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Abstract

We show that the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012) to compute distributional

bounds can be used also to compute sharp lower and upper bounds on the expected value of a supermodular function of

d random variables having fixed marginal distributions. Compared to the analytical methods existing in the literature

the algorithm is widely applicable, more easily obtained and gives insight into the dependence structures attaining the

bounds.
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1. Introduction and preliminaries

Let X1, . . . , Xd be d real-valued random variables on some probability space (Ω,A, P). Given a supermodular

function ψ : Rd → R, we compute numerically sharp lower and upper bounds on E[ψ(X1, . . . , Xd)], where we assume

that each X j has known distribution F j(x) = P(X j ≤ x), 1 ≤ j ≤ d, but the dependence structure of the vector

(X1, . . . , Xd)
′

is unknown. Thus, we study the problems

sψ = inf
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
,

S ψ = sup
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
.

While it is well known that the upper bound S ψ is attained when the d random variables X1, . . . , Xd are comonotonic,

i.e. similarly ordered, the solution of sψ is in general open for d ≥ 3. For d = 2 the lower bound sψ is attained when

the two random variables X1, X2 are countermonotonic, i.e. oppositely ordered. For d ≥ 2 the value of sψ has been

recently given in the paper Wang and Wang (2011) only for the case of identically distributed risks with monotone

densities and for a restricted class of supermodular functionals.
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Puccetti and Rüschendorf (2012) introduce the rearrangement algorithm (RA in the following) in order to compute

bounds on the distribution function of ψ(X1, . . . , Xd). In this paper, we show that the same algorithm can be used to

approximate the moment bounds sψ and S ψ for a broad class of supermodular function ψ. Compared to the analytical

method described in Wang and Wang (2011), the RA is particularly simple, fast and widely applicable: it can handle

inhomogeneous set of marginal distributions and dimensions d in the several hundreds. The RA turns out to be relevant

for practical applications also in the computation of S ψ which often poses serious problems in the case of large vectors

of inhomogeneous marginals. Moreover, the RA confirms the results obtained in Wang and Wang (2011) and gives

also insight into an analytical solution of sψ for arbitrary marginal distributions.

1.1. Notation

Let X = (xi, j ∈ R) be a (n × d)-matrix. Let X− j be the (n × (d − 1))-matrix obtained from X by deleting its j-th

column X( j). Denote by +(X) and +(X− j) the n-dimensional vectors having as components by the componentwise

sum of each row of X, respectively X− j. Formally,

+(X) =



x1,1 + · · · + x1,d

...

xi,1 + · · · + xi,d

...

xn,1 + · · · + xn,d


,+(X− j) =



x1,1 + · · · + x1, j−1 + x1, j+1 + · · · + x1,d

...

xi,1 + · · · + xi, j−1 + xi, j+1 + · · · + xi,d

...

xn,1 + · · · + xn, j−1 + xn, j+1 + · · · + xn,d


. (1.1)

Of course, we have that

+(X) = +(X− j) + X( j), 1 ≤ j ≤ d. (1.2)

We define P(X) as the set of all (n × d)-matrices obtained from X by rearranging the elements within a number of its

columns in a different order, that is

P(X) =
{
X̃ = (x̃i, j) : x̃i, j = xπ j(i), j, π1, . . . , πd are permutations of {1, . . . , n}

}
.

We call each matrix in P(X) a rearrangement of X.

Given a vector a ∈ Rn, we denote by a[i] the i-largest component of a (a[n] is the minimal). The vector

a↑ = (a[1], . . . , a[n])′ is called the increasing rearrangement of a and the vector a↓ = (a[n], . . . , a[1])′ the decreas-

ing rearrangement of a. We write a ⊥ b to indicate that the components of the vectors a, b ∈ Rn are oppositely

ordered, that is (a j − ak)(b j − bk) ≤ 0 for all 1 ≤ j, k ≤ n. For example, we have that a↑ ⊥ a↓. Majorization between

two vectors a, b ∈ Rn is defined as

a . b iff
j∑

i=1

a[i] ≤

j∑
i=1

b[i], 1 ≤ j ≤ n, and
n∑

i=1

ai =

n∑
i=1

bi.

For an in-depth discussion of majorization order and its properties, we refer to Marshall et al. (2011).

2



2. A rearrangement problem

In this section we describe a rearrangement problem which will turn out to be strictly connected to the computation

of sψ and S ψ. A similar treatment applied to the solution of a multidimensional assignment problem can be found

in Rüschendorf (1983a).

For a function ψ : Rd → R and a (n × d)-matrix X, we define the operator Eψ(X) as the sum of the n values

obtained by applying the function ψ to each row of X, i.e.

Eψ(X) =

n∑
i=1

ψ(xi,1, . . . , xi,d).

In this section, we investigate the problem of finding the rearrangements of X which minimize/maximize Eψ(X).

Formally, we study the problems

mψ(X) = min
X̃∈P(X)

Eψ(X̃) and Mψ(X) = max
X̃∈P(X)

Eψ(X̃). (2.1)

Throughout the paper we will consider the case that ψ : Rd → R is a supermodular function, i.e.

ψ(x ∧ y) + ψ(x ∨ y) ≥ ψ(x) + ψ(y), for all x, y ∈ Rd, (2.2)

where x∧(∨) y is the componentwise minimum (maximum) of x and y. The reader is referred to Marshall et al. (2011,

Section 6.D) and Block et al. (1989) for equivalent definitions, properties and examples of supermodular functions.

A well-known result due to Lorentz (1953) (see also 6.E.1 in Marshall et al. (2011)) shows that X↑, the comono-

tonic rearrangement of X having all its columns arranged in increasing order, is a solution of Mψ(X) when ψ belongs

to Sd, the set of all supermodular functions on Rd.

Proposition 2.1. We have that

Eψ(X) ≤ Eψ(X↑) for any (n × d)-matrix X,

if and only if ψ ∈ Sd.

Proposition 2.1 states that Mψ(X) = Eψ(X↑) for any supermodular function ψ. In general it is more difficult to solve

mψ(X).

2.1. Restriction to convex functions of a sum

In this subsection, we restrict to considering the particular class of supermodular functions S+
d defined as

S+
d =

{
ψ : Rd → R : ψ(x1, . . . , xd) = f (x1 + · · · + xd), for some convex f

}
.

For ψ ∈ S+
d , we have

Eψ(X) =

n∑
i=1

f (xi,1 + · · · + xi,d).
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Now define

O+(X) =
{
X̃ ∈ P(X) : X̃( j) ⊥ +(X̃− j), 1 ≤ j ≤ d

}
be the set of those rearrangement X̃ of X having each column oppositely ordered to the sum of the others. Based

on two well-known results on rearrangements, it is possible to restrict the domain of the min problem in (2.1) to the

smaller set O+(X).

Proposition 2.2 (Day (1972)). For any two vectors x, y ∈ Rn, we have that x↑ + y↓ . x + y.

Proposition 2.3 (Hardy et al. (1929)). For any convex function f , ỹ . x̃ implies that

n∑
i=1

f (ỹi) ≤
n∑

i=1

f (x̃i). (2.3)

Proposition 2.4. If ψ ∈ S+
d , we have that

mψ(X) = min
X̃∈O+(X)

Eψ(X̃).

Proof. For any X̃ < O+(X), it is possible to find an index j so that X̃( j) is not oppositely ordered to +(X̃− j). Denote

by Ỹ ∈ P(X) the matrix obtained from X̃ by rearranging its j-th column oppositely to the sum of the others. Using

Proposition 2.2 and (1.2) we have that

+(Ỹ) = +(X̃− j)↑ + X̃↓( j) . +(X̃− j) + X̃( j) = +(X̃) = x̃.

Let ỹ = +(Ỹ). By Proposition 2.3, ỹ . x̃ implies that

n∑
i=1

f (ỹi) ≤
n∑

i=1

f (x̃i),

for any convex function f . It follows that

Eψ(Ỹ) =

n∑
i=1

f (ỹi,1 + · · · + ỹi,d) =

n∑
i=1

f (ỹi) ≤
n∑

i=1

f (x̃i) = Eψ(X̃). (2.4)

As noted at the end of the proof of Theorem 2.1 in Puccetti and Rüschendorf (2012), being the set P(X) finite, it is

possible to pass from any X̃ < O+(X) to a matrix X∗ ∈ O+(X) in a finite number of steps. Considering (2.4), we can

restrict the domain of the min problem mψ(X) to the set O+(X). �

At this point, the rearrangement algorithm introduced in Puccetti and Rüschendorf (2012) can be used to find

elements in O+(X) which are, by Proposition 2.4, candidate solutions to mψ(X).

Rearrangement algorithm to find elements in O+(X). Start with any X̃ ∈ P(X).

Define X̃1 by iteratively rearranging its j-th column X̃( j) such that X̃( j) ⊥ +(X̃− j), for

1 ≤ j ≤ d. Then, repeat using X̃1 as the initial matrix until an element X∗ ∈ O+(X) is

found.
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We note that not all the matrices in O+(X) are optimal. As an example one can consider the matrices

X =



1 1 1

2 2 2

3 3 3

4 4 4

5 5 5


, X̃ =



5 1 2

3 5 1

2 3 4

4 2 3

1 4 5


and Ỹ =



1 5 3

2 3 4

3 1 5

4 4 1

5 2 2


.

Even if X̃, Ỹ ∈ O+(X), the vector x̃ = +(X̃) is strictly larger than the vector ỹ = +(Ỹ) with respect to .. It follows that

for instance for the stop-loss functional ψ(x1, . . . , xd) = [x1 + · · · + xd − 9]+ we have that Eψ(Ỹ) = 0 < 1 = Eψ(X̃). In

this case, the matrix X̃ ∈ O+(X) does not attain mψ(X). In applications to follow we will however see that in many

cases any element in O+(X) gives a good approximation to the optimal solution.

2.2. Extensions to general supearadditive function ψ

A natural question is whether the method described in Section 2.1 can be extended to find solutions/approximations

of mψ(X) for a general supermodular function ψ. The answer is positive, provided that ψ satisfies the following extra

requirement. We assume that there exist two measurable supermodular functions ψd−1 : Rd−1 → R and ψ2 : R2 → R

such that ψ satisfies

ψ(x1, . . . , xd) = ψ2(x j, ψ
d−1(x1, . . . , x j−1, x j+1, . . . , xn)), 1 ≤ j ≤ d. (2.5)

Relevant cases of supermodular functions ψ satisfying (2.5) are the sum (ψ2(x1, x2) = x1+x2), the product (ψ2(x1, x2) =

x1x2, for x1, x2 > 0), the min (ψ2(x1, x2) = min{x1, x2}) and the −max (ψ2(x1, x2) = −max{x1, x2}) operators. Asym-

metric functions do not satisfy (2.5).

We now extend to a general function ψ the definitions given in (1.1) in the case of the sum operator. Denote by

Ψ(X) (respectively, Ψ(X− j)) the n-dimensional vectors obtained by applying the function ψ (resp., ψd−1), to each row

of X (resp., X− j). Analogously to (1.1), we have

Ψ(X) =



ψ(x1,1, . . . , x1,d)
...

ψ(xi,1, . . . , xi,d)
...

ψ(xn,1, . . . , xn,d)


,Ψ(X− j) =



ψd−1(x1,1, . . . , x1, j−1, x1, j+1, . . . , x1,d)
...

ψd−1(xi,1, . . . , xi, j−1, xi, j+1, . . . , xi,d)
...

ψd−1(xn,1, . . . , xn, j−1, xn, j+1, . . . , xn,d)


.

Now let

Oψ(X) =
{
X̃ ∈ P(X) : X̃( j) ⊥ Ψ(X̃− j), 1 ≤ j ≤ d

}
,

be the set of those permutation matrices X̃ such that X̃( j) is oppositely ordered to Ψ− j(X̃) for all 1 ≤ j ≤ d. Similarly

to Proposition 2.4 we can restrict the domain of the min problem mψ(X) to the set Oψ(X). We use the following result

due to Lorentz (1953); see also 6.E.1 in Marshall et al. (2011).
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Proposition 2.5 (Lorentz (1953)). We have that

n∑
i=1

φ(a[i], b[n−i+1]) ≤
n∑

i=1

φ(ai, bi) for any vectors a, b ∈ Rn,

if and only if φ ∈ S2.

Proposition 2.6. If ψ ∈ Sd is coordinatewise strictly monotonic and satisfies condition (2.5), we have that

mψ(X) = min
X̃∈Oψ(X)

Eψ(X̃).

Proof. For any X̃ < Oψ(X), it is possible to find an index j so that X̃( j) is not oppositely ordered to Ψ(X̃− j). Let Ỹ ∈

P(X) be the matrix obtained from X̃ by rearranging its j-th column oppositely to Ψ(X̃− j). Applying Proposition 2.5

to the vectors a := Ψ(X̃− j), b := X̃( j) and using (2.5) we obtain that

Eψ(Ỹ) =

n∑
i=1

ψ(ỹi,1, . . . , ỹi,n) =

n∑
i=1

ψ2(a[i], b[n− j+1]) ≤
n∑

i=1

ψ2(ai, bi)

=

n∑
i=1

ψ2(x̃i, j, ψ
d−1(x̃i,1, . . . , x̃i, j−1, x̃i, j+1, . . . , x̃i,n)) =

n∑
i=1

ψ(x̃i,1, . . . , x̃i,n) = Eψ(X̃). (2.6)

As noted at the end of the proof of Theorem 2.1 in Puccetti and Rüschendorf (2012), being the set P(X) finite and

ψ strictly monotonic, it is possible to pass from any X̃ < Oψ(X) to a matrix X∗ ∈ Oψ(X) in a finite number of steps.

Considering (2.6), we can restrict the domain of the min problem mψ(X) to the set Oψ(X). �

The proof of Proposition 2.6 indicates that the rearrangement algorithm can be used with any supermodular func-

tion satisfying the extra condition (2.5).

Rearrangement algorithm to find elements in Oψ(X). Start with any X̃ ∈ P(X). De-

fine X̃1 by iteratively rearranging its j-th column X̃( j) such that X̃( j) ⊥ Ψ(X̃− j), for

1 ≤ j ≤ d. Then, repeat using X̃1 as the initial matrix until an element X∗ ∈ Oψ(X) is

found.

Remark 2.7. We conclude this section by summarizing some important points.

1. Proposition 2.6 is not an extension of Proposition 2.4. Indeed, there exist supermodular functions ψ ∈ S+
d which

do not satisfy condition (2.5). An example is given by the stop-loss functional ψ(x1, . . . , xd) = [x1 + · · ·+ xd−k]+,

for some k , 0. This also explains why we need majorization to obtain Proposition 2.4.

2. A rearrangement matrix X∗ is a solution of mψ(X) = Eψ(X∗) for some function ψ ∈ S+
d if and only if X∗ is a

solution of mψ(X) = Eψ(X∗) for all functions ψ ∈ S+
d . Analogously, Mψ(X) = Eψ(X↑) for any ψ ∈ Sd.

3. In the general case that ψ ∈ Sd a solution of mψ(X) may depend on the function ψ.
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4. Proposition 2.6 extends to all ψ ∈ Sd only when d = 2. In this case, condition (2.5) is automatically satisfied.

For d = 2, denote by X↓ a countermonotonic rearrangement of X having the two columns arranged in opposite

order. Proposition 2.5 implies that for any (n × 2)-matrix X we have that

Eψ(X) ≥ Eψ(X↓).

if and only if ψ ∈ Sd. However, the case d = 2 is seldom relevant in applications.

5. The rearrangement algorithm can be used also when the function ψ ∈ Sd is non-strictly monotonic, provided

that the set Oψ(X) is nonempty.

3. Moment bounds

Given a set of marginal distributions F1, . . . , Fd and a supermodular function ψ : Rd → R, the aim of this paper is

to compute

sψ = inf
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
, (3.1a)

S ψ = sup
{
E[ψ(X1, . . . , Xd)] : X j ∼ F j, 1 ≤ j ≤ d

}
. (3.1b)

If each marginal distribution F j is n-discrete, that is uniformly distributed on a set of n real values xi, j, i = 1, . . . , n,

using a rearrangement argument similar to the one given in Puccetti and Rüschendorf (2012, Section 3) we obtain that

sψ ' mψ(X)/n and S ψ ' Mψ(X)/n, (3.2)

where X = (xi, j). The approximations in (3.2) hold for n large enough only when each F j is n-discrete but can be

used to compute numerically sψ and S ψ also in the general case of arbitrary marginals. Indeed, it is always possible to

find two n-discrete distributions which approximate any F j from below and from above. For instance, we define the

discrete distributions F j and F j as

F j(x) =
1
n

n−1∑
r=0

1[qr ,+∞)(x) and F j(x) =
1
n

n∑
r=1

1[qr ,+∞)(x),

where the jump points qr are defined by qr := F−1
j (r/n), 0 ≤ r ≤ n. Since F j ≥ F j ≥ F j, if we assume that ψ is

componentwise increasing we obtain that

sψ ≤ sψ ≤ sψ and S ψ ≤ S ψ ≤ S ψ. (3.3)

where sψ (respectively sψ) is the analogous of (3.1a) when F j = F j (resp. F j = F j). Analogously, S ψ (resp. S ψ) is

the analogous of (3.1b) when F j = F j(resp. F j = F j).

We denote by X = (xi, j) (resp. X = (xi, j)) the (n × d)-matrix having as j-th column the vector of jump points of

the distribution F j (resp. F j) , i.e.

xi, j = F−1
j

(
i − 1

n

)
and xi, j = F−1

j

( i
n

)
, 1 ≤ i ≤ n.
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Using (3.2) and (3.3) we obtain, for n large enough, that

mψ(X)/n ≤ sψ ≤ mψ(X)/n, (3.4a)

Mψ(X)/n ≤ S ψ ≤ Mψ(X)/n. (3.4b)

Recalling Proposition 2.1, the following numerical range on S ψ directly follow from (3.4b):

Eψ(X↑)/n ≤ S ψ ≤ Eψ(X
↑
)/n. (3.5)

The rearrangement algorithms described in Section 2 can be used in combination with (3.4a) to find a numerical range

also for sψ. Using Proposition 2.6 or Proposition 2.4 (depending on the properties of ψ), we obtain that

Eψ(Ỹ)/n ' sψ ≤ Eψ(Z̃)/n, (3.6)

for any Ỹ ∈ Oψ(X) and Z̃ ∈ Oψ(X). Note that the right-hand inequality in (3.6) is always satisfied but the left-hand

one may fail if the matrix Ỹ does not attain mψ(X). However, in practice the numerical range in (3.6) always turns

out to yield a good approximation of sψ. At this point two matrices Ỹ ∈ Oψ(X) and Z̃ ∈ Oψ(X) producing a range as

in (3.6) can be found using the rearrangement algorithms described in Section 2.

It is important to note that if a distribution F j is unbounded from above, that is F−1
j (1) = +∞, and also ψ is

unbounded from above, we obtain that Mψ(X) = mψ(X) = +∞. In this case the relevant quantities are Mψ(X) and

mψ(X) which give sufficiently accurate bounds for values of n large enough. Similar considerations hold if F j and ψ

are unbounded from below.

If E[ψ(X1, . . . , Xd)] is finite, the accuracy of the numerical ranges given in (3.5) and in (3.6) can be increased

by choosing a larger value of n, so that the approximation to F j given by the discrete distributions F j and F j is

more accurate and the transition from continuous to discrete rearrangements in (3.2) is justified; see Puccetti and

Rüschendorf (2012, Section 3).

The accuracy of the range in (3.6) can be improved further by applying the RA to different starting matrices in

order to find different elements in the sets Oψ(X) (reps. Oψ(X)) yielding different estimates of an upper (resp. lower)

bound for sψ, the smallest to be preferred. In practice, different starting configurations give different estimates of sψ.

However these differences are negligible if n is set large enough.

Having mainly applications to quantitative risk management in mind, in the following we will always compute

the ranges (3.5) and (3.6) for continuous marginal distributions F j. In applications to follow, we always find that

the ranges in (3.5) and (3.6) yield a very good approximation of S ψ and, respectively sψ, using a single, randomized

starting matrix and setting a high value for n.

4. Applications

In this section, we compute the numerical ranges in (3.5) and in (3.6) for different increasing, supermodular

functionals ψ and different sets of marginals F j, 1 ≤ j ≤ d. In Table 1, we compute (3.5) and (3.6) for the product
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(ψ = ×) of d random variables being all uniformly distributed on [0, 1]. In this case, it is easy to see that S × = 1/(d+1)

while the lower bound s× has been given analytically in the recent paper Wang and Wang (2011). In Table 1 we report

also the computation times of the range (3.6) (the computation of (3.5) is immediate for any dimension d) obtained

on an Apple MacBook Air (2 GHz Intel Core i7, 8 GB RAM) by setting n = 105.

d avg time (secs) s× (RA range) s× (analytical) S × (RA range) S × (analytical)

3 7 5.4800 × 10−2 − 5.4807 × 10−2 5.4803 × 10−2 0.2500-0.2500 0.2500
4 8 1.9096 × 10−2 − 1.9100 × 10−2 1.9098 × 10−2 0.2000-0.2000 0.2000
5 9 6.8594 × 10−3 − 6.8615 × 10−3 6.8604 × 10−3 0.1667-0.1667 0.1667

10 18 4.5385 × 10−5 − 4.5435 × 10−5 4.5410 × 10−5 0.0909-0.0909 0.0909
20 46 2.0553 × 10−9 − 2.0639 × 10−9 2.0612 × 10−9 0.0476-0.0476 0.0476
50 188 1.8865 × 10−22 − 1.9352 × 10−22 1.9287 × 10−22 0.0196-0.0196 0.0196
100 595 3.3851 × 10−44 − 3.745 × 10−44 3.7201 × 10−44 0.0099-0.0099 0.0099

Table 1: Numerical ranges (see (3.5) and (3.6)) and analytical values for s× and S × for the product of d random variables uniformly distributed
on [0, 1]. Numerical ranges are computed via the RA with n = 105, while analytical values are taken from Table 4.1 in Wang and Wang (2011).
Computation times of (3.6) are also reported.

The aim of this first example was only to show the accuracy of our method, as for the homogeneous case illus-

trated in Table 1 the values of S × and s× can be computed analytically. In the more general case that the marginal

distributions are not homogeneous, the situation is different. The analytical results in Wang and Wang (2011) only

hold for identically distributed random variables and so far there does not exist a method which allows to compute the

lower bound sψ analytically for any ψ ∈ S in the inhomogeneous case. Apart from some particular cases illustrated

in Dhaene et al. (2002a), also the computation of S ψ may be numerically cumbersome when dealing with inhomo-

geneous marginals. Being entirely numerical, the algorithm described in this paper can be used with a large number

of marginal distributions and for a broad class of supermodular functionals. In order to illustrate the full potential of

the RA, in Table 2 we compute sharp lower and upper bounds for the expectation of the product of d inhomogeneous

uniformly distributed random variables.

d avg time (secs) s× (RA range) S × (RA range)

10 18 1.5470 × 10−1 − 1.5473 × 10−1 4.2191 × 100 − 4.2194 × 100

20 46 5.0315 × 10−2 − 5.0333 × 10−2 1.0764 × 102 − 1.0766 × 102

50 188 1.6794 × 10−3 − 1.6794 × 10−3 4.8464 × 106 − 4.8482 × 106

100 595 5.7255 × 10−6 − 5.7362 × 10−6 6.0091 × 1014 − 6.0133 × 1014

Table 2: RA numerical ranges (3.5) and (3.6) for the product of d random variables uniformly distributed on [a j, a j + 1], where a j = ( j − 1)/d, 1 ≤
j ≤ d. Numerical ranges have been obtained by setting n = 105. Computation times of (3.6) are also reported.

As a second application, we compute sharp bounds on the expectation of the stop-loss function ψ(x1, . . . , xd) =

[x1 + · · · + xd − k]+ for a number d of Exp(1)-distributed random variables. In this case it is easy to see that S ψ =∫ +∞

k/d (dx − k)e−xdx while the lower bound s× can be computed analytically using Theorem 3.5 in Wang and Wang

(2011). The results obtained for n = 105 are collected in Table 3. In this example, being the marginal distributions

and the function under study unbounded from above, we compute only the lower approximations of the sharp bounds.
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Table 3 however shows that these lower approximations are sufficiently accurate. In Table 4 we treat the case of the

stop-loss function of d = 3 inhomogeneous Pareto-distributed risks. In this latter case analytical values for the sharp

bounds are available only for k = 0.

k sψ (numerical lb) sψ (analytical) S ψ (numerical lb) S ψ (analytical)

0 2.9998 3.0000 2.9998 3.000
1 1.9998 2.0000 2.1494 2.1496
2 0.9998 1.0000 1.5401 1.5403
3 0.16939 0.16956 1.1035 1.1036
4 0.057013 0.057159 0.79061 0.79079
5 0.020369 0.020492 0.56645 0.56663

Table 3: Numerical lower bounds (lbs) on sψ and S ψ for the stop-loss function with deductible k for d = 3 random variables being all Exp(1)-
distributed. Numerical ranges are computed via the RA within 7 seconds with n = 105. Analytical values for sψ and S ψ, computed via Theorem 3.5
in Wang and Wang (2011), are also given.

k sψ (numerical lower bound) S ψ (numerical lower bound)

0 1.828134 (exact=1.833333) 1.828134 (exact=1.833333)
1 0.8281339 1.149902
2 0.4027471 0.8114906
3 0.2829846 0.6144147
4 0.2181444 0.4877124
5 0.1772537 0.4004565

Table 4: Numerical lower bounds (lbs) on sψ and S ψ for the stop-loss function with deductible k for d = 3 random variables with distribution
X j ∼ Pareto( j + 1). Numerical ranges are computed via the RA within 7 seconds with n = 105.

The computation time of the RA is not affected by the type of marginal distributions chosen but only depends on

their number d and on the accuracy parameter n. The figures obtained in the tables above for n = 105 can be already

considered reasonably accurate. However, an important feature of the algorithm is that it can handle larger values of

n and d without heavy memory issues. If extra-accuracy is required, with n = 106 one can obtain an estimate of s× in

about 3 minutes for the product of d = 3 random variables. If one needs instead less precision, using n = 104 provides

an estimate of s× within 20 minutes for the product of d = 500 (possibly inhomogeneous) random variables.

5. Rearrangement structures and dependence

For a given (n × d)-matrix X = (xi, j), any rearrangement X̃ ∈ P(X) can be seen as the support of a n-discrete,

d-variate distribution giving probability mass 1/n to each one of its n row vectors. Under this view, any such X̃ has the

same marginal distributions F j, where F j is uniformly distributed over the n real values xi, j, 1 ≤ i ≤ n. Therefore, any

rearrangement matrix represents a different dependence structure coupling the fixed discrete marginal distributions.

In particular, X̃ has a copula belonging to the class of shuffles of Min copulas as introduced in Mikusiński et al.

(1992) and therefore represents a mutually complete dependence between the fixed marginals in the sense defined
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in Lancaster (1963). It has been observed that the class of shuffles of Min is dense in the class of copulas endowed

with the L∞-norm. In fact, any copula can be considered as a generalization to the infinite-dimensional space of such

rearrangement matrices (see for instance Kolesárová et al. (2006)). Equivalently, any dependence structure can be

approximated by the copula of a rearrangement matrix for n large enough. For more details on the link between the

idea of a rearrangement and copulas as dependence structures, we refer to Rüschendorf (1983b) and the more recent

paper Durante and Sánchez (2012) which contains an accurate list of references.

On the above grounds, it is of interest to investigate the rearrangement matrices yielding the ranges (3.5) and (3.6).

The comonotonic matrix X↑ yielding the range (3.5) represents comonotonic dependence between its columns. Since

comonotonic dependence has been well studied in the literature (see for instance Dhaene et al. (2002b) and Rüschendorf

(2005)), here it is more interesting to study the structure of the rearrangement matrices yielding the numerical

range (3.6).

In the part (A) of Table 5 we give the matrix X̃ ∈ O+(X) approximating for n = 50 the minimal expectation of

d = 3 homogeneous Exp(1)-marginals. The copula of X̃ approximates the optimal copula QP
n defined in Wang and

Wang (2011). The copula QP
n describes a structural dichotomy under which either the marginals are d-completely

mixable (see Wang and Wang (2011) for a definition of complete mixability) or one of the components is large and

the others are small. One can check that basically the same dependence structure occurs the rows of X̃: either all the

components of the row are close to each other, and sum up to a value which is around the threshold 2.7 (e.g. row

14), or one of them is large and the other two are small (e.g. row 23). As noted in point (ii) of Remark 2.7, the

same rearrangement structure characterizes any solution of mψ(X) when ψ ∈ S+
d . Moreover, Puccetti and Rüschendorf

(2013) show that the copula QP
n maximize the tail function for the sum of d homogeneous random variables with

given marginal distributions. In the part (B) of Table 5 we give the matrix Ỹ ∈ O+(X) approximating for n = 50 the

miminal expectation of the stop-loss function for the inhomogeneous Pareto portfolio underlying Table 4. The matrix

Ỹ shows a structure of dependence similar to the matrix X̃ given in the part (A) of the same figure. The structure of the

matrix Ỹ suggests that the optimal coupling results in Wang and Wang (2011) and Puccetti and Rüschendorf (2013)

as well as the concept of complete mixability could be extended to the inhomogeneous setting. Finally, In the part (C)

of Table 5 we give the matrix Z̃ ∈ Oψ(X) approximating for n = 50 the miminal expectation of the product (ψ = ×) of

the three uniform marginals underlying Table 1. The matrix Z̃ suggest that the concept of complete mixability could

be extended to a broader class of functionals ψ as well.

6. Conclusions and forthcoming research

In this paper, we show that the rearrangement algorithm (RA) introduced in Puccetti and Rüschendorf (2012) can

be used to calculate sharp lower and upper bounds on the expected value of a supermodular function of dependent

random variables having fixed marginals. The RA is accurate, fast and can be used to handle random variables

with inhomogeneous marginals, in high dimensions. Moreover, the algorithm also gives insight into the dependence

structures attaining the bounds. We believe that the numerical moment bounds studied in this paper will have a wide
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range of application in quantitative risk management. Matthias Scherer (private communication) suggested that they

should be relevant in the computation of bounds on the price of multi-assets options. For instance in Linders et al.

(2012) the authors use a different numerical technique in order to compute the best upper bound for the price of an

index option under different marginal assumptions, that is when the distribution functions of the marginal assets are

known only at some points. We will investigate applications to financial pricing in future research.
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