmentation process.

¢) In Theoreml we assume finiteness of theh absolute moments of the random modified coefficients
(Aﬁ,t)) and the modified toll term@®)). Thus integrability properties &, F may have an impact on
the applicability of the theorem.
In many applications (seigroutin and Devroy€2005) 7 is a bounded random variable. Thus for the
finiteness of the-th moment ob(*) it suffices in that case to estimate thth absolute moment of the
number of nodes up to timeg since

L

b, <
[[6°]] SN

bl ZVills + (),

wherec(t) is a constant depending on

If for example £ is Exponential(1)-distributed, thefV; < n} = {t, > t}, wheret,, is the time of the
n-th birth andV; denote the number of external nodes in trery tree.

As ty, i Zk

E; .
i—1 Tr= =T We obtain

P> k) = P

= P(max{Ey,...,Ep} <t(b—1))
— (1 _ e—t(b—l))k.

Therefore thes-th moment ofV/, is bounded by the-th moment of a geometrig(e~*®*=1) random
variable, and sinc®(V; > k) = P(V, > (b— 1)k + 1) we have also a bound fd#;.
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