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Note on the weighted internal path length of
b-ary trees
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In a recent paper Broutin and Devroye (2005) have studied the height of a class of edge-weighted random trees. This
is a class of trees growing in continuous time which includes many well known trees as examples. In this paper we
derive a limit theorem for the internal path length for this class of trees. The application of this limit theorem to
concrete examples depends upon the possibility to obtain an expansion of the mean of the path length. For the proof
we extend a limit theorem in Neininger and Rüschendorf (2004) to recursive sequences of random variables with
continuous time parameter.
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1 Introduction
In this paper we derive a limit theorem for the internal path length of edge-weightedb-ary random trees.
For this class of trees which includes as particular cases many well known types of random trees as e.g.
random binary search trees, random recursive trees, random split trees and others in a recent paper by
Broutin and Devroye(2005), a general law of large numbers for the weighted height was established.

The weightedb-ary tree is defined as follows. LetT∞ denote an infinite complete rootedb-ary tree. To
each nodeu in T∞ independently a random vector((Z1, E1), . . . , (Zb, Eb)) is assigned corresponding to
the b outgoing edges ofu whereZi, Ei ≥ 0, each pair(Zi, Ei) is identically distributed as(Z,E) and
whereZ, E have finite expectations. We also assume that(Zi) and(Ei) are independent.Ze assigns a
weight andEe an age to edgee. Then for nodeu

Gu :=
∑

e∈π(u)

Ee is the age ofu (1)

Du :=
∑

e∈π(u)

Ze is the weighted depth ofu. (2)

Hereπ(u) is the set of edges inT∞ on the path of the root to nodeu. Theb-ary tree of age≤ t then is
defined in continuous timet ≥ 0 by

Tt := {u ∈ T∞;Gu ≤ t}. (3)

Important parameters ofTt are the height ofTt

Ht := max{Du : u ∈ Tt} (4)

the path length ofTt,

Yt :=
∑

u∈Tt

Du (5)

andVt = |Tt| the random number of nodes ofTt. Broutin and Devroye(2005) proved a strong law for
the height assuming thatZi, Ei are independent. More precisely they established

Hn

n
−→

P
c, (6)

wherec = argmax{α
ρ ; (ρ, α) ∈ CZ,E}, with CZ,E = {(ρ, α); Λ∗Z,E(α, ρ) = log b, ρ ≤ E(E), α ≥

E(Z)}. HereΛ∗Z,E = supλ∈R2{〈t, λ〉 − log Ee〈λ,(Z,E)〉} denotes the Cramer function of(Z, E). This
result applies to rBST, random recursive trees, plane oriented trees, oriented trees, split trees and others.
Their proof was based on Chernoff’s theorem and extends earlier results ofBiggins and Grey(1997) and
Biggins(1977, 1978) using branching random walks. The upper bound in (6) can be extended to depen-
dent reproduction based on the Gärtner–Ellis theorem (seeSchopp(2005)). The lower bound however
needs a new Galton–Watson type result for the case of dependent reproduction which seems to be not
available in sufficient generally. The application of our limit theorem to concrete examples depends upon
an expansion of the first moment of the path length resp. in some cases of the first two moments.
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2 Limit theorem for the weighted internal path length
For the internal path length ofb-ary weighted trees as introduced in Section1 we obtain the following
recursive equation in continuous time which arises when splitting the tree at the root:

Yt
d=

b∑

i=1

Y
(i)
t−Ei

1l{Ei≤t} + bt, t > 0 (7)

wherebt =
∑b

i=1 ZiV
(i)
t−Ei

, definingY0 := 0, Vs := 0 for s ≤ 0. Here(Y (i)
t ) are independent copies of

the internal path length processYt, V
(i)
t−Ei

is the number of nodes in subtreei with age≤ t − Ei, (V (i)
t )

are independent copies of each other. To argue for (7) let u1, . . . , ub theb nodes ofTt below the root with
corresponding agesE1, . . . , Eb. If E1 > t, thenVt−E1 the number of nodes in the subtree with rootu1,
is zero and we get no contribution of this subtree to the internal path length. Only the nodes in the subtree
of u1 of age less thant − E1 contribute to the internal path length. For each of them we have to add the
weightZ1 of the edge from the root tou1, i.e. Z1V

(1)
t−E1

. Similarly, the contribution of the other subtrees
is accounted in (7) yielding the recursion

Yt
d=

b∑

i=1

Y
(i)
t−Ei

1l{Ei≤t} + bt. (8)

To deal with the recursive random variables(Yt) with continuous time parametert as in (8) we derive in
the following an extension to continuous time of the contraction method as developed inNeininger and
Rüschendorf(2004) (see alsoRösler and R̈uschendorf(2001)). Let 0 < s ≤ 3, let Yt bes-integrable for
all t, and consider the normalized versionXt of Yt defined by

Xt :=
Yt −Mt√

Ct

, (9)

where for1 < s ≤ 3, Mt := EYt and for2 < s ≤ 3, Ct := Var(Yt), Ct > 0 else (for the motivation
of this normalization seeNeininger and R̈uschendorf(2004)). Convergence will be formulated w.r.t. the
Zolotarev metric

ζs(X, Y ) = sup
f∈Fs

|E(f(X)− f(Y ))|, (10)

wheres = m + α, 0 < α ≤ 1, m = dse − 1 ≥ 0 is an integer andFs = {f ∈ Cm(R,R); ‖f (m)(x) −
f (m)(y)‖ ≤ |x− y|α} denotes the space ofm-fold continuously differentiable real functions onR1 with
a Hölder condition for them-th derivative. ζs(X, Y ) is finite if X, Y have finite absolute moments of
orders and the moments of order1, . . . , m of X andY coincide.ζs is an ideal metric of orders, i.e. for
Z independent ofX, Y and anyc ∈ R holds

ζs(X + Z, Y + Z) ≤ ζs(X, Y ), ζs(cX, cY ) = |c|sζs(X,Y ). (11)

The normalized versionXt of Yt satisfies a recursive equation of a form similar to (8):

Xt
d=

b∑
r=1

A(t)
r X

(r)
t−Er

+ b(t), (12)
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whereA
(t)
r := 1l{Er≤t}

√
Ct−Er

Ct
and

b(t) :=
1√
Ct

(
bt −Mt +

b∑
r=1

1l{Er≤t}Mt−Er

)
. (13)

Theorem 1 Let 0 < s ≤ 3 undXt ∈ Ls satisfy the recursive equation (12) and assume that‖A(t)
r ‖s <

∞, ‖b(t)‖s < ∞ andsup0≤u≤t ‖Xu‖s < ∞ for all t > 0. Assume further that

1) A(t)
r

Ls

→ A∗r , b(t) Ls

→ b∗ ast →∞ (14)

2) E

b∑
r=1

|A∗r |s < 1 (15)

3) For all τ > 0 holdsE

b∑
r=1

1l{t−Er<τ}|A(t)
r |s → 0. (16)

ThenXt converges in distribution to a limitX,

ζs(Xt, X) → 0 ast →∞ (17)

andX is in law the unique solution of the fixpoint equation

X
d=

b∑
r=1

A∗rX
(r) + b∗ (18)

in Ls with EX = 0 for 1 < s ≤ 3 andVarX = 1 for 2 < s ≤ 3.

Proof: Note that by the normalization for1 < s ≤ 2 Xt is centered, thusEb(t) = 0. For 2 < s ≤ 3
EXt = 0, Var(Xt) = 1 and thusEb(t) = 0 andE(b(t))2 + E

∑b
r=1(A

(t)
r )2 = 1. Thus from assumption

(14) we obtainEb∗ = 0, 1 < s ≤ 2 and

Eb∗ = 0, E(b∗)2 + E

b∑
r=1

(A∗r)
2 = 1, for 2 < s ≤ 3. (19)

This implies by Corollary 3.4 ofNeininger and R̈uschendorf(2004) existence and uniqueness of a solution
of (17) in Ms(0, 1), the class of distributions of allX ∈ Ls with moments as specified above. We
introduce as in the discrete time case an accompanying sequenceQt of Xt by

Qt :=
b∑

r=1

A(t)
r

(
1l{0≤t−Er<τ}X

(r)
t−Er

+ 1l{t−Er≥τ}X(r)
)

+ b(t), t > 0, (20)

where(X(r)), (X(r)
t ) are independent copies ofX, Xt andτ is some suitable positive number specified

later in the proof. Then for2 < s ≤ 3 Var(Qt) = Var(Xt) and thusQt ∈ Ms(0, 1) and the distance
betweenXt, Qt, X w.r.t. the Zolotarev metric is finite for allt > 0.



Path length ofb-ary trees 5

By the triangle inequality holds

dt := ζs(Xt, X) ≤ ζs(Xt, Qt) + ζs(Qt, X). (21)

As in the discrete case we obtain that the remainder termrt := ζs(Qt, X) → 0 ast →∞ using (16) and
the conditionsup0<t≤τ ‖Xt‖s < ∞. Further, using the ideality properties of theζs-metric we obtain

ζs(Xt, Qt) ≤ E

b∑
r=1

1l{0≤t−Er>τ}|A(t)
r |sdt−Er

and thus by (21) for t ≥ τ

dt ≤ E

b∑
r=1

1l{0≤t−Er≥τ}|A(t)
r |sdt−Er

+ rt (22)

≤ E

b∑
r=1

1l{0≤t−Er≥τ}|A(t)
r |s sup

τ≤u≤t
du + r∗,

wherer∗ = supτ≤t rt < ∞. By an inequality due to Zolotarev

d∗t := sup
τ≤u≤t

du ≤ C
(
‖X‖s

s + sup
τ≤u≤t

‖Xu‖s
s

)
< ∞

with some constantC > 0. Thus we obtain by assumption (15) from (22)

dt ≤ η · d∗t + r∗, t > τ (23)

for someη < 1 if τ is chosen large enough. This impliesd∗t ≤ ηd∗t + r∗ by monotonicity ofd∗t , i.e.
d∗t ≤ r∗

1−η for all t > τ . Thus we get thatdt is bounded.

Now we refine the estimate as in the discrete case to obtain thatdt → 0. Let d := lim supt→∞ dt.
Then for anyε > 0 holdsdt ≤ d + ε for all t ≥ τ1 and thus by (20), (21) with d∗∞ = sup

t
d∗t

dt ≤ E

b∑
r=1

1l{τ≤t−Er≤τ1}|A(t)
r |sd∗∞ + E

b∑
r=1

1l{t−Er>τ1}|A(t)
r |s(d + ε) + rt. (24)

Using assumptions (15), (16), this impliesd ≤ ξ(d + ε) whereξ = E
∑b

r=1 |A∗r |s < 1 a contradiction
for ε ≤ ε0.

Sinceζs-convergence implies weak convergence we obtain the conclusion of the theorem. 2

Remark.

a) In order to apply the limit theorem to concreteb-ary weighted trees we have to control the first moment
of Yt for 1 < s ≤ 2 and the first and second moment for2 < s ≤ 3 (as typically in the case of normal
limits). In the case of discrete time recursive sequences several examples of this type have been
given inNeininger and R̈uschendorf(2004). Broutin and Devroye(2005) applied their results on the
height ofb-ary weighted trees to several trees. In the case where the age variables are exponential the
correspondingb-ary tree has a Markov structure, the number of nodesVt can be determined by a law
of large numbers and so a transference to e.g. rBST’s is possible (seeBroutin and Devroye(2005)).
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b) Assumption 3) of Theorem1 can be weakened a bit for the limit theorem (seeSchopp(2005)). Also
the randomsubtree sizest − Er in the recursive equation (12) can be replaced in the formulation of
Theorem1 by general subtree sizeIr(t) ≤ t as in the discrete time case inNeininger and R̈uschendorf
(2004). In a recent paper ofJanson and Neininger(2006) a similar extension of the limit theorem
of Neininger and R̈uschendorf(2004) to the continuous time case has been independently established
(even in the multivariate case) and has been applied to a fragmentation process.

c) In Theorem1 we assume finiteness of thes-th absolute moments of the random modified coefficients
(A(t)

r ) and the modified toll terms(b(t)). Thus integrability properties ofZ, E may have an impact on
the applicability of the theorem.

In many applications (seeBroutin and Devroye(2005)) Z is a bounded random variable. Thus for the
finiteness of thes-th moment ofb(t) it suffices in that case to estimate thesth absolute moment of the
number of nodes up to timet, since

‖b(t)‖s ≤ 1√
Ct

b‖ZVt‖s + c(t),

wherec(t) is a constant depending ont.

If for exampleE is Exponential(1)-distributed, then{Ṽt ≤ n} = {tn ≥ t}, wheretn is the time of the
n-th birth andṼt denote the number of external nodes in theb-ary tree.

As tk
d=

∑k
i=1

Ei

1+(i−1)(b−1) we obtain

P (Ṽt ≥ k) = P
( k∑

i=1

Ei

1 + (i− 1)(b− 1)
≤ t

)

= P
( 1

b− 1

k∑

i=1

Ei
1

b−1 + (i− 1)
≤ t

)

≤ P
( k∑

i=1

Ei

i
≤ t(b− 1)

)

= P
(
max{E1, . . . , Ek} ≤ t(b− 1)

)

= (1− e−t(b−1))k.

Therefore thes-th moment ofṼt is bounded by thes-th moment of a geometricG(e−t(b−1)) random
variable, and sinceP (Vt ≥ k) = P (Ṽt ≥ (b− 1)k + 1) we have also a bound forVt.
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