COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 45. GOODNESS-OF-FIT, DEBRECEN (HUNGARY), 1984.

CONSERVATION OF THE UMP-RESP. MAXIMIN-PROPERTY OF STATISTICAL TESTS UNDER EXTENSIONS OF PROBABILITY MEASURES*

D. PLACHKY – L. RÜSCHENDORF

1. INTRODUCTION 1 to to solve and fit we not be and the modes are

Let $(\mathscr{X},\mathscr{A})$ be a measure space, let $\mathscr{A}_0 \subset \mathscr{A}$ be a sub σ -algebra and let $\mathscr{P}_0,\mathscr{P}_1$ be two sets of probability measures on \mathscr{A}_0 . In the present paper we consider testproblems $\mathscr{P}_0',\mathscr{P}_1'$, where \mathscr{P}_i' are subsets of the extensions of elements of \mathscr{P}_i to the larger σ -algebra \mathscr{A} . Especially we are interested in the question, in which cases optimality properties of tests for $\mathscr{P}_0,\mathscr{P}_1$ can be lifted to the testproblem $\mathscr{P}_0',\mathscr{P}_1'$. (We consider maximin-tests and UMP-tests only.) Although this question looks a little bit artificial, testing problems of this kind occur in many practical situations. Some examples are the following:

(a) Let $\mathscr{P}_0', \mathscr{P}_1'$ be sets of probability measures on $(\mathscr{X}, \mathscr{A})$ and suppose that for some reason one only can observe a function T for testing $\mathscr{P}_0', \mathscr{P}_1'$. Then defining \mathscr{P}_i to be the images of \mathscr{P}_i' under T we answer

^{*} This article was written during a stay of the second author at the University of Münster supported by Deutsche Forschungsgemeinschaft.

the question whether optimal tests for \mathcal{P}_0 , \mathcal{P}_1 (based on T) are optimal for \mathcal{P}_0' , \mathcal{P}_1' .

(b) Let G be a set of transformations on $(\mathcal{X}, \mathcal{A})$, let \mathcal{A}_0 be the σ -algebra of G-invariant sets, let $\mathcal{P}_0, \mathcal{P}_1$ be probability measures on $(\mathcal{X}, \mathcal{A})$ and consider the testproblem

$$\mathcal{P}_0' = \{P_0^g \mid g \in G\}, \ \mathcal{P}_1' = \{P_1^g \mid g \in G\}.$$

Thus especially the Hunt-Stein situation is covered by our model.

(c) Let $\mathscr{P}_i' = \{P_{(\theta,\eta)}; \ \theta \in \Theta_i, \ \eta \in \Gamma\}, \ i = 0, 1$, be two sets of probability measures on $(\mathscr{X}, \mathscr{A})$. Consider the test problem $\Theta_0 : \Theta_1$; thus in this case $\eta \in \Gamma$ is a nuisance parameter. Assume that $\mathscr{A}_0 \subseteq \mathscr{A}$ is a sub σ -algebra such that the restriction of $P_{(\theta,\eta)}$ on \mathscr{A}_0 is independent of $\eta \in \Gamma$. So the question is whether \mathscr{A}_0 is "sufficient" for the test problem $\Theta_0 : \Theta_1$ in the presence of nuisance parameters.

In Section 2 of this paper we derive some properties of extensions of probability measures. In Section 3 we consider the question whether the maximin-property of tests for $\mathscr{P}_0, \mathscr{P}_1$ may be lifted. We also discuss this question in connection with the concept of least favourable distributions. In Section 4 we consider UMP-tests and finally in Section 5 we give some examples.

2. SOME PROPERTIES OF EXTENSIONS OF PROBABILITY MEASURES

Let $(\mathcal{X}, \mathscr{A})$ be a measure space, $M_1(\mathcal{X}, \mathscr{A})$ be the set of probability measures on $(\mathcal{X}, \mathscr{A})$ and $\mathscr{A}_0 \subseteq \mathscr{A}$ be a sub σ -algebra of \mathscr{A} . For $P \in M_1(\mathcal{X}, \mathscr{A}_0)$ let $E(P) \subseteq M_1(\mathcal{X}, \mathscr{A})$ denote the set of all extensions of P to the larger σ -algebra \mathscr{A} . Furthermore, for $\mathscr{P} \subseteq M_1(\mathcal{X}, \mathscr{A}_0)$ let $E(\mathscr{P}) = \bigcup_{P \in \mathscr{P}} E(P)$.

The aim of this section is to present some properties of the set $E(\mathcal{P})$ of extensions. In the following we shall always consider the relative weak *-topology on $M_1(\mathcal{X}, \mathcal{A})$. The first proposition is trivial.

Proposition 1.

- (a) If $\mathscr{P} \subset M_1(\mathscr{X}, \mathscr{A}_0)$ is convex, then $E(\mathscr{P})$ is convex.
- (b) $E(\overline{\mathcal{P}}) \supset \overline{E(\mathcal{P})}$ (\overline{A} denoting the closure of A).

Generally $E(\bar{\mathscr{P}}) \neq \overline{E(\mathscr{P})}$ (consider for example $X = [0, \Omega)$, Ω first uncountable ordinal number, \mathscr{A}_0 σ -algebra generated by $[0, \alpha)$, $0 \leq \alpha < \Omega$, \mathscr{A} generated by $\mathscr{A}_0 \cup \{\Omega\}$, and $\mathscr{P} = \{\delta_\alpha \mid 0 \leq \alpha < \Omega\}$), and for $P \in M_1(\mathscr{X}, \mathscr{A}_0)$ the set E(P) may be empty. (For a discussion of this point cf. Lipecki [8].) A simple condition for $E(P) \neq \phi$ and an interesting extension is given by the following proposition. Let $M(\mathscr{X}, \mathscr{A})$ denote the set of all measures μ on $(\mathscr{X}, \mathscr{A})$ such that $\mu \mid \mathscr{A}_0$ is σ -finite.

Proposition 2. For $\mu \in M(\mathcal{X}, \mathcal{A})$ and $P << \mu \mid \mathcal{A}_0$ define $P_{\mu}(A) = \int\limits_A \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0} \, \mathrm{d}\mu, \ A \in \mathcal{A},$ and $(E(P))_{\mu} = \{Q \in E(P) \mid Q << \mu\}.$ Then it holds:

- (a) $P_{\mu} \in E(P)$,
- (b) $Q \ll P_{\mu} \text{ for } Q \in (E(P))_{\mu}$.

Proof.

- (a) is immediate by definition.
- (b) If $A \in \mathcal{A}$, $P_{\mu}(A) = 0$, then $1_A \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0} = 0[\mu]$ and, therefore, $1_A \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0} = 0[Q]$. Furthermore, $\frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0} > 0[P]$ implies that $\frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0} > 0[Q]$ and, therefore, $1_A = 0[Q]$.

 P_{μ} is the uniquely determined μ -continuous extension which has a \mathscr{A}_0 -measurable density. The set of all μ -continuous extensions is given by the following proposition. Let $L(\mathscr{A})$ denote the \mathscr{A} -measurable real functions.

Proposition 3. $\mu \in M(\mathcal{X}, \mathcal{A})$ and $P \ll \mu \mid \mathcal{A}_0$ implies $E(P)_{\mu} = \{h\mu \mid h \in L(\mathcal{A}), h \geqslant 0, E_{\mu}(h \mid \mathcal{A}_0) = \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathcal{A}_0}\}.$

 $\begin{array}{ll} \textbf{Proof.} & \text{If} \quad Q \in E(P)_{\mu}\,, \quad \text{then by the theorem of Radon-Nikodym} \\ Q = h\mu, \quad h \in L(\mathscr{A}), \quad h \geqslant 0, \quad \text{and for} \quad A_0 \in \mathscr{A}_0\,, \quad Q(A_0) = \int\limits_{A_0} h \; \mathrm{d}\mu = \\ P(A_0) = \int\limits_{A_0} \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathscr{A}_0} \; \mathrm{d}\mu. \quad \text{Therefore,} \quad E_{\mu}(h \mid \mathscr{A}_0) = \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathscr{A}_0} \; [\mu \mid \mathscr{A}_0]\,. \\ \text{If} \quad E_{\mu}(h \mid \mathscr{A}_0) = \frac{\mathrm{d}P}{\mathrm{d}\mu \mid \mathscr{A}_0}\,, \quad \text{then} \quad \int\limits_{A_0} h \; \mathrm{d}\mu = \int\limits_{A_0} E_{\mu}(h \mid \mathscr{A}_0) \; \mathrm{d}\mu = P_{\mu}(A_0) = \\ P(A_0) \quad \text{and, therefore,} \quad h\mu \in E(P)_{\mu}\,. \end{array}$

Corollary 1. Let $Q \in E(P)$, $f \in L_1(\mathscr{A},Q)$ with $f \geqslant 0$ and assume $E_Q(f \mid \mathscr{A}_0) > 0$. Define $h = \frac{f}{E_Q(f \mid \mathscr{A}_0)}$ and $Q^{(f)} = hQ$, then $Q^{(f)} \in E(P)$.

A consequence of Corollary 1 is, that if there is any extension of P, then there are many extensions. The following proposition expresses this fact in statistical terms: If a test $\varphi \in \Phi$ is similar w.r.t. $E(P)_Q$ then φ is Q-a.s. \mathscr{A}_0 -measurable, where Φ denotes the set of all tests.

 $\begin{array}{lll} \textbf{Proposition 4.} & \textit{Let} & \textit{Q} \in \textit{E(P)}, & \textit{\varphi} \in \Phi & \textit{and} & \textit{E}_{\textit{Q}} \, \textit{\varphi} = \textit{E}_{\textit{Q(f)}} \, \textit{\varphi} & \textit{for all} \\ \textit{f} \in \textit{L}_{1}(\mathcal{A},\textit{Q}) & \textit{with} & \textit{f} \geqslant 0 & \textit{and} & \textit{E}_{\textit{Q}}(\textit{f} \mid \mathcal{A}_{0}) > 0. & \textit{Then} & \textit{\varphi} = \textit{E}_{\textit{Q}}(\textit{\varphi} \mid \mathcal{A}_{0})[\textit{Q}]. \\ \end{array}$

Proof. Because of $A_0:=\{E_Q(\varphi\mid\mathscr{A}_0)=0\}\subset\{\varphi=0\}[Q]$ one obtains $\varphi=E_Q(\varphi\mid\mathscr{A}_0)[Q]$ on A_0 and

$$\text{(*)} \qquad \int \varphi \, \mathrm{d}Q = \int\limits_{A_0^c} E_Q(\varphi \mid \mathscr{A}_0) \, \mathrm{d}Q = \int\limits_{A_0^c} \frac{E_Q(\varphi f \mid \mathscr{A}_0)}{E_Q(f \mid \mathscr{A}_0)} \, \mathrm{d}Q.$$

Choosing $f = \varphi + \delta$, $\delta > 0$ one gets by the lemma of Fatou for $\delta \to 0$

$$\int\limits_{A_0^c} E_Q(\varphi | \mathcal{A}_0) \, \mathrm{d}Q \geqslant \int\limits_{A_0^c} \frac{E_Q(\varphi^2 | \mathcal{A}_0)}{E_Q(\varphi | \mathcal{A}_0)} \, \mathrm{d}Q.$$

By Jensen's inequality $E_Q(\varphi^2 \mid \mathscr{A}_0) \geqslant E_Q^2(\varphi \mid \mathscr{A}_0)[Q]$, which yields $E_Q(\varphi^2 \mid \mathscr{A}_0) = E_Q^2(\varphi \mid \mathscr{A}_0)[Q]$ on A_0^c implying $\varphi = E_Q(\varphi \mid \mathscr{A}_0)[Q]$ on A_0^c .

Together, we have $\varphi = E_Q(\varphi \mid \mathscr{A}_0)[Q]$.

The extreme points of E(P) are characterized by a theorem due to Douglas [3]. Our special extensions of Proposition 2 allow to prove

(a slight modification of) Douglas' result by probabilistic methods without using the Hahn-Banach theorem.

Proposition 5. Let $Q \in E(P)$. Then Q is an extreme point of E(P) if and only if it holds that $\varphi = E_Q(\varphi | \mathcal{A}_0)[Q]$ for all $\varphi \in \Phi$ or, equivalently, if for all $A \in \mathcal{A}$ there is a $B \in \mathcal{A}_0$ with $Q(A \Delta B) = 0$.

 $\begin{array}{ll} \text{Proof. If } Q = \alpha Q_1 + (1-\alpha)Q_2 \,, \ Q_i \in E(P), \ i=1,2, \ \text{then } Q_1 <\!\!< Q \\ \text{and} \quad \frac{\mathrm{d}Q_1}{\mathrm{d}Q} \leqslant \frac{1}{\alpha}, \quad \alpha \in (0,1). \quad \text{From} \quad \frac{\mathrm{d}Q_1}{\mathrm{d}Q} = E_Q \left(\frac{\mathrm{d}Q_1}{\mathrm{d}Q} \mid \mathscr{A}_0\right)[Q] \quad \text{and} \\ Q \mid \mathscr{A}_0 = Q_1 \mid \mathscr{A}_0 \quad \text{we obtain } Q = Q_1. \end{array}$

For $\varphi \in \Phi$ define $h = \frac{1+\varphi}{E_Q(1+\varphi \mid \mathscr{A}_0)} - 1$ then $-1 \le h \le 1$ and by Corollary 1 $(1+h)Q, (1-h)Q \in E(P)$ and $Q = \frac{1}{2} \left[(1+h)Q + (1-h)Q \right]$. Therefore, $\varphi = E_Q(\varphi \mid \mathscr{A}_0)[Q]$.

Remark 1. In a similar way one could also give a simple proof of the following characterization of the extreme points of the set $E^G(P)$ of all extensions of P which are invariant w.r.t. a semigroup G, namely: Let $Q \in E^G(P)$; then Q is an extreme point of $E^G(P)$ iff for all $\varphi \in \Phi$ which are Q-almost G-invariant $\varphi = E_Q(\varphi \mid \mathscr{A}_0)[Q]$ holds. This result is due to Luschgy [9], Theorem 4.4.

An important property of extensions gives the following proposition. For a set A in a vector space let con(A) be the convex hull of A.

Proposition 6.

- (a) If $P_i \in M_1(\mathcal{X}, \mathcal{A}_0)$, $E(P_i) \neq \phi$, i = 0, 1, then for all $\alpha \in [0, 1]$ $E(\alpha P_0 + (1 - \alpha)P_1) = \alpha E(P_0) + (1 - \alpha)E(P_1).$
- (b) If $\mathscr{P} \subset M_1(\mathscr{X}, \mathscr{A}_0)$ with $E(P) \neq \phi$ for all $P \in \mathscr{P}$, then $E(\operatorname{con} \mathscr{P}) = \operatorname{con} E(\mathscr{P})$.

Proof.

(a) If $Q_i \in E(P_i)$, i=0,1, then trivially, $\alpha Q_0 + (1-\alpha)Q_1 \in E(\alpha P_0 + (1-\alpha)P_1)$. Let $Q \in E(\alpha P_0 + (1-\alpha)P_1)$ and $\alpha \in (0,1)$ then $P_0 << Q \mid \mathscr{A}_0$ and so we obtain by Proposition 2 $\widetilde{P}_0(A) = \int\limits_A \frac{\mathrm{d} P_0}{\mathrm{d} Q \mid \mathscr{A}_0} \, \mathrm{d} Q$

defines an extension of P_0 with $\widetilde{P}_0(A) \leqslant \frac{1}{\alpha} \, Q(A)$. Define $\widetilde{P}_1(A) = \frac{1}{1-\alpha} \, (Q(A) - \alpha \widetilde{P}_0(A))$. Then $\widetilde{P}_1 \in E(P_1)$ and $Q = \alpha \widetilde{P}_0 + (1-\alpha) \widetilde{P}_1$.

(b) is immediate from (a).

Proposition 7. Let $P_i \in M_1(\mathcal{X}, \mathcal{A}_0)$, i = 0, 1, and $P_0 = hP_1$ where $h \in L_1(\mathcal{A}_0, P_1)$ with $h \ge 0$. If $E(P_1) \ne \phi$, then

$$E(P_0) = hE(P_1) = \{hQ \mid Q \in E(P_1)\}.$$

Proof. If $Q_1 \in E(P_1)$, then for $A_0 \in \mathcal{A}_0$

$$(hQ_1)(A_0) = \int_{A_0} h \, dQ_1 = \int_{A_0} h \, dP_1 = P_0(A_0).$$

If $h>0[P_1]$, then $P_1=\frac{1}{h}P_0$ and, therefore, by the first inclusion $E(P_1)\supset\frac{1}{h}\,E(P_0)\supset E(P_1)$ which implies $E(P_0)=hE(P_1)$. Assume now $0< a=P_1\left(\{h=0\}\right)< 1$ and define $\mathscr{X}'=\mathscr{X}\setminus\{h=0\}$, $\mathscr{A}'=\mathscr{A}\cap\mathscr{X}'$, $\mathscr{A}'_0=\mathscr{A}_0\cap\mathscr{X}'$, $P'_0=P_0\mid\mathscr{A}'_0$, $P'_1=\frac{1}{1-a}\,P_1\mid\mathscr{A}'_0$ and $h'=h\mid\mathscr{X}'$. Then $P'_0=(1-a)h'P'_1$ and $Q_0\in E(P_0)$ implies $Q'_0=Q_0\mid\mathscr{A}'\in E(P'_0)$. Therefore, there exists $Q'_1\in E(P'_1)$ such that $Q'_0=(1-a)h'Q'_1$. Let $\widetilde{Q}\in E(P_1)$ and define $Q_1(A)=(1-a)Q'_1(A\cap\{h>0\})+\widetilde{Q}(A\cap\{h=0\})$. We have for $A_0\in\mathscr{A}_0$:

$$\begin{aligned} Q_1(A_0) &= \\ (1-a)P_1'(A_0 \cap \{h>0\}) + P_1(A_0 \cap \{h=0\}) &= P_1(A_0) \end{aligned}$$

and

$$Q_0 = hQ_1.$$

Proposition 7 allows to describe the relation between extensions of two probability measures completely.

 $\begin{array}{lll} \textbf{Proposition 8.} & Let & P_0\,, P_1 \in M_1(\mathcal{X},\, \mathscr{A}_0), & let & P_0 = a P_0' \, + \, (1-a) P_0'' \\ where & P_0'\,, P_0'' \in M_1(\mathcal{X},\, \mathscr{A}_0) & and & P_0' = h P_1\,, & P_0'' \perp P_1\,, & a \in [0,1]. \end{array}$

Assume that $E(P_i) \neq \phi$, i = 0, 1. Then

- (a) $E(P'_0), E(P''_0) \neq \phi$.
- (b) $E(P_0) = ahE(P_1) + (1-a)E(P_0'')$.
- (c) $E(P_0'') \perp E(P_1)$.

Proof.

- (a) Since $P_0', P_0'' \ll P_0$ (a) is immediate from Proposition 2.
- (b) By Proposition 6 and 7 $E(P_0) = aE(P_0') + (1-a)E(P_0'') = ahE(P_1) + (1-a)E(P_0'')$.
- (c) There exists a $A \in \mathcal{A}_0$ with $P_0''(A^c) = 0$, $P_1(A) = 0$. Therefore, $Q(A^c) = 0$ for $Q \in E(P_0'')$ and R(A) = 0 for $R \in E(P_1)$. This implies that $E(P_0'') \perp E(P_1)$.

A wellknown criterion for sufficiency implies the following

Corollary 2. Let P_i , i = 0, 1, be as in Proposition 8. Let $Q_i \in E(P_i)$, i = 0, 1. Then \mathcal{A}_0 is sufficient for $\{Q_0, Q_1\}$ iff

$$Q_0 \in ahQ_1 + (1-a)E(P_0'')$$

with $h \in L_1(\mathcal{A}_0, P_1)$ and $h \ge 0$.

For $k \ge 0$ and $P, Q \in M_1(\mathcal{X}, \mathcal{A})$ define the distances

$$d_k(Q,P) = \|Q-kP\| =$$

$$\sup \{Q(A) - kP(A) - (Q(B) - kP(B)), A, B \in \mathscr{A}\},\$$

and for $P, Q \subseteq M_1(\mathcal{X}, \mathcal{A})$

$$d_k(\mathscr{P}, \mathscr{L}) = \inf \{ d_k(P, Q) \mid P \in \mathscr{P}, Q \in \mathscr{L} \}.$$

Proposition 9. Let $\mathscr{P}_i \subseteq M_1(\mathscr{X}, \mathscr{A}_0)$, i = 0, 1, let $E(P) \neq \phi$ for all $P \in \mathscr{P}_0 \cup \mathscr{P}_1$ and let $k \geq 0$.

(a) If $\mu \in M(\mathcal{X}, \mathcal{A})$, $P_0, P_1 \in M_1(\mathcal{X}, \mathcal{A}_0)$, with $P_i \ll \mu \mid \mathcal{A}_0$, i = 0, 1, then

$$d_k(P_0, P_1) = d_k(P_{0,\mu}, P_{1,\mu}).$$

(b)
$$d_k(\mathcal{P}_0, \mathcal{P}_1) = d_k(E(\mathcal{P}_0), E(\mathcal{P}_1)).$$

Proof.

(a) It is easy to see that

$$d_k(P_0, P_1) = ||P_0 - kP_1|| = \max\{k - 1 + 2(P_0 - kP_1)_+(\mathcal{X})\},$$

where $(P_0-kP_1)_+$ is the positive part of the Jordan–Hahn decomposition of P_0-kP_1 . Therefore, with

$$A = \left\{ \frac{dP_0}{d\mu \mid \mathcal{A}_0} \ge k \frac{dP_1}{d(\mu \mid \mathcal{A}_0)} \right\}$$

$$(P_0 - kP_1)_+(\mathcal{X}) = (P_0 - kP_1)(A) = (P_{0,\mu} - kP_{1,\mu})(A).$$

(b) For
$$P_i \in \mathscr{P}_i$$
 and $Q_i \in E(P_i)$, $i = 0, 1$,
$$\sup \{|P_0(A) - kP_1(A)|; \ A \in \mathscr{A}_0\} = \sup \{|Q_0(A) - kQ_1(A)|; \ A \in \mathscr{A}_0\} \leqslant \sup \{|Q_0(A) - kQ_1(A)|; \ A \in \mathscr{A}\}.$$

Thus, $||P_0 - kP_1|| \le ||Q_0 - kQ_1||$.

By part (a) equality holds for $Q_i = P_{i,\mu}$, i = 0, 1. This implies $d_k(\mathscr{P}_0, \mathscr{P}_1) = d_k(E(\mathscr{P}_0), E(\mathscr{P}_1))$.

3. MAXIMIN-TESTS AND LEAST FAVOURABLE DISTRIBUTIONS

Let $\mathscr{P}_0, \mathscr{P}_1 \in M_1(\mathscr{X}, \mathscr{A}_0)$ and let $\mathscr{P}_i' \subset E(\mathscr{P}_i)$, i = 0, 1, such that $\overline{\operatorname{con}} \mathscr{P}_i' \cap E(P) \neq \emptyset$, for all $P \in \mathscr{P}_i$, i = 0, 1. For the testproblem $\mathscr{P}_0', \mathscr{P}_1'$ denote the maximin-risk for $\alpha \in [0, 1]$ by

$$\beta(\alpha, \mathcal{P}_{0}^{\prime}, \mathcal{P}_{1}^{\prime}) = \sup_{\varphi \in \Phi_{\alpha}(\mathcal{P}_{0}^{\prime}, \mathcal{A})} \inf_{Q \in \mathcal{P}_{1}^{\prime}} E_{Q} \varphi,$$

where $\Phi_{\alpha}(\mathscr{P}_0',\mathscr{A}) = \{\varphi\colon (\mathscr{X},\mathscr{A}) \to ([0,1],[0,1]\mathscr{B}^1) \mid E_Q \varphi \leqslant \alpha$ for all $Q \in \mathscr{P}_0'\}$ and \mathscr{B}^1 is the Borel σ -algebra.

The general assumption $\overline{\operatorname{con}}\,\mathscr{P}_i'\cap E(P)\neq \phi$ for $P\in\mathscr{P}_i,\ i=0,1,$ implies that $\beta(\alpha,\mathscr{P}_0',\mathscr{P}_1')\geqslant \beta(\alpha,\mathscr{P}_0,\mathscr{P}_1)$. The following theorem gives a

sufficient conditions to imply that a maximin solution for \mathscr{P}_0 , \mathscr{P}_1 is even a solution for \mathscr{P}_0' , \mathscr{P}_1' i.e. optimality of a test for \mathscr{P}_0 , \mathscr{P}_1 is inherited to the testproblem \mathscr{P}_0' , \mathscr{P}_1' .

Theorem 10. If $\mathscr{P}_i \ll \mu$, i = 0, 1, and if $d_k(\cos \mathscr{P}_1', \cos \mathscr{P}_0') = d_k(\cos \mathscr{P}_1, \cos \mathscr{P}_0)$ for all $k \ge 0$ then $\beta(\alpha, \mathscr{P}_0', \mathscr{P}_1') = \beta(\alpha, \mathscr{P}_0, \mathscr{P}_1)$ for all $\alpha \in (0, 1]$.

Proof. By Baumann [1], Satz 6.3, for a dominated testproblem H, K on $\mathscr X$ one has $\beta(\alpha, H, K) = \min\{\alpha k + (Q - kP)_+(\mathscr X) \mid k \ge 0, \ Q \in \overline{\operatorname{con}} K, \ P \in \overline{\operatorname{con}} H\}$ (the closure w.r.t. relative weak *-topology). Using $(Q - kP)_+(\mathscr X) = \frac{1-k}{2} + \frac{1}{2} \, d_k(Q, P)$ and the fact that for $\epsilon > 0$ there is a measure $\widetilde{\mu}$ on $(\mathscr X, \mathscr A)$ such that $d_k((\operatorname{con}\mathscr P_0')_{\widetilde{\mu}}, (\operatorname{con}\mathscr P_1')_{\widetilde{\mu}}) \le d_k(\operatorname{con}\mathscr P_0', \operatorname{con}\mathscr P_1') + \epsilon$ (cf. the proof of Satz 6.3 in [1]), we obtain

$$\begin{split} \beta(\alpha, \mathscr{P}_0', \mathscr{P}_1') &\leqslant \beta(\alpha, (\mathscr{P}_0')_{\widetilde{\mu}}, (\mathscr{P}_1')_{\widetilde{\mu}}) = \\ &\inf \left\{ \alpha k + \frac{1-k}{2} + \frac{1}{2} \, d_k (\operatorname{con} (\mathscr{P}_1')_{\widetilde{\mu}}, \operatorname{con} (\mathscr{P}_0')_{\widetilde{\mu}}) \right\} = \\ &\inf \left\{ \alpha k + \frac{1-k}{2} + \frac{1}{2} \, d_k ((\operatorname{con} \mathscr{P}_1')_{\widetilde{\mu}}, (\operatorname{con} \mathscr{P}_0')_{\widetilde{\mu}}) \right\} \leqslant \\ &\inf \left\{ \alpha k + \frac{1-k}{2} + \frac{1}{2} \, d_k (\operatorname{con} \mathscr{P}_1', \operatorname{con} \mathscr{P}_0') \right\} + \epsilon = \\ &\inf \left\{ \alpha k + \frac{1-k}{2} + \frac{1}{2} \, d_k (\operatorname{con} \mathscr{P}_1, \operatorname{con} \mathscr{P}_0) \right\} + \epsilon = \\ &\beta(\alpha, \mathscr{P}_0, \mathscr{P}_1) + \epsilon, \ \forall \epsilon > 0. \end{split}$$

Observe that by Proposition 9 the assumptions of Theorem 10 are fulfilled for $\mathscr{P}_i' = E(\mathscr{P}_i)$. Without assuming that $\mathscr{P}_0 \cup \mathscr{P}_1$ is dominated we obtain:

Theorem 11. If for each $P \in \mathscr{P}_i$ there exists a $Q_P \in E(P) \cap \overline{\operatorname{con}} \mathscr{P}_i'$, i = 0, 1, such that \mathscr{A}_0 is sufficient for $M = \{Q_P \mid P \in \mathscr{P}_0 \cup \mathscr{P}_1\}$, then $\beta(\alpha, \mathscr{P}_0', \mathscr{P}_1') = \beta(\alpha, \mathscr{P}_0, \mathscr{P}_1)$.

 $\begin{array}{lll} \textbf{Proof.} & \text{Let} & \varphi \in \Phi_{\alpha}(\mathscr{P}_{0}', \mathscr{A}) & \text{and define} & \psi = E_{\mu}(\varphi \mid \mathscr{A}_{0}), & \mu \in M. \\ \text{Then for} & P \in \mathscr{P}_{0} & E_{P} \psi = E_{Q_{P}} \psi = E_{Q_{P}} \varphi \leqslant \alpha & \text{which implies} & \psi \in \Phi_{\alpha}(\mathscr{P}_{0}', \mathscr{A}). & \text{Furthermore, for} & P \in \mathscr{P}_{1}, & \text{and} & Q \in \mathscr{P}_{1}' \cap E(P) & \text{it holds} \end{array}$

that $E_Q \psi = E_P \psi = E_{Q_P} \psi = E_{Q_P} \varphi$ and, therefore, $\inf_{Q \in \mathscr{P}_1'} E_Q \varphi \leqslant \inf_{Q \in \mathscr{P}_1'} E_Q \psi$. This implies that $\beta(\alpha, \mathscr{P}_0', \mathscr{P}_1') = \beta(\alpha, \mathscr{P}_0, \mathscr{P}_1)$.

Remark 2. 500 , 500 to tom 11.0 = 1 , 4 > 14 10 10 more of 1

(a) The condition of Theorem 11 corresponds to an assumption made by Hajek [5] in the case of estimation in the presence of nuisance parameters. The conclusion of Theorem 11 could be strengthened to

$$\beta(\alpha, \mathscr{P}'_0, E(P) \cap \overline{\operatorname{con}} P'_1) = \beta(\alpha, \mathscr{P}_0, P) \quad \text{for all} \ \ P \in \mathscr{P}_1.$$

(b) If $\mathscr{P}_i = \{P_i\}$, i = 0, 1, then the condition that there exist $Q_P \in E(P_i) \cap \overline{\operatorname{con}} \mathscr{P}_i'$, i = 0, 1, such that \mathscr{A}_0 is sufficient for $\{Q_{P_0}, Q_{P_1}\}$ is equivalent to the assumption that there exists a $\mu \in M(\mathscr{X}, \mathscr{A})$ with $P_0, P_1 << \mu \mid \mathscr{A}_0$ and $Q_i = P_{i,\mu} \in \overline{\operatorname{con}} \mathscr{P}_i'$, i = 0, 1 (cf. also Corollary 2). The determination of a maximin-test is simplified in the presence of least favourable pairs. In the literature there are three different definitions of least favourable pairs for the testproblem $\mathscr{P}_0', \mathscr{P}_1'$.

Let $P_i \in \overline{\operatorname{con}} \, \mathscr{P}'_i$, i = 0, 1, then

- (b) $(P_0,P_1)\in \widetilde{LF}$ $(\mathscr{P}_0',\mathscr{P}_1')$ iff there exists $\pi\in\frac{\mathrm{d}P_1}{\mathrm{d}P_0}$ with $P^\pi\leqslant_{\mathrm{st}}P_0^\pi$ for $P\in\mathscr{P}_0'$, $Q^\pi\geqslant_{\mathrm{st}}P_1^\pi$ for $Q\in\mathscr{P}_1'$ where \leqslant_{st} is the stochastic order and $\frac{\mathrm{d}P_1}{\mathrm{d}P_0}=\left\{\frac{f_1}{f_0},\,f_i=\frac{\mathrm{d}P_i}{\mathrm{d}P_\mu},\,i=0,1,\,\mu$ dominates $P_i,\,i=0,1\right\}$ (cf. Huber, Strassen [6], Rieder [11]).

The following remark is concerned with connections of these notions of least favourable pairs and with methods to find least favourable pairs.

Remark 3.

- (1a) $(P_0, P_1) \in \mathrm{LF}_{\alpha}(\mathscr{P}_0', \mathscr{P}_1')$ iff there exists a most powerful level α test for P_0, P_1 which is maximin-test for $\mathscr{P}_0', \mathscr{P}_1'$ at level α .
- (1b) $(P_0,P_1)\in \widetilde{LF}(\mathscr{P}_0',\mathscr{P}_1')$ iff there exists a $\pi\in\frac{\mathrm{d}P_1}{\mathrm{d}P_0}$ such that $\varphi_{\pi,\alpha}$ (the LQ-test at level α which is constant on the randomized region) is maximin-test for $\mathscr{P}_0',\mathscr{P}_1'$ for each $\alpha\in[0,1]$.
- (1c) From (1b) follows $\widetilde{\operatorname{LF}}(\mathscr{P}_0',\mathscr{P}_1')\subset\operatorname{LF}(\mathscr{P}_0',\mathscr{P}_1')$ (there is no equality in general). Equality holds if for instance the distribution of $\pi\in\frac{\mathrm{d}P_1}{\mathrm{d}P_0}$ is nonatomic under $\mathscr{P}_i',\ i=0,1,$ for all $(P_0,P_1)\in\operatorname{LF}(\mathscr{P}_0',\mathscr{P}_1')$.
- (1d) If $\widetilde{LF}(\mathscr{P}_0',\mathscr{P}_1') \neq \phi$, then $LF(\mathscr{P}_0',\mathscr{P}_1') = LF'(\mathscr{P}_0',\mathscr{P}_1')$ (cf. Rieder [11], Proposition 2.2).
- (2) $\widetilde{LF}((\mathscr{P}'_0)^{(n)}, (\mathscr{P}'_1)^{(n)}) = (\widetilde{LF}(\mathscr{P}'_0, \mathscr{P}'_1))^{(n)}, \text{ where } (\mathscr{P}'_i)^{(n)} = \{P^{(n)}: P \in \mathscr{P}'_i\} \text{ (cf. Huber, Strassen [6], Corollary 4).}$
- $(3a) \ (P_0\,,P_1) \in \widetilde{\mathrm{LF}} \ (\mathcal{P}_0'\,,\mathcal{P}_1'\,) \ \Rightarrow \ d_k(P_0\,,P_1) = d_k(\operatorname{con} \mathcal{P}_0'\,,\operatorname{con} \mathcal{P}_1')$ for all $k \geq 0$.
- (3b) If $\widetilde{\operatorname{LF}}(\mathscr{P}_0',\mathscr{P}_1')\neq \phi_{\ell}$ $P_i\in \overline{\operatorname{con}}\,\mathscr{P}_i',\ i=0,1,$ with $d_k(P_0,P_1)=d_k(\operatorname{con}\mathscr{P}_0',\operatorname{con}\mathscr{P}_1')$ for all $k\geqslant 0$, then $(P_0,P_1)\in \widetilde{\operatorname{LF}}(\mathscr{P}_0',\mathscr{P}_1')$. For similar facts concerning $\operatorname{LF}(\mathscr{P}_0',\mathscr{P}_1')$, cf. Reinhardt [10].
- (4) Elements of $\widetilde{LF}(\mathscr{P}'_0,\mathscr{P}'_1)$ can also be determined by minimization of certain different distance measures containing for example the measure of divergence of $C \operatorname{sisz\'{a}r}$ [2]. Let $\varphi \colon [0,1] \to \mathbb{R}^1$ be twice continuously differentiable with $\varphi'' > 0$ and define:

$$H(P,Q) = \int \varphi\left(\frac{\mathrm{d}P}{\mathrm{d}(P+Q)}\right) \, \mathrm{d}(P+Q)$$

for probability measures P,Q on $(\mathcal{X},\mathcal{A})$. Then by a slight modification of Theorem 6.1 of Huber, Strassen [6]:

$$H(\mathscr{P}, \mathscr{Q}) = \inf \{ H(P, Q), P \in \mathscr{P}, Q \in \mathscr{Q} \}.$$

- (a) $(P_0, P_1) \in \widetilde{LF}(\mathcal{P}_0', \mathcal{P}_1') \Rightarrow H(P_0, P_1) = H(\operatorname{con} \mathcal{P}_0', \operatorname{con} \mathcal{P}_1').$
- (b) If $P_i \in \overline{\operatorname{con}} \, \mathscr{P}_i'$, i = 0, 1, $\widetilde{\operatorname{LF}} \, (\mathscr{P}_0', \mathscr{P}_1') \neq \phi$ and $H(P_0, P_1) = H(\operatorname{con} \mathscr{P}_0', \operatorname{con} \mathscr{P}_1')$, then $(P_0, P_1) \in \widetilde{\operatorname{LF}} \, (\mathscr{P}_0', \mathscr{P}_1')$.

Returning to our testproblem $\mathscr{P}_0' \subset E(\mathscr{P}_0), \mathscr{P}_1' \subset E(\mathscr{P}_1)$ we have

Theorem 12. If $(P_0,P_1)\in \mathrm{LF}_\alpha(\mathscr{P}_0,\mathscr{P}_1)$ $(\widetilde{\mathrm{LF}}\,(\mathscr{P}_0,\mathscr{P}_1))$ and if there exist $Q_i\in\overline{\mathrm{con}}\,\mathscr{P}_i'\cap E(P_i),\ i=0,1,\ such\ that\ \mathscr{A}_0$ is sufficient for $\{Q_0,Q_1\},\ then$

- (a) $(Q_0, Q_1) \in LF_{\alpha}(\mathcal{P}'_0, \mathcal{P}'_1)$ $(\widetilde{LF}(\mathcal{P}'_0, \mathcal{P}'_1)).$
- (b) There is a most powerful level α test φ_{α} for P_0 , P_1 which is maximin-test at level α for P_0' , P_1' . $(\varphi_{\pi,\alpha}$ is maximin-test at level α for P_0' , P_1' where $\pi \in \frac{\mathrm{d} P_1}{\mathrm{d} P_0}$.

Proof.

Burney Brown or Comment of what

- I. Let $(P_0, P_1) \in LF_{\alpha}(\mathcal{P}_0, \mathcal{P}_1)$.
- (1) By Remark 3 (1a) there is a most powerful level α test φ_{α} for P_0 , P_1 which is maximin-test for \mathscr{P}_0 , \mathscr{P}_1 . Therefore, $\varphi_{\alpha} \in \Phi_{\alpha}(\mathscr{P}_0',\mathscr{A})$.
- $(2) \ \ \text{Let} \ \ \varphi \in \Phi_{\alpha}(\mathscr{P}_{0}',\mathscr{A}) \quad \text{and define} \ \ \psi = E_{\{Q_{0},Q_{1}\}}(\varphi \mid \mathscr{A}_{0}). \ \ \text{Then} \\ \inf_{Q \in \mathscr{P}_{1}'} E_{Q} \varphi \leqslant E_{Q_{1}} \varphi, \quad \text{since} \ \ Q_{1} \in \overline{\operatorname{con}} \mathscr{P}_{1}', \ \ \text{and} \ \ E_{Q_{1}}(\varphi) = E_{Q_{1}} \psi = E_{P_{1}} \psi.$

Clearly $\psi \in \Phi_{\alpha}(\mathscr{P}_0, \mathscr{A}_0)$ and, therefore,

$$E_{P_1}\psi\leqslant E_{P_1}\varphi_\alpha=\inf_{P\in\mathscr{P}_1}E_P\varphi_\alpha=\inf_{Q\in\mathscr{P}_1'}E_Q\varphi_\alpha.$$

This implies $\beta(\alpha,Q_0,Q_1)=\beta(\alpha,P_0,P_1)=\beta(\alpha,\mathscr{P}_0',\mathscr{P}_1')$, i.e. $(Q_0,Q_1)\in LF_{\alpha}(\mathscr{P}_0',\mathscr{P}_1')$ and clearly φ_{α} is a maximin-test for $\mathscr{P}_0',\mathscr{P}_1'$.

II. The case $(P_0, P_1) \in \widetilde{\mathrm{LF}} \, (\mathscr{P}_0', \mathscr{P}_1')$ is similar.

Corollary 3. If $(P_0, P_1) \in LF(\mathcal{P}_0, \mathcal{P}_1)$ and if there exist $Q_i \in \overline{\operatorname{con}} \mathcal{P}'_i \cap E(P_i)$, i = 0, 1, such that \mathcal{A}_0 is sufficient for $\{Q_0, Q_1\}$, then

$$(Q_0^{(n)}, Q_1^{(n)}) \in \widetilde{LF}((\mathscr{P}'_0)^{(n)}, (\mathscr{P}'_1)^{(n)}).$$

Proof. Observe that

$$\overline{\operatorname{con}} (E(P) \times E(Q)) \subset E(P \times Q)$$

for $P,Q\in M_1(\mathscr{X},\mathscr{A})$ and, therefore, $Q_i^{(n)}\in E(P_i^{(n)}),\ i=0,1.$ By Remark 3.2 $(P_0^{(n)},P_1^{(n)})\in \widetilde{LF}$ $(\mathscr{P}_0^{(n)},\mathscr{P}_1^{(n)})$ and, furthermore, $\mathscr{A}_0^{(n)}$ (the n-fold product of \mathscr{A}_0) is sufficient for $\{Q_0^{(n)},Q_1^{(n)}\}$. Therefore, Corollary 3 follows from Theorem 12.

Corollary 4. Let $(P_0,P_1)\in LF_{\alpha}(\mathscr{P}_0,\mathscr{P}_1)$ and let φ_{α} be a most powerful level α test for P_0,P_1 , which is maximin for $\mathscr{P}_0,\mathscr{P}_1$. Then φ_{α} is maximin-test at level α for $E(\mathscr{P}_0),E(\mathscr{P}_1)$.

4. UNIFORMLY MOST POWERFUL TESTS

Again let $\mathscr{P}_i \subseteq M_1(\mathscr{X}, \mathscr{A}_0)$ and $\mathscr{P}_i' \subseteq E(\mathscr{P}_i)$, i=0,1, and let $E(P) \neq \phi$, $\forall P \in \mathscr{P}_0 \cup \mathscr{P}_1$. For $P,Q \in M_1(\mathscr{X}, \mathscr{A}_0)$ let $\Phi_\alpha^*(P,Q)$ denote the set of most powerful level α tests for P,Q.

Theorem 13.

- (a) Let φ_0 be a UMP-test for $\mathscr{P}_0, \mathscr{P}_1$ at level α ,
- (b) Let there exist $P_0 \in \mathcal{P}_0$ such that for all $P_1 \in \mathcal{P}_1$, $\varphi_0 \in \Phi_{\alpha}^*(P_0, P_1)$,
- (c) For all $Q_1\in \mathscr{P}_1'$ let there exist a $Q_0\in \overline{\operatorname{con}}\,\mathscr{P}_0'\cap E(P_0)$ such that \mathscr{A}_0 is sufficient for $\{Q_0\,,Q_1\,\}$.

Then φ_0 is a UMP-test for $\mathscr{P}'_0, \mathscr{P}'_1$ at level α .

Proof. Clearly $\varphi_0 \in \Phi_\alpha(\mathscr{P}_0',\mathscr{A})$. Let $\varphi \in \Phi_\alpha(\mathscr{P}_0',\mathscr{A})$ and let $Q_1 \in \mathscr{P}_1'$. Then there exists $P_1 \in \mathscr{P}_1$ such that $Q_1 \in E(P_1)$ and so by (c) there is a $Q_0 \in \overline{\operatorname{con}} \mathscr{P}_0' \cap E(P_0)$ such that \mathscr{A}_0 is sufficient for $\{Q_0,Q_1\}$. Define $\psi = E_{\{Q_0,Q_1\}}(\varphi \mid \mathscr{A}_0)$, then $E_{P_0}\psi = E_{Q_0}\psi = E_{Q_0}\varphi \leqslant \alpha$ and, therefore, (b) implies

$$E_{Q_1} \varphi = E_{Q_1} \psi = E_{P_1} \psi \leq E_{P_1} \varphi_0 = E_{Q_1} \varphi_0.$$

This yields that φ_0 is UMP at level α for $\mathscr{P}'_0, \mathscr{P}'_1$.

Corollary 5. Let $P_i \in M_1(\mathcal{X}, \mathcal{A}_0)$ with $E(P_i) \neq \phi$, i = 0, 1, and $\varphi_0 \in \Phi_\alpha^*(P_0, P_1)$. Then

- (a) φ_0 is UMP-test at level α for $E(P_0), E(P_1)$,
 - $\begin{array}{lll} \text{(b) If} & \varphi^* & \text{is a UMP-test at level} & \alpha & \text{for} & E(P_0), E(P_1) & \text{and if} \\ E_{Q_1}\varphi_0 < 1 & \text{for all} & Q_1 \in E(P_1), & \text{then} & \varphi^* = E_Q(\varphi^* \mid \mathscr{A}_0)[Q] & \text{for all} \\ Q = \frac{1}{2} \left(Q_0 + Q_1\right), & Q_i \in E(P_i), & i = 0, 1. \end{array}$

Proof. The set nimitant at Asider . A. A. tot test to level lutremon

- (a) Let $P_0=aP_0'+(1-a)P_0''$ be a decomposition as in Proposition 8 and let $Q_1\in E(P_1)$. Then $Q_0:=ahQ_1+(1-a)Q_0$ (with $\widetilde{Q}_0\in E(P_0'')$ and h a version of $\frac{\mathrm{d}P_0'}{\mathrm{d}P_1}$) is an element of $E(P_0)$ such that \mathscr{A}_0 is sufficient for $\{Q_0,Q_1\}$. So (a) is implied by Theorem 13.
- (b) For all $Q_0 \in E(P_0)$ we can find a $Q_1 \in E(P_1)$ (as in (a)) such that \mathscr{A}_0 is sufficient for $\{Q_0\,,Q_1\}$. Therefore, $\varphi_0 \in \Phi_\alpha^*(Q_0\,,Q_1)$ and, therefore, also $\varphi^* \in \Phi_\alpha^*(Q_0\,,Q_1)$. Since $\beta = E_{Q_1}\varphi_0 < 1$ we have $E_{Q_0}\varphi^* = \alpha$. This implies that φ^* is a UMP-test at level α for $E(P_0)$ against $\frac{1}{2}E(P_0) + \frac{1}{2}E(P_1) = E\left(\frac{1}{2}\left(P_0 + P_1\right)\right)$ by Proposition 6, and, therefore, $E_Q\varphi^* = \frac{\alpha+\beta}{2}$ for all $Q \in E\left(\frac{P_0 + P_1}{2}\right)$. Proposition 5 implies that $\varphi^* = E_Q(\varphi^* \mid \mathscr{A}_0)[Q]$ for all $Q \in E\left(\frac{1}{2}\left(P_0 + P_1\right)\right)$.
- Remark 4. Corollary 5 generalizes a result of Fraser [4], Theorem 2, which is concerned with the case of nuisance parameters.

5. EXAMPLES

Institut für Mamomassone Stochastik

(1) Let $a \le b$ and $0 \le \alpha \le \beta$, $\alpha + \beta \le 1$ and consider the test-problem

$$\mathcal{P}_0' = \{ P^{(n)} \mid P \in M_1(\mathbb{R}^1, \mathcal{B}^1), \ P(-\infty, a] \leq \alpha, \ P(a, b) \leq \alpha \},$$

$$\mathcal{P}_1' = \{P^{(n)} \mid P \in M_1(\mathbb{R}^1, \mathcal{B}^1), \ P(-\infty, a] \geq \alpha, \ P(a, b] \geq \beta\}.$$

Let $T: \mathbf{R}^n \to \mathbf{R}^2$. $T(x) = (s_1(x), s_2(x))$, where $s_1(x) = \sum_{i=1}^n 1_{(-\infty, a]}(x_i)$, $s_2(x) = \sum_{i=1}^n 1_{(a,b]}(x_i)$. Let $\mathscr{A}_0 = \mathscr{A}(T)$ the σ -algebra induced by T and let \mathscr{P}_i denote the restriction of \mathscr{P}_i' on \mathscr{A}_0 , i = 0, 1, so that we have the situation considered in Sections 3, 4.

To determine \mathcal{P}_i let $A_0=(-\infty,a],\ A_1=(a,b],\ A_2=(b,\infty)$ and use the representation

$$\begin{split} \mathscr{P}_0' &= \big\{ \big(\sum_{i=0}^2 \alpha_i P_i \big)^{(n)}, \ P_i \in M_1(A_i, A_i \mathscr{L}_1), \quad i = 0, 1, 2, \\ 0 &\leqslant \alpha_i \leqslant 1, \ \sum \alpha_i = 1 \quad \text{and} \quad \alpha_0 \leqslant \alpha, \ \alpha_1 \leqslant \alpha \big\}, \\ \mathscr{P}_1' &= \big\{ \big(\sum \alpha_i P_i \big)^{(n)}, \ P_i \in M_1(A_i, A_i \mathscr{L}_1), \quad i = 0, 1, 2, \\ 0 &\leqslant \alpha_i \leqslant 1, \ \sum \alpha_i = 1, \ \alpha_0 \geqslant \alpha, \ \alpha_1 \geqslant \beta \big\}. \end{split}$$
 If $Q = \big(\sum \alpha_i P_i \big)^{(n)} \in \mathscr{P}_0' \cup \mathscr{P}_1', \text{ then}$
$$Q(s_1 = k, \ s_2 = m) = \Big(\begin{matrix} n \\ k, m \end{matrix} \Big) \alpha_0^k \alpha_1^m \alpha_2^{n-(k+m)}; \end{split}$$

so
$$Q/\mathscr{A}_0=Q(\alpha_0^-,\alpha_1^-)$$
 and
$$\mathscr{P}_0=\{Q(\alpha_0^-,\beta_0^-)\,|\,\alpha_0^-\leqslant\alpha,\;\beta_0^-\leqslant\alpha\},$$

$$\mathscr{P}_1=\{Q(\alpha_1^-,\beta_1^-)\,|\,\alpha_1^-\geqslant\alpha,\;\beta_1^-\geqslant\beta\}.$$

Let
$$Q_i = Q_i(\alpha_i, \beta_i) \in \mathscr{S}_i$$
, $i = 0, 1$, then
$$\frac{Q_1(s_1 = k, s_2 = m)}{Q_0(s_1 = k, s_2 = m)} = \left(\frac{\alpha_1(1 - (\alpha_0 + \beta_0))}{\alpha_0(1 - (\alpha_1 + \beta_1))}\right)^k \left(\frac{\beta_1(1 - (\alpha_0 + \alpha_0))}{\beta_0(1 - (\alpha_1 + \beta_1))}\right)^m.$$

From this we easily obtain that

$$(Q(\alpha,\alpha),Q(\alpha,\beta)) \in \widetilde{\mathrm{LF}}\,(\mathcal{P}_0\,,\mathcal{P}_1)$$

with most powerful level α test of the type

$$\varphi_0(x) = \begin{cases} 1 & \text{if } \left(\frac{\beta}{\alpha}\right)^{s_1(x)} \left(\frac{1 - 2\alpha}{1 - (\alpha + \beta)}\right)^{s_1(x) + s_2(x)} > k_{\alpha}, \\ \leq k_{\alpha}. \end{cases}$$

Clearly

$$Q_0 = (\alpha P_0 + \alpha P_1 + (1 - 2\alpha) P_2)^{(n)},$$

$$Q_1 = (\alpha P_0 + \beta P_1 + (1 - (\alpha + \beta)) P_2)^{(n)}$$

define extensions of $Q(\alpha, \alpha), Q(\alpha, \beta)$ in \mathscr{P}'_i , such that \mathscr{A}_0 is sufficient for $\{Q_0, Q_1\}$. $(P_i$ are any elements of $M_1(A_i, A_i \mathscr{L}_1)$).

So by Theorem 12 φ_0 is a maximin-test at level α for $\mathscr{P}_0', \mathscr{P}_1'$. Clearly no UMP-test exists in this situation.

(2) Let $P_{(\mu,\sigma^2)} = \bigotimes_{i=1}^n N(\mu,\sigma^2), \ \mu \in \mathbb{R}^1, \ \sigma^2 > 0$ and consider the testproblem:

(a) $\mathscr{P}_0' = \{P_{\mu,\sigma^2} \mid \sigma^2 \leq \sigma_0^2\}, \quad \mathscr{P}_1' = \{P_{\mu,\sigma^2} \mid \sigma^2 \geqslant \sigma_1^2\}, \quad \text{where} \quad \sigma_0^2 < \sigma_1^2. \quad \text{If} \quad s^2(x) = \sum_{i=1}^n (x_i - \bar{x})^2, \quad \mathscr{A}_0 = \mathscr{A}(s^2), \quad \text{then} \quad P_{\mu,\sigma^2}^{s^2} = h_\sigma \lambda^n \quad \text{has} \quad \text{monotone likelihood ratio in} \quad \sigma^2 \quad \text{so that}$

$$\varphi_0 = \begin{cases} 1, & s^2(x) > k_{\alpha}, \\ 0, & s^2(x) \le k_{\alpha} \end{cases}$$

is a UMP-test at level α for

$$\mathcal{P}_{0} = \{h_{\sigma}\lambda^{n} \mid \sigma^{2} \leq \sigma_{0}^{2}\}, \ \mathcal{P}_{1} = \{h_{\sigma}\lambda^{n} \mid \sigma^{2} \geq \sigma_{1}^{2}\}. \ P_{0} = h_{\sigma_{0}^{2}}\lambda^{n}$$

satisfies condition (b) of Theorem 13. For condition (c) let $\mu \in \mathbb{R}^1$, $\sigma^2 \geqslant \sigma_1^2$ and $Q_1 = P_{(\mu, \sigma^2)}$. We are looking for

$$Q_0 \in \overline{\operatorname{con}} \{ P_{\mu', \sigma_0^2} \mid \mu' \in \mathbb{R}^1 \},$$

such that s^2 is sufficient for $\{Q_0,Q_1\}$. Let P_{μ',σ_0^2} be the density of P_{μ',σ_0^2} with respect to λ^n , then

$$P_{\mu',\sigma_0^2}(x) = A(\sigma_0^2) \exp\left(-\frac{s^2}{2\sigma_0^2}\right) \exp\left(-\frac{n(\bar{x} - \mu')^2}{2\sigma_0^2}\right).$$

Using

$$N\left(\bar{x}, \frac{\sigma_0^2}{n}\right) * N\left(\mu - \bar{x}, \frac{\sigma^2}{n} - \frac{\sigma_0^2}{n}\right) = N\left(\mu, \frac{\sigma^2}{n}\right)$$

(* denoting convolution), we obtain with $\lambda_0 = N\left(\mu - \bar{x}, \frac{\sigma^2}{n} - \frac{\sigma_0^2}{n}\right)$, $Q_0 := \int P_{\mu', \sigma_0^2} \, \mathrm{d}\lambda_0(\mu')$ has λ^n -density

$$A(\sigma_0^2, \sigma^2) \exp\left(-\frac{s^2}{2\sigma_0^2}\right) e^{-\frac{n(\bar{x}-\mu)^2}{2\sigma^2}},$$

which shows that s^2 is sufficient for $\{Q_0, Q_1\}$.

Theorem 13 implies that φ_0 is a UMP-test at level α for $\mathscr{P}_0', \mathscr{P}_1'$. So in this well-known case we obtain an explanation why to choose the mixing measure λ_0 .

(b) Similarly for the testing problem $\mathscr{P}_0' = \{P_{\mu,\sigma^2} \mid \sigma_0^2 \leqslant \sigma^2 \leqslant K\}$ against $\mathscr{P}_1' = \{P_{\mu,\sigma^2} \mid \sigma^2 < \sigma_0^2\}$ we obtain that s^2 is sufficient for $\{Q_{\sigma^2} \mid 0 < \sigma^2 \leqslant K\}$, where $Q_{\sigma^2} = \int P_{\mu,\sigma^2} \, \mathrm{d}\lambda_{\sigma^2}(\mu)$ and where $\lambda_{\sigma^2} = N\left(0, \frac{K - \sigma^2}{n}\right)$. So by Theorem 11

$$\varphi_0 = \begin{cases} 1, & s^2(x) > k_{\alpha}, \\ 0, & s^2(x) \leqslant k_{\alpha} \end{cases}$$

yields a maximin-test for \mathscr{P}'_0 , \mathscr{P}'_1 (which is independent of K).

(3) Let $P_{\alpha,\beta}=f_{\alpha,\beta}\mu$ with $(\alpha,\beta)\in\Theta$ and let A be the projection of Θ onto the first component. Assume

(a)
$$f_{\alpha,\beta}(x) = f_{\alpha}(T(x))g_{\alpha,\beta}(x), \ \forall x \in \mathcal{X}, \ \alpha \in A, \ \beta \in \Theta_{\alpha}.$$

(b) For each $\alpha \in A$ there is a probability measure λ_{α} on Θ_{α} , such that $\int_{B} g_{\alpha,\beta}(x) \, \mathrm{d}\lambda_{\alpha}(\beta) = Q(B), \ B \in \mathscr{A}$, is independent of $\alpha \in A$, then by Theorem 11 testproblems with respect to α can be reduced to the test-

problems for the distributions of T, when considering the maximin-risk. Examples are: $g_{\alpha,\beta}(x)=g_{\beta}(x)$ with $\lambda_{\alpha}=\epsilon_{\left\{\beta_{0}\right\}},\ g_{\alpha,\beta}(x)=h_{\alpha-\beta}(x)$ with $\lambda_{\alpha}=\epsilon_{\left\{\alpha\right\}}$ and $g_{\alpha,\beta}(x)=h_{\frac{\alpha}{\beta}}(x)$ with $\lambda_{\alpha}=\epsilon_{\left\{\alpha\right\}}$.

(4) Let G denote a finite group of order γ consisting of $(\mathscr{A},\mathscr{A})$ -measurable transformations $g\colon \mathscr{X} \to \mathscr{X}$ and introduce \mathscr{A}_0 as the sub- σ -algebra \mathscr{A}_0 of \mathscr{A} consisting of all G-invariant sets belonging to \mathscr{A} . If P_i are probability measures on \mathscr{A} , \mathscr{P}_i , i=0,1, is defined to be the family $\{P_i^g \mid g \in G\}$, i=0,1. A UMP-test for $P_0 \mid \mathscr{A}_0$, $P_1 \mid \mathscr{A}_0$ at level α is in this case according to Theorem 11 a maximin-test for \mathscr{P}_0 , \mathscr{P}_1 at level α , since $Q_i = \frac{1}{\gamma} \sum_{g \in G} P_i^g \in \text{con } \mathscr{P}_i$, i=0,1, and $E_{Q_i}(I_A \mid \mathscr{A}_0) = \frac{1}{\gamma} \sum_{g \in G} P_i^g \in \text{con } \mathscr{P}_i$, i=0,1, and $E_{Q_i}(I_A \mid \mathscr{A}_0) = \frac{1}{\gamma} \sum_{g \in G} P_i^g \in \text{con } \mathscr{P}_i$. Especially the version of the sign in

 $\frac{1}{\gamma}\sum_{g\in G}I_A\circ g, \quad A\in\mathscr{A}, \quad i=0,1.$ Especially the version of the sign in Lehmann's book, p. 219–220, is a maximin-test at level α .

REFERENCES

- [1] V. Baumann, Eine parameterfreie Theorie der ungünstigsten Verteilungen für das Testen von Hypothesen, Z. Wahrsch. Verw. Gebiete, 11 (1968), 41-60.
 - [2] I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299-318.
 - [3] R.G. Douglas, On extremal measures and subspace density, II, Proc. Amer. Math. Soc., 17 (1966), 1363-1365.
 - [4] D.A.S. Fraser, Sufficient statistics with nuisance parameters, Ann. Math. Statist., 27 (1956), 838-842.
 - [5] J. Hajek, On basic concepts of statistics, Fifth Berkeley Symposium, Vol. I, (1967), 139-162.
 - [6] P.J. Huber V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist., 1 (1973), 251-263.

- [7] E.L. Lehmann, Testing statistical hypotheses, Wiley, New York, 1959.
- [8] Z. Lipecki, A generalization of an extension theorem of Bierlein to group-valued measures, *Bull. Acad. Polon. Sci. Sér. Sci. Math.*, 29 (1980), 9–10.
- [9] H. Luschgy, Invariant extensions of positive operators and extreme points, *Math. Z.*, 171 (1980), 75–81.
- [10] H.E. Reinhardt, The use of least favourable distributions in testing composite hypotheses, *Ann. Math. Statist.*, 32 (1961), 1034-1041.
- [11] H. Rieder, Least favourable pairs for special capacities, Ann. Statist., 5 (1977) 909-921.

D. Plachky

Institut für Mathematische Statistik der Universität Münster, Einstein-Strasse 62, 4400 Münster, GDR.

L. Rüschendorf

Institut für Mathematische Stochastik der Universität Freiburg, Hebelstrasse 27, 7800 Freiburg, GDR.

in some recent papers (Rusch 191, Rusch and Schonke 188