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Stochastically Ordered Distributions and Monotonicity
of the OC-Function of Sequential Probability Ratio Tests

LupeER RUSCHENDORF!

- Summary. Some characterizations for the stochastic ordering of probability distributions

are given. Especially & general sufficient condition for stochastic ordering is proved and
the question of existence of upper and lower bounds in the class of all distributions with
given marginals is considered. Stochastic ordering is applied to prove a general theorem
on monotonicity of the ocC- funcmon of sequential probability ratio tests in stochastic
processes. ’

Key words: Stochastic ordering, monotone functions, Rosenblatt transformation, OC-func-
tion, sequential probability ratio tests.

1. Introduction

Let (E, %) be a polish space supplied with the Borel a-Algebra A and let = be
a closed partial order on E. The set ‘
M:={f: (E, A)~(RY, BY); fisotone and bounded}
defines a partial order =, on the set of all probability measures on (E, A)
([14]) by Py =, P, if and only if, _
[fdP;=[fdP, forall feM . (1)

In section 2 of this paper we prove some characterizations of = ;. Especially
we give a sufficient condition for =, in the case of (E, %)=(R", B") which
weakens the known sufficient conditions due to Vemorr [21], FRANKEN, KIR-
STEIN [7], KAMAE, KRENGEL and O’BRrIEN [14], KarMyxOV [13], STOYAN [20] and
FRANKEN, STOoYAN [6]. There exist no lower and upper bounds w.r.t. =, in the
set of probability measures with given marginals. In contrast to this probability
measures with ordered marginals are stochastically ordered.

Stochastic ordering is applied in the second part of this paper in order to prove
monotonicity of the OC-function of sequential probability ratio tests. This connec-
tion was considered the first time by LEHMANN [15]. We get a general result,
which includes the results known for this question. The methods are general
enough in order to be applied to sequential probability ratio tests in stochastic
processes. A connection to GmrsaNov’s [11] Theorem on the representation of
measures in function spaces continuous w.r.t. a given measure is indicated.
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2. Stochastic ordering

Let P;, P, be probability measures on (E, ). An element A€ is called isotone
if 1,6 M. A characterization of =, due to STRASSEN (cp. [14]) and KaAMAE,
KrENGEL and O’BrIEN [14], Th. 1, says:

P,=,P, (2)
<> There exist E-valued random variables X, X, with distributions P;, P, such
that X, =X, a.s.
<> (1) holds for the indicator functions of all isotone, closed sets 4 €.

Remark 1. a) The first equivalence implies for (E, %)= (R", 8"), that F,=F,
and hp =hp, whenever Py=, P, where F; are the distribution functions of
P; and hg(x):=P[z, «)), €R", are the survival functions of P, i=1,2.
For n=1 also the converse is true; for n=2 simple examples show, that the con-
verse is false.

b) The counterexample given by LEEMANN [15], Ex. 2.2 for the first equiva-

lence in (2) is false, since for the set S:=(BUDUA), from LEEMANNS example

(with X,:={y; J2€X,2=y}) it holds true that P,(S)=1 while Py (8)=1¢

and, therefore, it is not true that P,=,,.P,. in contrast to LEHMANN’s statement.
Example 2.2 of LEEMANN [15] really shows that a multivariate monotone likeli- -
hood ratio does not imply stochastic ordering.

The following characterization of =,, allows to reduce or to enlarge the class
M in order to prove (1). Especially it gives a connection to weak convergence.
We assume that for isotone sets B and x=y, d(x, B)=d(y, B), where d denotes
a metric on E inducing the topology. This is fulfilled if e.g. E is a vector space,
= is consistent with addition and d is invariant under addition.

Theorem 1. The following statements are equivalent.
a) Py=,4P,.
b) (1) kolds for isotone functions f with f(x)e{o, 1}, Vx€E.
c) (1) holds for all isotone functions f, such that the integrals exist.
d) (1) kolds for all continuous, bounded, isotone functions f=0.
Proof. The equivalence of a) and b) follows from (2). We show that

b)=-c). Let f be integrable w.r.t. P,, P, .

By means of a well known integration formula we get for E-valued random vari-
ables X, ¥ on (X, ¥, P) with P¥= Pi, PY=p,

Ef(X):OfP(f(X)__ 1) dt — jP y=t)dt .

IV
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But {z; f(x) =t} and {z; f(x)>t} are isotone sets since f is isotone. Therefore b)
implies

b
=
ks
I
e
I
=
=
I

and

P(f(X)=t)=P(f(Y)>t), VtcR!.
This implies
[fdP =Ef(X)=Ef(Y)= [ fdP,.

It remains to show:

d)=>b). We proof at first, that d) implies (1) for isotone functions f, continuous
from the right Wlthf z)€e{0, 1}, V.

Let A:={x; f(x)=1} and let d(t, 4):=inf {d(¢, y); yc 4}, t€¢ E, where d denotes
a metric on E which induces the topology on E. The functions

0 dt, A)=—
u®(t): = ]
(—Rd(t, 4) dit, A) <7

k€N, are bounded, continuous, isotone (since A is isotone) and =0. Right
continuity of fimplies, that »® converges antitone to f. The theorem of monotone
convergence implies

fu®dP;~ [ faP; i=1,2

and, therefore, f fdP,= f fd P, for all binary, right continuous functions f.
Let now in the second step f be an arbitrary isotone function and define again
A:={x; f(x)=1}. Then there exists a compact subset K — 4 with

P(K)+e=Py(4),

since by Th. 1.4. of BiLriNngsLEY [1] each probability measure on a complete
separable metric space is tight. Let now K, be the isotonic closure of K, then
Ig, is isotone, right continuous and Kc K,cA. The first step of this proof
implies P,(K )= P,(K ) and, therefore,

P(A)=P(K)+e=P,(K,)+e=PyK,)+e=Py(d)+e,

which implies the conclusion since ¢ is arbitrary.

Remark 2, Theorem 1 implies Proposition 3 of KAMAE, KRENGEL and O’BRIEN
[14] which states that =, is a closed partial order on the set of all probability
measures with the weak convergence topology. To show this let (P,), (@,) be
sequences of probability measures on a polish space with closed order such that

Png P, Qn—gQ (3 weak convergence)

and assume P,=,, Vn€éN. Then by definition of weak convergence
f fdP= f fd@ for all continuous, bounded, isotone functions f=0 which implies
by Theorem 1 that P =, holds.

22
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Theorem 1 also implies Proposition 2 of [14]. To show this let P, @ be probability
measures on K~ and let P®, in) be the marginals of P, Q on E the i-fold product
space. Assume that P®=,0®, icN, and let z¢E and 2.:=(2,2,...)eE~. Then

for all 1€N, where ¢, is the one point measure in z_ and, furthermore, P(i)—®> P,

Q@gQ. So by the first part of this remark P =< @

In this way we get a proof of Propositions 2, 3 of [14] without refering to the
involved pointwise equivalence theorem of STRASSEN (cf. (2)) as is done in [14].
A further useful aspect of Theorem 1 is that it allows to apply results of the theory
of balayage — which are generally proven for compact cones of continuous func-
tions — to stochastic ordering. So e.g. the pointwise equivalence theorem of
STRASSEN (cf. (2)) for probabilities on compact sets can be implied in this way
by a general theorem of the theory of balayage.

Some further statements in [14] show, that in order to prove = » in function
spaces in many cases (e.g. SKOROHOD space, space of continuous functions) it is
enough to show =,, for the finite dimensional distributions. Therefore, we want
to consider in the following the special case E=[0, 1] (the case E=R™is implied
by application of isotone transformations).

The proof of the following lemma, follows by approximation on the lattice

Gn:={(is/sm, . .., iy/ym); 0=i;=2™ 1=j=n}.

Lemma 2. Let f:E —~R! be isofone and right continuous, then there exist sequences
tz,mE [O, 1]’)%’ &£, a,i,m ERi’ ai,m EO, m,, ki,m E N, 1 éi_<—:m, mE N, SuCh tkat

fm<x)=a+,§: i mla(@) B

where
kz',m

i=t 7

converges monotonically to f.

Let now F, @ be the distribution functions (df’s) of P, P, and let X, Y be
E-valued random variables with df’s F, ¢ then we define F= u@ if Py=,P,.
Furthermore, for 1,€[0, 1], 1 =i=n, and z= (1, . . ., 2,)€E we define

Flay, 4):=P (X, <2)+ 4P (X =2,)
F(x,i, 11: l Lyy ooy xi_i):=P (X,L<x,b l .X9=xj, lgjé'i—l)
and 7p: [0, 1]*X [0, 1]* [0, 1]* by -
'tF(x, /1)'=(F(x1, 11), F(xz, 12 , (L'z), . ey F(xn, A.n l Xy, oo oy a:n_i) . (4)

For ty(x, 1, ..., 1) we use the abbreviation Tp(®). 75 is a modification of a trans-
formation introduced by ROSENBLATT [18]. The inverse of 7 18 defined inductively
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by
17 @)=(2,...,2,) with

2e:=F~Y(z;)=inf {yeR?; Fly)=z,}
(Where F(y) denotes the first marginal df. of F applied to y.)
zo:=Inf{y; Fly | 2)) =20} =F~4zy | 2y)
Zi=F"Yx, |2y, .. 0,2, ).
Similarly we define 7, 5. Let Uy, ..., U, be R(0, 1)-distributed random

variables such that {U,, ..., U,, X, Y} are independent, then with U = (U, ..., U,)
we get the following

Lemma 3. a) 74(X, U) is a random variable whose distribution is the product of m
independent R (0, 1)-distributions. '
b) 77 (U) is a random variable with df. F.

Remark (to the proof). In the special case of absolutely continuous df’s i)&rt a)
has been shown by ROSENBLATT [18]. The general case can be proved by successive
application of the idea of Lemma 1, p. 216 of FERGUSON [5] to all conditional
df’s. b) follows from an integral transformation. In a slight modified form b) is
stated in Theorem 1 of O’BriEN [17].

Let Py, P,, F, @ be defined as above, then we get
Theorem 4. a) P, =, P, if and only if

k k
Ay {xE [0, 11" 7' €U [¢; 1]}§z,, {x€ [0, 11*; 75 e U [¢;, 1]} ,
j=1 ji=1
b) T =15 A,] - (5)
imphes P1§MP2.

Proof. a) By Theorem 1 it is sufficient to consider bounded continuous func-
tions =0 in M. These functions can be approximated isotonically by Lemma 2 by
functions of the type '

m.
o+ Z ai,mI 4(®), where A= U [ti,-,m’ 1]
i=1 \
From Lemma 3, b) follows statement a).

b) Let U, ...,U, be stochastically independent, R(0,1)-distributed,
U:=U,...,U,). Then X:=7;{U)= Y:=7U)[4,]. So b) follows from
Lemma 3, b). b) is also immediate from a).

The following lemma gives 2 conditions which imply condition (b).
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1

Lemma 5. Let F, G be n dim. df’s.

a) From G(z,)=F(x)), Yz, and Qx,pq |2, -« 2)=F(@; 00 | Y1y - - - Y3,
Vg, ..o 2) =y, - . ., y;) follows

t}iéwé'i .
b) If rg=tvy and if Gz, , | Ty, . . ., ;) is antitone in (zq, . . ., x,), 1=n—1, then
'5515151 .
Proof. Define vz (xy, . . ., %,) = : (245 - - » Zp)andti @y, - . o, 2,) =1 (wy, . . ., w,).
a) The first assuhlption in a) implies z;=w;. If (z,...,2)=(wy, ..., w,;), then

G Zgqy | W, - - w) =Iinf {yeRL Gy [ wy, . .., wy) =244}
=inf{y; F(y |21, - 2) Z 0 =F U2 (21, .., 2)
This implies 17 ' =75".
b) If G(x; .4 | 4, . . ., z;) is antitone in (zy, . . ., ;) and 7,=75, then

G@;pq | 2g, - o 2)=C@ | Yoy - YI=F (00 Y1y - 5 Y
v(y‘l.: < .oy yi)é(xiﬁ .. 1797,) .

So b) is implied by a).

Remark 3. a) From monotonic transformation it follows that Theorem 4 is true
also for E=R".

b) Kamare, KrENGEL and O’BrIEN [14], Theorem 2, FRANKEN, KIRSTEIN [7],
Satz 4.1, and VEINotT [21], Theorem 4 prove stochastic ordering under the con-
ditions a) resp. b) of Lemma 5. So these results are included in Theorem 4.

By Remark 1, a) stochastic ordering on R" implies ordering of the df’s. KAL-
MYKOV [13], SToYAN [6], Satz 5 (in the case of Markov processes) and O’Briex [17],
Theorem 4 (in the non markovian case) prove ordering of the df’s under the con-
dition b) of Lemma 5. So their results are also included in Theorem 4.

For some different types of comparison of Markov processes cf. FRANKEN,
STovAN [6], SToYyaN [20] and FrRANKEN, KIRSTEIN [7].

Let Fy, ..., F, be n one-dimensional df’s and let H(F,, . . ., F,) denote the set
of all »-dim. df’s with F; as i-th marginal df. Z(F, . . ., F,) is of statistical interest
~ since it describes the influence of dependence on a statistical problem. A characte-
rization of #X(Fy, ..., F,) by means of ordering the df’s gives the Theorem on
the Fréchet bounds from Dart’AgLio [2].

A df. H is an element of #(F,, . . ., F,) if and only if

H,(x)=H(x)=H,x), YxcR",
where
Hy(x):= min F(z,)

1=i=n
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and
n
(2 #er-w-n),
for x=(2y, ..., 2,) with o, =max {a, 0}, a¢ RL H, is an element of X(F,, . . ., F,)
while H € XH(Fy, ..., F,) only for n=2 and in few special cases for n=3. In all
other cases there does not exist a lower bound 'in the set H(F,, ..., F,) with

respect to the pointwise ordering.

This implies by Remark 1. a) that generally for n=3 there does not exist a
largest element in ¥(F, . . ., F,) w.r.t. stochastic ordering. The following example
considers the question of' stochastlc ordering between two elementsof ¥(Fy, ..., F,).

: 1
Example 1. a) Let F; =F, be the df. of the 2-point distribution 3 (e0y+€¢1y) -
By a simple calculation we get:

R(F,, Fz)z{jw“; F* is df. of

H/\

1
3
. 1

For 0=ay=a,= we have H'=H"? and h_, =h_, and H'=H,, H* =H, (H,, H,

7= Vg
from Darr’Acrio’s Theorem). Let f;, f, be isotone functions with f,(0, 0)=0,
fi(l? O)’:fi(O’ 1)=f(1, 1)=1 and f,(0, O)=f2(0’ 1)=f2(1’ 0)=0_: f2(1’ 1)':1 Then

1 1
ffidP“=§—oc and ffzdPa=OC, so that for O§061<(12§-2‘

P = (5—“)(8(0,1)‘{‘5(1,0))"‘“ (€00 TEw) 0=a

neither H* =, H* nor H"%=,H".
So H(Fy, F,) is totally disordered w.r.t.=,,.
b) Let Fy,..., F, be éif’s and define
g9(®):=(g.(@), - . ., gu(@)), b(z): = (A (), . . ., By (2))
by ky(x)=g,(x)=F,(x,) and
hiw):=1; ny F,(a,-)u(F (@) (6)

j=i—1
g?,(x)‘:'[ 3—1 (F,l(xz)), 2§’i§n .
[(5-1-_ > F,-(x,-))/\i 1] -
j=1
Then h=174, and g=15, (resp. solution of the corresponding integral equation if

H, is no df.). h=g or g=h holds true only in the case of one point distributions.
This example leads to the following result.

Proposition 6. T'here do not exist two elements in H(F, . . ., F,) which are compa-
rable w.rt.=,,.

Proof. Let F, HcH(F,, ..., F,) and assume F=,H. Then by the pointwise
equivalence theorem (2) there exist random variables X, ¥ on a common pro-
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bability space with df’s ¥, H such that X =¥ a.s. Therefors, X,= Y, a.s. where

X; Y; are the i-th components of X, Y. Assume that P (X, < ¥,)>0. Then since

{Xi=<Y}= U {X;<a<1; where Q is the set of all rational numbers there exists
a€Q

an element a €@ with P (X;<a<7Y,)>0 and, therefore,

P (.X,&<a)=P (.Xi<a, X1‘§ Y1)=P (.X,Lé Yz<a) +P (X,‘<az§ Y’l,)
>P (X;=Y,<a)=P (¥;<a)
contradicting the ‘assumption that both X;and ¥, have the same df. F,. Therefore,
X;=1Y;a.s. This imphes X =1Y a.s. and, therefore, F=H.

Distributions whose marginals are ordered are comparable w.rt. = a in the
following sense:

Proposition 7. Let F;, G, 1=i=n be one-dim. df’s with F;=G,. Then it holds:
a) To FEH(Fy, . . ., F,) exists aQeH(Q,, . . ., G,) with G=,F.
b) To GeX(G,, . . ., G,) there exists aF € H(Fy, . . ., F,) with G=,,F.

Proof. a) Let X=(X,,...,X,) be a random variable with df. F and let

Ui, ..., U, be stochastically independent R(0, 1)-distributed random variables
independent of X. Define
Y:=(GT ' (F(Xy, U), ..., G (Fu(X,, U,). (7)

Lemma 3 (for n=1) implies Fy € (&, . . ., G,). F(X, U ) =F{(X,) implies
Gi_i O Fz(X,b, Ui)ggi—i o} FZ(X’L) éFi—i o F’L(X’t) §X

2

and, therefore, ¥ =X. So with G:=F we have G=,,F.

b) Let X be a random variable with df. G¢%(G, . . ., @,), then —X =(—X,, ...,
—X,)is a random variable With df. in % (1 -G ((— )—=), ..., 1-G,((—*)—)) and
1-G; ((— )S 1—F,;((—+)—). Therefore, by a) there is a random variable
Y= (Yi,... ) with df in ¥(1-Fy((-)-),...,1—F,((—+)—)) such that
Y=—-X sothat —Y=X. The df. F of —Yis an element of X(Fy, ..., F,) and it
holds that G =, F.

3. Monotonicity of the 0C-functions of SPRT’s

Let (X);. be a sequence of real random variables, let P,, € @ = R* be probability

measures such that X, :=(X,,..., X,) have under P, densities fsx) w.r.t.
a sequence u, of o-finite measures on (R", 8"). Let further 8,, #,€0, #,<48, and
define the likelihood ratio

n =f:1( ) /ﬂ;o( (n) (8)
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For boundary sequences a;, b, R4, a,<b; we define the stopping tine

o inf {’f'be N > Zn(w) Q (an’ bn)}
o): ‘{w if {n€N; Z,(w)¢ (a,, b,)}= &

(Z,,meEN,N)is a SPRT. The OC-function is determined by

Qn(®):=Py (N=n, Zy=ay)
and
P (8):=P, (N=n,Zy=zby).

We are interested in conditions on P, #€ @ such that for #=9':
Qu0)=Q,(®) and P, #)=P,#), VneN. (9)

Proof. The set
Myim (1 )RS 3%, (0 ),
and z;, =b, for iy:=min {t; 2,4 (a,, bi)}}

is monotone. So the condition on (Zy, . . ., Z,) implies
yooesd ZyysZy) ’
Py(®)=Po (M) = P3P (M) = P,(#) .
The proof of @,(#) =@, (#) is analogous.
Theorem 8 together with Theorem 4 and Lemma 5 weaken a condition given by

Hoewu [12]. Furthermore, our proof seems to be much simpler than the. proof
given by HoOEL [12]. As a corollary we get the following theorem.

Theorem 9. If f5, 15, hcfp’ue a monotone likelihood-ratio in Ty ER™ and if P;Y(“)
=yP i‘”’ for #=9' then condition (9) holds. |

. 4N
Proof. By assumptiong%—‘%:T):h,,“%(xm)) where h; ; is isotone. This implies
that (Z,, . . ., Z,) is anisotonic function of (X4, . .., X,)and, therefore, Pf,zi""’z”)é

=P 8o Theorem 9 follows from Theorem 8.

Remark 4. LEEMANN [16], Lemma 4, p. 101 showed that Theorem 9 holds for
independent random variables with a monotone likelihood ratio. GHOSH [9] proved
that (9) holds if the densities {5, €6} have a monotone likelihood ratio in a real
valued statistic T(zy). This assumption implies P;Z"""Z")E-Pf,z,i """ ® for d=79;
so GHOSH’s result is contained in Theorem 8.

Theorem 9 was formulated by LEEMANN [15], Theorem 2. But LEEMANN'S proof
18 not correct. LEEMANN concludes from the agsumption of the monotone likelihood

ratio that P = MPZ” holds for #=%". By (2) there exist mappings f,(2)=z such
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the paths (i, Z,),i=1

1

that Pf?‘:Pi”(Z”f) - LEHMANN uses this relation to compare
with the paths (i, f(Z,)), i=1 concluding

Pﬂ’,{((l’ Zi): LIRS (n: Zn))EB}=P'3 {((1, fi(Zi))a RS (n’7 fn(Zn)))EB} s

which generally is not true.

By means of Theorem 4 of Kamak, KRENGEL and O’Brrex [14] similar results
can be given for SPRT’s in stochastic processes with continuous time parameter.

Let (X,),», be a stochastic process on (2, , P,;), #€ O E, E partially ordered,
and let for 4, <{91 fixed, P, be continuous w.r.t. P, restricted on U,: = (X, ;
§=t),1=0. Let @, b: R, ~R! be boundary functions =4 and define

d,P,,g1
Zt—E (d‘Pﬁo 9It) ’

N:=inf {t€R.; Z,¢(a,, b)} (inf {t; t€0)}: = oo)
Q9):=Py (N=t, Zy=ay)

and
Pg(z‘}),;:Pa (N=t,Zy=by).

We assume that (Z;);=o defines a stochastic process on the Skorohod space
D[0, =) and that the sets defined above are measurable.

(Z;,t=0, N) can be looked upon as SPRT. In the literature (cf. GHOSH [10],
ZAcks [22], DWORETZKY, KIEFER, WOLFOWITZ [4], FrANzZ, WINKLER [8]) usually
the case of exponential classes for which X, is a sufficient statistic and Zy=f(¢, X,)
is considered. Examples are the Wiener process, the Poisson process and the
Gammaprocess. We have the following result.

(Z40nZy ) (Zy ey
Theorem10. P, * " =pP,*

=P,#) and Q,(8)=Q,(#), Vt=0.

)
" forall t€R, 1=i=n, YncN implies P,(8)=

Remark 5. Stochastic ordering of stochastic processes can be managed in some
cases by means J:f GIRSANOV’s [11] theorem or its generalizations. Let X = (X)) =0
be a stochastic process such that (X, P) is a Wiener-process and let @ be a pro-
bability measure continuous w.r.t. P on
A=\ ¥, By Girsanov’s theorem X has w.r.t. @ the representation

t=0 t
X,-—f D ds+w, ,
0
where @, is the predictable projection on 9, D,€L((z), P), where (x),=f is the

associated increasing process and where (w,, =0, Q) is a Wiener process. Further-
more, the exponentiation formula gives

13 t
de _ 1o,
E(ﬁ’%) —exp {Of @sts——éoj ®2ds
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where the first integral is a stochastic integral. So Q is denermined%y ® and P
on U and @ can be determined from the density. If f ®,ds=0 a.s. then X is under

@ stochastically larger than under P. This implies 1mmedla'cely statements on the
monotonicity of SPRT’s for measures which are continuous w.r.t. Wiener measure.

By means of the generalization of GIRsaN0v’s Theorem given by VAN SCHUPPEN,
‘Wowa [19] to general loceﬂ martingales and by meaas of the generalized exponen-
tiation formula given by DoLEANS-DADE [3] similar results are possible also for
jump processes.
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Résumé

On donne de cha.racterlsa.tlons de l'ordre stochastique de probabilités. Un des buts de
cet recherche est de donner une condition suffisante pour I’ordre stochastique. La question
d’existence de bornes supérieures et inférieures dans la classe de toutes les probabilités
avec des marges prescntes est considerée. A I’aide de I’ordre stochastique on prouve un
théoréme général SliI‘ la monotonie de I’OC-fonction des SPRT’s en processus stochastiques.

Zusammenfassung

Es werden einige Q‘haraktensmrungen der stochastischen Ordnung von Wahrscheinlich-
keitsmafen bewiesen. Insbesondere wird eine allgemeine hinreichende Bedingung fiir die
stochastische Ordnung angegeben und die Frage nach der Existenz von oberen und unteren
Schranken in der Klasse aller WahrscheinlichkeitsmaBe mit vorgegebenen Randvertei-
lungen untersucht. Mit Hilfe der stochastischen Ordnung wird ein allgemeiner Satz iiber:
die Monotonie der OC-funktion von sequentiellen Dichtequotiententests in stochastischen
Prozessen bewiesen,
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