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1. INTRODUCTION

Let (4, «/) be a measure space, let o, C .o beasub o-algebra
and let 7,,», be two sets of probability measures on &/ ,. In the
present paper we consider testproblems #;,# |, where # are subsets of
the extensions of elements of 2, to the larger o-algebra /. Especially
we are interested in the question, in which cases optimality properties of
tests for »,, #, can be lifted to the testproblem 9""},9"1. (We consider
maximin-tests and UMP-tests only.) Although this question looks a little
bit artificial, testing problems of this kind occur in many practical situa-
tions. Some examples are the following:

(a) Let .-% X J*'l be sets of probability measures on (4, /) and sup-
pose that for some reason one only can observe a function T for testing
#o>7 - Then defining , to be the images of #; under T we answer

* This article was written during a stay of the second author at the University of Miinster sup-
ported by Deutsche Forschungsgemeinschaft.
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the question whether optimal tests for 2, 7, (based on T) are optimal
for 2,2 .

(b) Let G be a set of transformations on (7, &), let o be the
o-algebra of G-invariant sets, let 2,2, be probability measures on
(2, o) and consider the testproblem

?; = (P§1g€ G}, 2| = {P§|g€ G).
Thus especially the Hunt—Stein situation is covered by our model.

(c) Let, 2= {P(g'ﬂ); 8 9 an '}, i=0,1, be two sets of
probability measures on (2, #). Consider the test problem ©,:0,;
thus in this case n€ I' is a nuisance parameter. Assume that «/; C & is
a sub o-algebra such that the restriction of P[ﬁ‘n} on & isindependent
of neTl. So the question is whether o, is “sufficient” for the test
problem ©,:0, in the presence of nuisance parameters.

In Section 2 of this paper we derive some properties of extensions of
probability measures. In Section 3 we consider the question whether the
maximin-property of tests for #,, 7, may be lifted. We also discuss this
question in connection with the concept of least favourable distributions.
In Section 4 we consider UMP-tests and finally in Section 5 we give some
examples.

2. SOME PROPERTIES OF EXTENSIONS OF
PROBABILITY MEASURES

Let (&, o) be a measure space, M, (7, o) be the set of probability
measures on (Z, o) and &, C & be asub o-algebra of /. For
PEM (2, o) let E(P)C M,(Z, #) denote the set of all extensions
of P to the larger o-algebra . Furthermore, for 2 C M (%, ) let
E?)= U E@®P).

Pe#

The aim of this section is to present some properties of the set E(Z)
of extensions. In the following we shall always consider the relative weak
*-topology on M, (¥, #). The first proposition is trivial.
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Proposition 1.
(a) If #2C Ml (2, o) is convex, then E(?) is convex.
(b) E(2) D E(?) (A denoting the closure of A).

Generally E(2)# E(?) (consider for example X = [0, Q), © first
uncountable ordinal number, «,  o-algebra generated by [0, ),
0<a<$, o generated by o, U{}, and 2= {6,10<a< Q}]),
and for PE M, (7, /) the set E(P) may be empty. (For a discussion
of this point cf. Lipecki [8].) A simple condition for E(P) # ¢ and an
interesting extension is given by the following proposition. Let M(.x, o)
denote the set of all measures u on (2, #) such that pl is o-finite.

Proposition 2. For pe M(Z, #) and P<< u| o define P#(A) =
| m—‘i’%; du, A€ &, and (EQP)), = {QE€EP)|Q<< p}. Then it
holds:

@) P, € E®),

(b) Q<< P, for Q€ (E(P)),.

Proof.

(a) is immediate by definition.

o
(b) If A€ o, P#(A) =0, then 1, dul = 0[u] and, therefore,

R < dpP pii
1, dul o, = 0[Q]. Furthermore, _—d.ul-ﬁ'o > 0[P] implies that

dP —
dul > 0[Q] and, therefore, 1, = 0[Q].

Pu is the uniquely determined wp-continuous extension which has a

</ ,-measurable density. The set of all u-continuous extensions is given by
the following proposition. Let L(./) denote the . -measurable real
functions.

Proposition 3. ue M(2, o) and P<<pu| o o implies E(P)H =
% iR
{hulh€ L(), h>0, E,(h] )= HI:TE;,"}'
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Proof. If Q€ E(P),, then by the theorem of Radon-Nikodym
Q=hu, he€L(), h>0, and for Aj€ ,, Q)= [ hdu=
A9

2 b 5 & LAl
P4,) = Afo Gl W Therefore, B (h] o) = quio= (|,
dP -
If Ep(h|d0)=‘d‘m—0-, then {;hd#:A.Cﬁu(h|.Safo)dji:P#(AO):

P(A,) and, therefore, h,uEE(P)“.

Corollary 1. Let Q€ E(P), fe€ L, («,Q) with f>0 and assume
E,(fl #4)>0. Define h= ~ and QY = hQ, then QY e
E(P).

Sl
E,(fT4,)

A consequence of Corollary 1 is, that if there is any extension of P,
then there are many extensions. The following proposition expresses this
fact in statistical terms: If a test @€ ® is similar w.r.t. E(P)Q then ¢
is Q-a.s. o -measurable, where ® denotes the set of all tests.

Proposition 4. Let Q€ E(P), ¢ ® and EQ\0= EQ(D¢ for all
feL,(«,Q) with f>0 and E,(fl «y)>0. Then ¢ = EQ (@l o )Q].
Proof. Because of A, := {EQ (pl oy)=0}C {p=0}[{Q] one ob-
tains \OZEQ(tp| #,)[Q] on A, and
E o
(*) fsﬁdQZA{?EQ(sol-VO)dQ-*A.;z%(g;]‘—%%—)dQ
Choosing f=¢+ &8, 8> 0 one gets by the lemma of Fatou for § - 0

2
(1)
Q
AfE (¢l o/,)dQ > f 0T, ) do.
0
By Jensen’s inequality £, (tpzl ol )>E2(¢l o )[Q], which yields
E (0?1 o) =El (o] %, )[Ql on A‘ lmplymg v=E,(pl )0
on Aj.

Together, we have ¢= EQ (| o )Q].

The extreme points of E(P) are characterized by a theorem due to
Douglas [3]. Our special extensions of Proposition 2 allow to prove
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(a slight modification of) Douglas’ result by probabilistic methods without
using the Hahn—Banach theorem.

Proposition 5. Let Q€ E(P). Then Q isan extreme point of EP)
if and only if it holds that ¢ = EQ(goI </ )Q] forall p€ P or, equiv-
alently, if forall A€ « thereisa B€ o  with QA4 AB)=0.

Proof. If Q = aQ, + (1 —®Q,, Q,€ E(P), i= 1,2, then Q, << Q

vk Y W _ oari
and W oY) a€ (0,1). From _d_Q"_ 2 E‘Q ['_d_Q_ l ‘W(U) [Q] and
Ql+y=0Q,1«, weobtain Q=0Q,.
l+y —1 then —1<h<1 and

For g€ & define h=EQ(1 T ol g)

by Corollary 1 (1+/h)Q,(I-WQEEP) and Q== [(1+M)Q+
(1 = h)Q]. Therefore, ¢ = EQ(th o )Q].

Remark 1. In a similar way one could also give a simple proof of the
following characterization of the extreme points of the set E G(P) of all
extensions of P which are invariant w.r.t. a semigroup G, namely: Let
Q€ EY(P); then Q is an extreme point of EC(P) iff forall p€ ®
which are Q-almost G-invariant ¢ = EQ (¢l o ()[Q] holds. This result
isdue to Luschgy [9], Theorem 4.4.

An important property of extensions gives the following proposition.
For aset A in a vector space let con (4) be the convex hull of 4.

Proposition 6.
(a) If P,EM,(x, ), EP)# ¢, i=0,1, then forall a€ [0, 1]
E(@Py + (1 —0)P)) = aE(Py) + (1 — E(P,).

() If »2cM(x,,) with EP)+ ¢ for all P ?, then
E(con #) = con E(#).

Proof.

(a) If Q,€EP), i= 0,1, then trivially, aQ, + (1 -0, €
E(aP, + (1 —a)P,). Let Q€ E(P, + (1 —)P) and a€ (0, 1) then

—~ &
P, << Q| /, and so we obtain by Proposition 2 P (4) = ,{EQ_l?JE dQ
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defines an extension of PD with ﬁO(A)é Tl Q(A). Define 151 (4) =

rl‘a(Q(A)“@o(A)l Then P, €E(P,) and Q=aP, + (1 -a)P,.

(b) is immediate from (a).

Proposition 7. Let P, €M, (.7, Wal 1= 0,1, and P, = hP, where
he€L,(,,P ) with h=0. If E(P)+* ¢, then

E(Py) = hE(P,) = {hQ | Q € E(P))}.

Proof. If Q, € E(P)), then for Ay € o

(hQ)Ay) = [hdQ, = [ hdP =Py(A,).
Ag Ag

If h>0[P,], then P, = %{P(J and, therefore, by the first inclusion

E®,)> 5 E(Py)> E(P,) which implies E(P)) = hE(P,). Assume now
0<a=P,({h=0})<1 and define 2PN =0, =TT,
ay=agn2', Py=Pylaly, Pi=1—P | and h'=h|2".
Then Pj = (1 —a)h'P; and Q, € E(P;) implies Qo = Qo | #' € E(Py).
Therefore, there exists Q € E(P{) such that Qy = —-a)h'Q;. Let
Q € E(P,) and define Q, (4) = (1 —a)Q; (4 N {h>0}) + Q(4 N {h = O}).
We have for A, € #:

Q,4,)=

(1 —a)P[(4, N {h> 0D+ P (A4, N {h=0}) =P (4))

and

Qo = A0, .
Proposition 7 allows to describe the relation between extensions of two

probability measures completely.

Proposition 8. Let P, P € M (2, o), let Pyo= aP(; + (1 —a)P;
where Py, Py €M, (%, o)) and Py = hP,, Py L P , a€[0,1].

Assume that E(P‘.) #¢, i=0,1. Then
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(a) EPy),EPy)# ¢.

(b) E(Py) = ahE(P)) + (1 — a)E(Py).

(c) E(Py) LEP)).

Proof.

(a) Since P, ,Pg << P, (a) is immediate from Proposition 2.

(b) By Proposition 6 and 7 EPy) = aE®Fy) + (1 —a)EP)) =
ahEP,) + (1 —a)E(Pg).

(c) There exists a A€ o/, with Pj(A°)=0, P,(4)= 0. There-
fore, Q(A€)=0 for Q€ E(PS) and R(A)=0 for Re€ E(P;). This
implies that E(P() 1 EP)).

A wellknown criterion for sufficiency implies the following

Corollary 2. Let P, i=0,1, be asin Proposition 8. Let QfeE(Pl.),
i=0,1. Then <, issufficient for {Q,.0,} iff

Q, € ahQ, + (1 — a)E(P])
with hGLl(M‘O,Pl) and h= 0.
For k>0 and P,Q € M, (%, o) define the distances
d,©.P)= 1Q — kPIl = |
sup{Q(4) — kP(A) — (Q(B) — kP(B)), A,B€ «},
and for P,QC M, (24, o)
di(#, 2)=inf{d, (P,Q)|PE?, Q€ 2 }.

Proposition 9. Let 2, CM (2,4,), i=0,1, let EQP)# ¢ forall
Pe?,U 2 andlet k> 0.

(@) If weM(x, ), P,,PLeM (X, ), with Pi<<p|,,
i=0,1, then

AP B AP LT D,

[UNTE T
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(b) d, (2, 7,) = d, (E(#,), E(#, ).
Proof.
(a) It is easy to see that
d,(Py,P)=|IPy — kP, || = max {k — 1 + 2(P, — kP,), (1)},
where (P, — kP,), is the positive part of the Jordan—Hahn decomposi-
tion of P, — kP,. Therefore, with

dpP dpP
4 0 1
Aﬁ{duldgzkd(#ldo)}

(Py — kP, (2)= Py — kP )(A)= (P, , — kP, ,)(A).
(b) For P,€ #, and Q,€ E(P), i=0,1,
sup {| P, (4) — kP (A)|; A€ oyt=
sup {1Q,(4) —kQ,(A)|; A€ 4} <
sup{1Q,(4) — kQ,(4)|; A€ #}.
Thus, |Py — kP 1< 1Q, — k@, II.
By part (a) equality holds for Q,= PI.,“, P=0 FAThs ifn}lies
d (2,,2,)=d, (E(2,),E(#))).
3. MAXIMIN-TESTS AND LEAST FAVOURABLE
DISTRIBUTIONS

Let #,,#, €M, (&, /) and let 2, CE(#), t= 0, 1, such that
con ;N EQP) # ¢, forall PE€ 2, i=0, 1. For the testproblem 20,21
denote the maximin-risk for « € [0, 1] by

Bla,2,,77) = sup inf E_ o,
s’ 0
\pE‘tﬂa(;?b,.d) QE,r'l

where d?u(?(’}, )= {p: (£, «)~> ([0, 1], 0, l]wl)lEQwé a for all
Qe#;} and #' isthe Borel o-algebra.

The general assumption con #;N E(P) # ¢ for P€ 2, i=0,1, im-
plies that 6(a,3“6,:'¢°'1 )= B, ?y,2,). The following theorem gives a
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sufficient conditions to imply that a maximin solution for 2, #, iseven
a solution for ﬂ"o ,,yl i.e. optimality of a test for 24> 2, is inherited to

the testproblem », 2.

Theorem 10. If »,<<u, i=0,1, andif d;(con .9"1 , con y(')) =
d,(con #,,conz,) forall k=0 then .6(0:,:?6,3"1)= Bla, 2, 2,) for
all a€ (0,1).

Proof. By Baumann [1], Satz 6.3, for a dominated testproblem
H,K on « onehas B(a,H,K)=min{ak + (Q - kP), (£)|k=>0, Q€
con K, P€ con H} (the closure w.r.t. relative weak *-topology). Using
Q@ —kP), (2) = 1 _k %dk(Q,P) and the fact that for €> 0 there

is a measure ,u on (4, .«) such that dk((conyb);,(cony’l);)é
d, (con # o»con#))+ e (cf. the proof of Satz 6.3 in [1]), we obtain

B(as 'ja;)} ‘yi ) g ﬁ(av (30" )‘I, (,f' )'") =

inf{akJrl;k id(con(*’)w con (4 ))}

inf {ak + LBy ld ((con #} )5, (con ) )} <
2 2

inf{ak+1—_£ la’ (con #' , con 2} )} =
2 2 | 5

y 1-k 1 3 i

mf{ak+T+§dk(con.d"1,conrf’o)}+e-

B(a, ;-'?‘0,9#1)+ e, Ve> 0.

Observe that by Proposition 9 the assumptions of Theorem 10 are fulfilled
for #.=E(2;). Without assuming that 2, U #, is dominated we
obtain:

Theorem 11. If for each P€ #, there existsa Q, € E(P)N &E.}’;,
i=0,1, such that <, is sufficient for M ={Q,|P€ 2, U >}, then
Bla, 2y, 2]) =B, 2,,2,).

Proof. Let g€ ct)ﬁ(.fb, /) and define ¢ = Ep(\ol ), WEM.
Then for Per, E,y= EQP\b = EQP\oé o  which implies Y€
(I)Q(y('), /). Furthermore, for P€ »,, and Q€ ‘f"l N E(P) it holds
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that EQ y=E ¥y = EQP\,{; = EQPxp and, therefore, inf E Q<

QE»

Qin; EQw. This implies that B(a,‘@('),.&"l)= B(e, 5’0,91)
€%y

Remark 2.

(a) The condition of Theorem 11 corresponds to an assumption
made by Hajek [5] in the case of estimation in the presence of
nuisance parameters. The conclusion of Theorem 11 could be strengthened
to

B(a, #}y, E(P) N con P{) = Bla, #y, P) forall PEZ,.

(b) If 2,= {P‘.}, i=0,1, then the condition that there exist 0, €
E@) N Eaflé?;., i=0,1, such that </, is sufficient for {QPU ,QP]} is
equivalent to the assumption that there exists a n€ M(Z, o) with
P,,P, <<ulo, and Q;=P; € con#!, i=0,1 (cf. also Corollary 2).
The determmatlon of a max;mm-test is snmphfled in the presence of least

favourable pairs. In the literature there are three different definitions of
least favourable pairs for the testproblem #{, 2]

Let P,€ con?;, i=0,1, then

(a) (Py,P)ELF (Z,,7)) iff Bla, Py, Py) = Bla, 2, 7)),
Plye LEA@5, ) i, Py, Py)&c - 11 ©LE, (P, #4) (cf. Bau-
acs|0,1]

mann [1]).

X dP
(b) By, P) € LF (%5, 2]) iff there exists 7€ EP";_ with P" <,

Py for Pez,, Q% > 'y Qe?| where < is the stochastic
f dP
1 f i
fo’ dP :
Huber, Strassen [6], Rleder £L1))s

() (Py,P)ELF,(Z2y,2)) iff B, (Py,P)<B,(Q.Q;) for
all Q, € con@), i=0,1, (Py,P)ELF (2, 2)) iff & P)€

llg = LF. (?,,2}) (cf. Lehmann (7], pg. 325).
ae ’

dPl
order and —5— { i=0,1, up dominates P, i=0, 1} (cf.
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The following remark is concerned with connections of these notions
of least favourable pairs and with methods to find least favourable pairs.

Remark 3.

(la) (P, , P, )€ LF (7, #]) iff there exists a most powerful level
a test for P, P, which is maximin-test for 2o, 2t level ‘o

dr

(I1b) (Py,P,)€ LF (#,2) iff there exists a me d—Pﬁ such that

¥, o (the LQ-test at level & which is constant on the randomized region)
is maximin-test for 24,2, foreach a€ |0, 1).

(1c) From (1b) follows LF (.5“{'},.%; . LE (J’[’),.Vi) (there is no

equality in general). Equality holds if for instance the distribution of

dP
= d_Pi is nonatomic under .4“;., i=10,1, forall P s Py) ELF (.ﬂ‘" ,.f" ).
0

(1d) If LF(/’O,% )# ¢, then LF (#;,#;)=LF’ (#g,27) (cf.
Rieder [11], Proposition 2.2).

(2) LF (£0)™, (#))™) = (LF (#},#,)™,  where (@p™ =
(PN peyp’ i} (ef. Huber Strassen [6], Corollary 4).

(3a) Py, P,) € LF (J’['_,‘,-w '1) - d (PO,Pl ) = d; (con »g, con ,_-f}'l)
forall k= 0. :

oy It LF(?",I’)?L@.PECOI‘IJ"‘I,I—OI w:thd(P , Py)=
d, (con. 7> con wl) for all k> 0, then Py, P)) € LF(J", 1) For
szmllar facts concerning LF (#,,7}), cf. Reinhardt [10].

(4) Elements of LF (74, 71) can also be determined by minimiza-
tion of certain different distance measures containing for example the
measure of divergence of Csiszar [2]. Let ¢: [0,1]> R! be twice
continuously differentiable with ¢” > 0 and define:

H(P, Q) = _fsp[a(—f,%) AP+ Q)

for probability measures P,Q on (4, ). Then by a slight modification
of Theorem 6.1 of Huber, Strassen [6]:
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H(», 2)=inf{H(P,Q), PE 7, Q€ 2}.
(@) (B,,P,)€ LF (7, »}) = H(Py, P) = Hlcon 7y, con #y).

®) If P,econrs), i=0,1, LF (75, 7))# ¢ and HPy,P)=
H(con.a"(’), con .7*'1), then (PD’PI)E LF ("?6!"‘“,1)-

Returning to our testproblem ./('} C E(7, ), fﬂ’l C Bl r'l) we have

Theorem 12. If (Py,P,)€ LF (#5,#)) (LF (#,#,) and if
there exist Q,€ con »; N EP), i=0,1, such that o, is sufficient
for {Q.0Q, 1, then

(a) (QOaQI)E LFQ(J“E),-?"]) (fF (,Jz"E),,'ﬂ'l)),

(b) There is a most powerful level o test ¢, for Py, P, which is

maximin-test at level o for .o-'('),.f"l. (¢, , is maximin-test at level «

dr

r I
for »,,» where ™€ 5-).
% 1 dP
0

Proof.
I Let (PO,Pl)e LFQ(.'»"D,.?I).

(1) By Remark 3 (la) there is a most powerful level a test g, for

Py, P, which is maximin-test for .7, 7 . Therefore, ¢, € <I>a(.r"('] s ).
(2) Let p€ @ (7, ¥) and define ¢ = E{QO,QI}(W o/ ). Then

inf E

Qe »,

Clearly Yy € ®_ (7, ) and, therefore,

QspéEQ'¢, since Qlecon,y"], and EQI(;,o)=EQ’w=EPl¢:.

E, Y<Ep ¢, = inf Epp, = inf' EQ«pa.
1 ¥ Pe #, Qe »

This implies B(a, Q,,Q,) = Bla, Py, Py) = Bla, Zos21)s e (Qg,Q1)€
LFG(#‘{'}, #}) and clearly ¢, is a maximin-test for 2, # .

1. The case (Py,P,)€ LF (7, #}) is similar.

Corollary 3. If (P,,P,)E LF (#4,#,) and if there exist Q. €
con2 N EP), i=0,1, such that o is sufficient for {Q,,Q,}, then
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@M, 0M) € LF (2™, (2,)™).
Proof. Observe that
con (E(P) X E(Q))C E(PX Q)

for P,Q€M, (&, «) and, therefore, Q™ € E®™), i=0,1. By
Remark 3.2 (Pé”),P{”))E LF (:’f’é"),y{”)) and, furthermore, .r/é")
(the n-fold product of ) is sufficient for {Q§",Q{™}. Therefore,
Corollary 3 follows from Theorem 12.

Corollary 4. Let (PO,JPl ) € LF'QC(.A‘0 ,#,) and let ¢, be a most
powerful level o test for Py, P,, which is maximin for #,,# . Then
9, is maximin-test at level o for E(#), E(#,).

4. UNIFORMLY MOST POWERFUL TESTS

Again let #»,CM (1, o,) and y;.c E(#), i=0,1, and let
EP)# ¢, VPE 2, U #,. For P,QEM, (4, o) let ®*(P,Q) denote
the set of most powerful level a tests for P, Q.

Theorem 13.
(a) Let @0 be a UMP-test for #y,2, atlevel a,

(b) Let there exist Py € #, such that for all P, € 2,, ¢, €
®X(P,,P,),

(¢) Forall Q, €2 Iletthereexista Q, € con 2o N E@Py) such
that <, is sufficient for {Q,,Q, }.
Then ¢, isa UMP-test for #,,# | atlevel o.

Proof. Clearly @y € d)u(fa, &), 1 Let @& (ba(;fé, <) and let
Q, € #|. Then there exists P, € », suchthat Q, € E(P|) and so by (c)

there isa Q € con #; N E(Py) such that .« is sufficient for {Q,,Q, }.
Define ¢ = E{Qo,gl}(gol o/ ), then EPDIJ/ = EQow = EQopé a and,

therefore, (b) implies

EQltp=EQIdJ= EPltpéEplspo =EQI‘PO'
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This yields that ¢, is UMP at level « for .wb,.w'l 3

Corollary 5. Let P‘,.EMI(_-I', o o) with E(P)# ¢, i=0,1, and
@, € fb:(PO,Pl ). Then

(a) ¢, is UMP-test at level a for E(Py), E(P,),

(b) If ¢* is a UMP-test at level o for E(PO),E(PI) and if
Elepo <1 forall Q, € E(P)), then o = EQ(tp*i,c/D)[Q] for all

0=1@,+0) 0E®R). i=0.1.
Proof.

(8) It Py~ aPé +'(1 = a)P(')' be a decomposition as in Proposi-
tion 8 and let Q, € E(P,). Then g, = ahQ, + (1-a)Q, (with Q, €
dPy
ap,
sufficient for {Q,,Q, }. So (a) is implied by Theorem 13

lE(P(';) and A a version of ) is an element of E(P;) such that is

(b) For all Q, € E(P,) we can finda Q, € EP)) (as in (a)) such
that .« is sufficient for {Q,.Q,}. Therefore, g, € ®*(Q,,Q;) and,
therefore, also ¢* € ®X¥(Q,,Q,). Since B= Eleo <1 we have

E%tp* — «. This implies that ¢* is a UMP-test at level a for E(P;)

against %E(PD) + %E(Pl )= E[—% (Py ¥ P,)) by Proposition 6, and,
a+ B P(] < Pl
therefore, E,¢* =5 for all Q€ E [—-—i_—] Proposition 5 implies

that ¢* = E,(p* | /,)[Q] forall Q€ E(X &, +P)).

Remark 4. Corollary 5 generalizes a result of Fraser [4], Theo-
rem 2, which is concerned with the case of nuisance parameters.

5. EXAMPLES

(1) Let a<bh and 0<a<p, ot B< 1 and consider the test-
problem

ya = {PM LPEMI(RI,Jfl), P(—=,a]<a, P(a,b]<a}l,

i 1 T



#) ={PMW|PeEMR', #!), P(—~=,a]>q, P(a, b] > B}.

n

Let T: R" > R%. T(x) = (5,(x),s,(x)), where s, (x)= ,_\jl’ 1 (x.),
=

(—eo,a]™i

n
$00= 2 1,4 (). Let = «(T) the o-algebrainduced by T and

let 2, denote the restriction of .9";. on &, i= 0, 1, so that we have the
situation considered in Sections 3, 4.

To determine 2, let A0 =(-9,4a], Al = (a, b], A2 =(b, ) and
use the representation
2
i U (n) :
2= {(,-:_,2{, aP ) TP EM 4,49}, 1=0,17
0<aq <1, ..Eﬂi,;l and o) <@, Qa},
, 7 (n) 5
2, =2 wP) " P eMA4,4,2)) i=0,1,2,

O0<qg<l, Zfo:l.z 1, o 2 q, 0:1;6}.

-

If Q= [Zaf_Pf]me,% U .2}, then
00 =5y == (e
S0 Q/r/o = Q(QO‘ai) and

2o =10(e, By) |y < @, B, < a},

7, =1{0(a; ,8)) |y = a, B, =B}
Let Q,= Q/(o,B)E 7, i=0,1, then

Q,(5, =k, sz=m_)_

Qy(s, =k, 5, =m)

o (I = (g +By)) &k B (1 — (g + ) m
[Cl'ﬂ(l . (0-'1 + ﬁl ))) [ﬁo(l _“(0'-'1 o5 '61 ))] y

From this we easily obtain that

(Q(ev, @), Q(a, B) € LF (2, 2, )
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with most powerful level « test of the type

aw-{ 1 @) @@ > ke
= <k,.
Clearly

Q, = (@Py + aP; + (1 —200P))™,

Q, = (aPy +pP) + (1 — (ot B)P,) ™

define extensions of Q(a, @), Q(a,f) in 2, such that
for {Q,,Q, } (P, are any elements of Ml(Af,A,._?’l)).

0 is sufficient

So by Theorem 12 ¢, is a maximin-test at level « for .yb,.'f"l.
Clearly no UMP-test exists in this situation.

-

(2) Let P( 3" ® N(u, 02), n€E R!, 02> 0 and consider the

H,0 i=1

testproblem:

2 <

(a) 24 = {;Pﬂ’a2 02 <ol}, 21+ {P”,az lo? > 02}, where 0o

n
o2, If s2x)= 2 (x;~ %)}, &= (), then P = h " has
i=1 b,o

monotone likelihood ratio in o2 so that

2
I, =)k ;

Yo = )
0, s ()< k;

is a UMP-test at level a for

#y={h\"02<0}}, #,={h\"|0’ >0} Py=h x"

satisfies condition (b) of Theorem 13. For condition (c) let ,uERl,

62>0?% and Q, =P . We are looking for
: A (#,02)

Qaeoon{P_ 2I,y.:’ERl},
u,o
)y

such that s is sufficient for {Q,,Q, Lehet be the density of

g
," ‘ao
P, withrespect to A", then

TR
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it S e
P#,’ag(x)— A(of) exp [ 203] exp [ 203 ).
Using
Si Rl o okoi0d o3
NiEsm)s Mes g S - M)
B
3 5 g 5 =0 0
(» denoting convolution), we obtain with A, =N(,u— x,?-——n—],

Q, = _fP”r " dX\,(u") has \"-density
L
2 _nx-w?

) 2 1 2
Aoy, 07) exp [ o g )e 20 3
’ Oy

which shows that s? is sufficient for {Q,.0,}

Theorem 13 implies that ¢, is a UMP-test at level a for 2., 2.
So in" this well-known case we obtain an explanation why to choose the
mixing measure A, .

(b) Similarly for the testing problem .#’E} = 4
#!

against f’l =4P 5 02 < 03} we obtain that s is sufficient for
o, o

t,2It:r02€1r12<n‘(}

{Q ,10<0?<K}, where Q,=[P ,d\ (u) and where A, =
o o M, T a

a

N
N[O,K no ] So by Theorem 11
(1 s2(x)>k,,
i 2
0,8 (x)éka

yields a maximin-test for #;, 2| (which is independent of K).

ta) et Pa 8 =fa g with (a,$)€ © and let 4 be the projection
of © onto the first component. Assume

@) f, ;) =f,(T(x)g, ,(x), VxE &, a€ A, BEO,.

(b) For each a€ A there is a probability measure A, on ©_, such
that g g, ,(x) d\ (B)= Q(B), B€ a, isindependent of a € A, then by
Theorem 11 testproblems with respect to a« can be reduced to the test-

~A5 ~



problems for the distributions of 7, when considering the maximin-risk.
Examples are: gu‘ﬁ(x) = gB(x) with A = €(5, 1 gmp(x)= ha_ﬁ(x) with

7\& a7 S and ga’ﬁ(x) - h_:_(x) with ?\a = €[4}

(4) Let G denote a finite group of order 7y consisting of (&, o)-
measurable transformations g: .# — . and introduce /, as the sub-o-
algebra o, of consisting of all G-invariant sets belonging to ..
If P, are probability measures on ./, #, i=0,1, is defined to be the
family {P¥ g€ G}, i=0,1. A UMP-test for Py |/, P |/, at level
o is in this case according to Theorem 11 a maximin-test for .»,,# at

: 1.-%
. = 2 & con - i ; . =
level «, since Q, ~ gc;_Zé; Pf € con 2, i (o d; and EQE(IA e/ )

1 ¥ 1,08 A€ A4, i< 0,1. Especially the version of the sign in
Y geC
Lehmann’s book, p. 219-220, is a maximin-test at level a.
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