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RATE OF CONVERGENCE FOR SUMS AND MAXIMA AND
DOUBLY IDEAL METRICS*

S. T. RACHEVT AND L. RUSCHENDORF

Abstract. It is well known that the minimal Lyp-metrics are ideal with respect to summation
and maxima of order r = min(p, 1). This implies that one can get rate of convergence results in
stable limit theorems with 0 < o < 1 with respect to maxima and sums. It will be shown that one
can extend and improve the ideality properties of minimal Lp-metrics to stable limit theorems with
0 < @ < 2. As a consequence one obtains, e.g., an improvement of the classical results on the rate
of convergence of sums with values in Banach spaces with respect to the Prokhorov distance. In the
second part of the paper it is proved that a problem posed by Zolotarev in 1983 on the existence of
doubly ideal metrics of order » > 1 has an essential negative answer. In spite of this the minimal
Lp-metrics behave like ideal metrics of order r > 1 with respect to maxima and sums. This allows
to improve results on the stability of queueing models respect to departures from the ideal model.

1. Introduction. Let (U, ||-||) be a separable Banach space with norm ||- | and
Borel a-algebra B = B(U) and let X = X (U) be the set of all random variables on
a nonatomic probability space (2, A, P) with values in U. Then the set P =P(U)
of all distributions {P x; X € X } coincides with the set M (U, B) of all probability
measures on (U, B). A function p: X x X — [0, o0] is called a probability metric (cf.
[23, p. 374]) iffor X, Y, Z € X

(3 P(X=Y)=1-pu(X,Y)=0,
(1.1) (b) w(X,Y)=pu(, X),
(©) w(X, Z) s w(X,Y)+ (Y, 2).

p is called a simple metric if X; 4 Xs, Y 4 Y; implies pu(X,, Y;) = w(Xs, Ys)
and compound otherwise. A simple metric induces a (usual semi) metric p: P(U) x
P(U) — [0, o] and vice versa.

Considering the rate of convergence problem for the CLT (central limit theorem)
Zolotarev [23] introduced the notion of ideal metrics. A probability metric p is called
a compound (r, +)-ideal metric (ideal of order r > 0 with respect to summation) if
and only if, for all X, Y, Z € X, c € R,

(8) WX +2,Y+2)<uX,Y),

12 (b) w(eX, c¥) = | w(X, )

hold. p is called a simple (r, +)-ideal metric if (a) is satisfied for any Z independent
of X and Y.
The estimate

(13) #(chXja chl/}) s ZICJITM(X]’ Y;)
Jj=1 Jj=1 j=1

for any ¢; € R' and any r.v.’s (random variables) (X;), (Y;) is a consequence of the
(r, +) ideality of p. If u is a simple (r, +)-ideal metric, then {Xj, ..., X,}, as well
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as {Y3, ..., Y, }, are supposed to be independent r.v.’s. In particular, if X;, X, ...
are i.i.d. (identically independent distributed) r.v.’s and Y(a) has a strictly symmetric
stable distribution with parameter o € (0, 2] and p is a simple (r, +)-ideal metric of
order r > «, then we obtain

(1.4) u(n‘l’“ X, Y(a)) s TPy, Vi)

=1

from (1.3), which gives a precise estimate in the CLT under the only assumption that
1(X1, Y(4)) < 0o. (Under additional assumptions one can improve the order in (1.4),
cf. (2.11) with pu = L,,.)

In several Banach spaces (e.g., in Banach function spaces) one has a natural
maximum operation z V y. With respect to the operation V one defines similarly the
notion of compound and of simple (r, V-ideal metrics assuming condition (b) in (1.2)
only for positive c. Especially, if x is a simple (r, V)-ideal metric on R' and if Z(a) is
a a-max-stable distributed r.v. on R' (i.e. Fz(a)(z) = exp{—2~ %}, z 2 0), then

(1.5) u(n—l/a \"/ X, Z(a)) < nl-r/aﬂ(xlv Z(a))
=1

for any i.i.d. r.v.’s X;.

In the following sections we construct some ideal metrics for summation and for
maxima and discuss the problem formulated by Zolotarev [26, p. 300] to construct
metrics which are ideal with respect to both operations simultaneously. As is imme-
diately clear from (1.3)-(1.5) one gets as a consequence rate of convergence results
in the CLT. It will be interesting to compare the new results with classical results
in terms of, e.g., the Prokhorov distance and also with respect to the assumptions in
these theorems.

We will point out the importance of the L,-metrics in this kind of problems
and especially obtain an improvement of Zolotarev’s classical estimate of the rate of
convergence with respect to the Prokhorov distance for 1 < o < 2. We will show that
Zolotarev’s problem has an essential negative answer but that in the range 0 < o < 2
the L,-metrics (in spite of being only ideal of order min(1, p)) behave like doubly ideal
metrics of order r =14+ a—a/p21lfor0<a<p<?2.

2. Ideal metric and rate of convergence for summation. Define for X,Y €
XU)=4X
L (% V)= (B[ X =y Py o F g «plcis,

(2.1)
Ly(X, Y)=esssup|| X =Y

and let Ep denote the corresponding minimal metrics, i.e.,
(2.2) L(X, Y)=inf{L,(X,Y); X2 X,Y2Y}, 0O<p<oo,

where X £ X means that P >z = P x. Note that ip(X, Y)<oo (0<pg o)
does not imply the finiteness of pth moments of || X|| and ||Y]|; for example, on R' a
sufficient condition for L,(X,Y) <00 (1<p<o0)is ky(X,Y):= [ 2P~ | Fx () —
Fy(z)|dz < oo, see further (2.15). (The advantage of exploring the difference moment
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condition k,(X, Y) < oo in the Berry—Esséen type estimates was demonstrated by
Hall [5]). Since L, is a compound (r, +)-ideal metric with r = r, = min(p, 1), fp is
a simple (7, +)-ideal metric (see [23] and [16]). Therefore, from (1.4) one obtains for
iLid. r.v.’s (X;) and for the a-stable r.v. Y(,) the following estimate:

=1

(23) Ep (n—l/a Z Xi) Y(a)) < nl_r/af’p(xla Y(a)),

which is useful only for 0 < a < p < 1.

In the following remark we will discuss the results obtained by means of Zolota-
rev’s ideal metric (.

Remark 2.1. a) It is easy to see that there is no nontrivial compound (r, +)-ideal
metric 4, when r > 1. Since the compound (r, +) ideality would imply u(X,Y) =
p(X+--4+X)/n, Y +---+Y)/n) sn'"u(X,Y), foralln € N, ie., u(X,Y) €
{0, oo} for all X, Y € X(U).

b) Zolotarev [23] detected a simple (r, +)-ideal metric of any order r > 1, namely,
ifr=m+a, 0<acsl meN, then

24) &, V) =swp{|EFX)-FX);  |f @) - £ @) <z -},

f S () denoting the Frechét-derivative of order m.

A problem with the application of ¢, for 7 > 1 in the infinite-dimensional case was
pointed out by Bentkus and Rachkauskas [1]. In Banach spaces the convergence with
respect to (., 7 > 1, does not imply weak convergence (cf. [1]). In Hilbert spaces by
results of Senatov [17] there is no inequality of the type ¢, > cr®, a > 0, where 7 is the
Prokhorov-metric, while by a result of Gine, {,-convergence implies weak convergence.
(The reference to Gine was pointed out to us by a referee.) Under some smoothnes
conditions on the Banach space, Zolotarev [22, Thm. 5] obtained the estimate

(2.5) o I(X1, 1Y) < C6(X, Y),
where C' = C(r). Therefore, under these conditions it follows from (1.4) that

™ (n_l/a
(2.6)

D<asr<oo

n

> X

=1

, ”Y(a)”) siemMRISNS A (i),

(see also [1, Thm. 19] for a version of (2.6)). It was proved by Senatov [17] that the

order in (2.6) is true for r = 3, a = 2, namely, n~ Y%, The only known upper estimate
for ¢, applicable in the stable situation is (cf. [24, Thm. 4)

I'l+a)
- < —- = <
(27) CT_I-\(1+T) Vr, r m+a, 0<a_1, mEN,
where
(2.8) (X, Y) = / Izl d|P x — Pyl ()

is the absolute pseudomoment and P x, Py are assumed to have identical pseudo-
moments of order < m. So v,(X;, Y(4)) < 0o and the assumption of identical pseu-
domoments ensures the validity of (2.6).
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We next would like to show that Ep, in spite of being only a simple (rp, +)-ideal
metric, 7, = min(1, p), acts as an ideal (r, +)-metric of order r = 1 +a — a/p for
0 < a<p<2 We formulate this result for Banach spaces U of type p. Let (Y;);;
be a sequence of independent random signs.

DEFINITION 2.1 (cf. [21] and [7]). Let 1 < P < 2. A Banach space (U, |- [|) is said
to be of type p, if there exists a constant C' such that for all n € N and Tyy ooy T, €U

n p n
D Y|l <C Y [l
=1 =1

Inequality (2.9) is equivalent to the following condition (cf. [8]): There exists
A > 0 such that for all n € N and X1, ..., X, € X(U) independent with E X; = (
and finite pth moment holds

(2.9) E

p n
(2.10) E <A E|X;|P.
=1

n
>
=1

Every separable Banach space is of type 1, every finite-dimensional Banach space and
every separable Hilbert space is of type Zlt={X e X (RY): E|X|? < oo} is of
type p = min(2, ¢) for all ¢ > 0. Similarly I, = {z € R*®, llzlly < oo} is of type
p=min(2, q).

THEOREM 2.2. If U is of type p, 1 Sps2ad0<a<pcs 2, then for any
tid ru’s Xy, ..., Xn € X(U) and for a strictly symmetric stable r.v. Y(o) with
E(X; - Y(a)) =i

n
(2.11) L (n"l/“ZX,-, Y(a)) =SB, n L (XY )

=1

holds.

Proof. From Proposition 2.1 of Woyczynski [21] one obtains for any q > 1 that
U is of type p if and only if for some B, and any n € N and for T S i X(0)
independent with E Z; =0

n q n a/p
(2.12) E(|) z| <B'E ( 3 ||Zi||”) .
=1 i=1
Let Y3, ..., ¥, € X(U) be independent, Y; < Y(),such that Z; = X; -V, 1<i<n
are independent also. Then with g=pand Yy, = n~1/e Z:;l Y; from (2.11) follows

L(nYe S Yio) < Bpn—l/aﬂ/pr(X,-, Y1). Passing to the minimal metrics
(2.11) follows.

From Strassen’s representation of the Levy—Prokhorov distance one obtains the
relation

(2.13) wF LT e

Equation (2.12) implies the following corollary.
COROLLARY 2.3. Under the assumptions of Theorem 2.2 for 1 Sps2,0<acx<
P2

W(n—l/aZXi, },(a)> < B;/(P+1)n[1/(P+1)](1—1’/0)Ep(Xl, Yia))p/(p-i-l)-

=1
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holds.

Remark 2.2 a) For r = p € [1, 2] the rate in (2.13) and in Zolotarev’s estimate
(2.6) are the same. If U = LP, then it can be shown that one can choose the constants
B,=18p"%/(p—1)"* for 1<p<2

2.14
( ) Bl - 1.

In contrast to (2.6), which concerns the distance between the norms of r.v.’s only,
(2.13) concerns the Prokhorov distance itself which is topologically strictly stronger
in Banach spaces and much more informative. Furthermore, from [25, p. 272] follows

(2.15) LY(X, Y) < 2°k,(X, Y) £ 2u,(X, Y),
where k.., r > 0, is the rth difference pseudomoment
(X, Y)=inf {Ed, (X, Y); XX, ¥Ly)
(2.16) =sup{|E f(X)- E f(Y)|: f: U >R, bounded,
|f(z) - f®)| < dv(z, v), =, yeU),

and d,(z,y) = ||z||lz|""" - yllyll”"|l. Since the problem, whether x,.(X,Y) < oo,
E (X —Y) = 0 implies ¢.(X, Y) < oo is still open for 1 < r < 2, the right-hand side
of (2.13) seems to contain weaker conditions than the right-hand side of (2.6).

b) Bentkus and Rachkauskas (1, Thm. 19] proved that

T (n"“" > X, Y@) = erint GElE R o Y Y,

i=1
0<acg2, > a;
where 7 4 is the “restricted” Prokhorov metric
TA(X, Y):=inf{e>0: P(X€A) s P(Y € A +¢ for all Ae A},

and A is a class of Borel sets obeying some very complicated “uniformity” conditions.
By the same arguments as in a) one sees that Theorem 2.2 improves the result of
Bentkus and Rachkauskas [1] cited above.

Ezample 2.1. Let 1<p <2, let (E, &, 1) be a measure space and define

(2.17) lpu = {X: (E, &) x (?, A) > R, BY): |X||,. < oo},

where || X[, . = E ([ |X(t)[Pdu(t))"/? . (lo,u> || llp,u) is a Banach space (identical to
L" for one point measures 1) of stochastic processes. Let X;, ..., X, e X (lp,,) With

E X; =0, then
P
L'p /
p,u

n n p n p/2
Y x; D X(t)| du(t) < / By E ( > o x? (t)> dp(t)
i=1 =1 =1

by the Marcinkiewicz—Zygmund inequality (cf. [18, p. 469]). Since p < 2 we obtain
from the Minkowski-inequality

E

n p

2 X,

i=1

(2.18) E

n n
<B,Y B [ X0 dut) = B, IXIE,,

p
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Le.,l, , is of type P and,therefore, one can apply Theorem 2.2 and Corollary 2.3 to
stochastic processes in by i

For 0 < o < 2p < 1 we have the following analogue of Theorem 2.2.

THEOREM 2.4. Let X sy iy, B X(U) be i.i.d.,let ) 0 T X(U) be
t.i.d.,and let 0 < o < 2p £ 1, then

(2.19) L, (n‘”"}jxi, n‘“"ZYi) < Byn/CR-1e g3 x,, 1),
=1

=1

where T;, is the minimal metric with respect to the compound metric T(Xy, 1) =
[suPeso ¢ P (1, - vi ) > o))/,

Proof. We have E|jn~"/*y" x, _,-/a TahilP=a?tmye x
W < 0™ B(SL, X~ KI)° < Byn /= /n(eups . P (X =13 |P > ¢))'/2,
the last inequality following from Lemma 5.3 of Pisier and Zinn [14] with g = 1 /p = 2.
Passing to the minimal metrics, (2.19) follows.

Remark 2.3. a) From the ideality of order p of Zp (cf. (2.3)) one obtains for
0 < a <1 the bound

n n
(2.20) 5 (n‘I/“ZX,., n e Y;) =T e ey
1

For 0 < o < 2p < 1 holds ip—1/a <1 — P/, i.e., the rate in (2.19) is better
2 -
but (2.20) concerns convergence with respect to the stronger metric i

b) In the case U = p,u OUT Tesults give rates of convergence in “L”-invariance”

principles in the stable case. For some results on L? -invariance principles we refer to
(13, Thm. 1].

3. Ideal metrics and rate of convergence for maxima. For the maxima, of
I.v.’s several simple (7, V)-ideal metrics are known for any r > 0, implying by (1.5)
the rate of convergence of order 1 — 7/a (cf. [27] and [12]). In the following example
we construct for any r > ( a compound (r, V)-ideal metric. This shows an essential
difference between summation and maxima, of r.v.’s.

Ezample 3.1. (A compound (r, V)-ideal metric.) For U = R! and any 0 < p < o0
define for X, ¥ € X(R})

oo

8es%, ¥) = ([ theyt@) o"as )

—00

Ar,oo(X’ Y) = Ssup lxITQOX,Y(w),
z€R!

(3.1)

where ¢ = min(1, 1/p) and Pxy(z)=P(X <z < Y)+P(Y<z< X); A, pis a
probability metric. Obviously, for any ¢ > 0,

(o7¢] q
A, p(cX, c¥) = (/ ey (@/c) x |a=l"’"1dw) = A o)

and
Aroo(cX, cY) = A, (X Y)
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holds. Furthermore, from the relation
(3.2) {XvZ§x<YvZ}c{X§a:<Y},

which can be established for any r.v.’s X , Y, Z by considering the different possible
order relations between X, Y, Z, it follows that

(3.3) A, p is a compound (r min(p, 1), V)-ideal metric for
' O<pgoo, 0<7T<o00.

The corresponding minimal metric Er,p = inf{Ar,p()? ; }7), XL X,\¥ 4 Y}isa

simple (r min(p, 1), V)-ideal metric that one can check by the representation

oo q

Beo, V)= ([ fal™x(a) - R@[d), 0<p<oo,

Gy R ~oo0
Ar,oo(Xa Y) ] Slellp{ I:BITIFx(m) A FY(w)I

(cf. [15]). The ideality of Er,oo was first established and used by Zolotarev in the CLT
for maxima of i.i.d. r.v.’s (see [26, p. 299]).

From (1.5) one obtains for a simple probability metric x which is simple (r, V)-
ideal that p(X;, Z(a)) < 0o implies p(n~/* Vic: Xi, Zioy) snt "o, Z(4)). For
U= Zr,oo it was shown by Omey and Rachev [12] that the converse relation is also
correct, i.e., the rate in (1.5) is of right order.

We next want to investigate the properties of the L,-metrics (cf. (2.1)) with
respect to maxima. As in Example 2.1 for 0 < A < 0o we consider the Banach space
U=bhu=1{X: (E, £) x (2, A) - (R, B'); ||X||,. < oo}, where

1 XI5, .

(J1X (@) du(t) for 0<\<oo
B esstsup |X ()| := inf {e > 0; JI{|X ()| > e} u(dt) = 0} for A=o0

with A* = max(), 1), and define for X, Y € U, X VY to be the pointwise maximum,
X VY(t)=X(t)VY(t), t € E. For related limit results for a-max stable processes
consider de Haan and Rachev [4]. In the case A = 00, loo,, is not separable but since
the ess sup | X (t)| is measurable this does not cause difficulties.

LEMMA 3.1. a) For 0 < A < 00 and 0 < p £ 00, L, is a compound (r, V)-ideal
metric of order r = min(1, p).

by I Xy VX X(ly,.) are i.i.d.,and if Z(a) 18 @ a-maz-stable process,then

(3.5) Zp (n_l/a VX,-, Z(a)) < nl_r/afp(Xl, Z(a)); Wwhere r=min(1, p).
i=1
Proof. a) For X, Y, Z €1y, and 0 < p < 0o, we have E|XvZ-YvVZ},h =
E([IX(®)VZ(t)-Y(t) Vv Z(t) u(dt)”> < E|X - Y|/, and for ¢ > 0 we have
ElleX —cY |5, =c"E|X —Y]5,. The case p = oo is also obvious.

b) Using the representation Lty = n~1/e LY, with Y, el 1Ad. Y £
(o) =1
Z(a), b) follows from a) and (1.5).
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The estimate (3.5) is interesting for p < 1 only; for 1 < p < A < o0 one can

improve it as follows.
THEOREM 3.2. Let 1 SP <A< oo, then for X, .. - Xn € X(1y ) i.d.d. we have

~

(3.6) L{n=\] %, Zi) [ W Ep 7 5,
i=1

Proof. Let Zy =n""/* Vie1Y: and A < oo, then
n n
L, (n_l/a v Xiip— e V Y,)
=1 =1

§n_1/“{E F/

n n A p/A) /P
V%) - V v 20 }
=1 =1

= p/A) /P
< n‘”"‘{ E| / Z | X;(t) - Yi(t)l*du(t)] }
= p/A) 1/p
n‘”"‘{ Z E [ / | X:(t) — Y,-(t)l*du(t)} }
n 1/p
= n‘”"{ Y X Y,-)} :
=1

the last inequality following from the Minkowski-inequality, since p/A £ 1. Passing to
the minimal metrics, we obtain (3.6). The case A = oo is similar.

Remark 3.1 a) Comparing (3.6) with (3.5) we see that actually fp “acts” in this
important case as a simple (@ + 1 — a/p, V)-ideal metric. For 1 < p it holds that
1/p-1/a<1-1/a,ie., (3.6) is an improvement over (3.5).

b) An analogue of Theorem 3.2 holds also for the sequence space [, C R™.

IIA

4. Doubly ideal metrics. We now investigate the question of the existence and
construction of doubly ideal metrics posed by Zolotarev [26]. As we have shown in 8§82
and 3, L, are ideal metrics of order min(1, p) < 1 for both operations simultaneously.
Let U be a Banach space with maximum operation V.

DEFINITION. 4.1 (Doubly ideal metrics). A probability metric non X (U) is called

a) (r,I)-ideal, if y is compound (r, +)-ideal and compound (7, V)-ideal;

b) (r,II)-ideal, if y is compound (r, V)-ideal and simple (r, +)-ideal;

¢) (r,III)-ideal, if y is simple (r, V)-ideal and simple (r, +)-ideal.

Remark 4.1 Note that if p is a (r, IT)-ideal metric, then one obtains for (X;) i.i.d,
(Xi) iid, S =3F X, Sg =" X7, 7, =~V Vi S Zn =ibioNE:, S
the estimate u(Z,, Z7) < n™"/*u(\_ 8, VeiiSE) s ™8 Y0e, (684 S1) <
e e Z;;l #(X;, X;) and hence for the minimal metrics (cf. [23])

i~ * BTN S * —r/a~ *
W) Bz 22) s MO e, xy < artan g x7),

which gives us a rate of convergence if 0 < a < r/2. Therefore, from the known
ideal metrics of order r < 1 one gets rates for o € (0, %) It is therefore of interest

[ —

P
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to study Zolotarev’s question for the construction of doubly ideal metrics of order
p> 1

Ly, 0 < p < oo, is an example of a (min(1, p),I)-ideal metric. We have seen in
§2 that there does not exist a (r, I)-ideal metric for r > 1. fp is a (r, III)-ideal metric
of order r = min(1, p). We now show that Zolotarev’s question on the existence of a
(r,II) or a (r, III)-ideal metric has essentially a negative answer.

THEOREM 4.1. Letr > 1 and let p be a (r, II1)-ideal metric in P(R') and assume
that p satisfies the following regularity conditions:

Cl: If X, (respectively, Y,) converges weakly to a constant a (respectively, b),
then

(4.2) lim sup p(Xn, Y,) 2 p(e, b);
n—oo

C2: u(a,b) =0 <= a =1b. Then for any integrable X, Y € X(R) we have
wX,Y) € {0, oo}.

Proof. If p is a simple (r, +)-ideal metric, then for integrable X, Y € X(R')
inequality u((1/n) 3;_; X;, (1/n) Y1, ¥;) £ n'~"u(X, Y) holds, where (X;, Y;) are
L.i.d. copies of (X, Y). By the WLLN (weak law of large numbers) and C1 we have
H(EX, EY) < limsup p((1/n) 3 X;, (1/n) 3°Y;). Hence assuming that u(X, Y) <
0o, we have u(EX, EY) =0, ie., EX = EY by C2. So u(X,Y) < oo implies that
EX = EY. Therefore, by u(X Va, Y Va) < u(X, Y) we have that E(X Va) =
E(YVa), Va€R',ie, X 2 and, therefore, u(X, Y) = 0.

Remark 4.2. Condition C1 seems to be quite natural. Let, e.g., F be a class of
non-negative lower semicontinuous functions (ls.c.) on R? and ®: [0, 00) — [0, 00)
continuous nondecreasing. Define the minimal functional

(4.3) (X, Y) = inf {(p(sup Eif(X, }7)),)? £ X, Vi Y}.
fer

Then 4 is Ls.c. on X(R') x X(RY), i.e., (X,,, Y,) — (X, Y) implies
(4.4) lim inf u(X,, Y,) 2 u(X, Y);

so C1 is fullfilled. Actually, for f € F the mapping hy(X,Y) = E f(X,Y) is Ls.c.
Therefore, also p(sup ser hy) is Ls.c. and there exists a sequence ()?n, ]7") with )?n 2
X‘na ?n g Yna such that l"'(Xna Yn) = (p(supfe}‘ hf()?n, ?n))

The sequence of distributions A, of (X, Y,) is tight. For any weakly con-
vergent subsequence )\, with limit ), obviously, A has marginals px and pY. If
lim inf u(X,, ¥,) < u(X, Y), then for some subsequence (m) C N, u(X,,, Y;,) would
converge to some a < u(X, Y) in contradiction to the L.s.c.-property proved above.

Nevertheless we shall show next that for 0 < a < 2 the metrics L, for 1 <
P £ 2 “act” as (r,II)-ideal metrics in the rate of convergence problem for Z, =
n~ e Vi Sill 25 =ime il V%=1 Sk, where Sj, = Zle X;, S = Zf=1 X; are sums
of i.i.d. r.v.’s. The order of ideality is r = 20,41 — a/p > 2a and, therefore, we obtain

2—7r/a
a rate of convergence n (cf. (4.1)).

We consider at first the case that (X;), (X;) arei.i.d.r.v.’sin G, I-1D) = @, - 1D,
where for z = (') € by Nzl = (3252, lz9PY?. For z, y € 1, we define z vy =
(:L‘(j) v y(j)).
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THEOREM 4.2. Let 0 < o < P<2,1<p<2and E(X, - X71), then under the
conditions formulated above we have

= * b ks 1/p,_1/p—1/a$ *
(45) Lol(Zn, 22 s ( 1) By/"nt/pleg (x, x3.
In the Hilbert space (1, Il Il2)

(4.5 Ly(Zn, Z3) s mM> VR, x, X7):

holds. In particular,for the Prokhorov metric T we have

1/(p+1) -
(46) n(z, Z,',‘)§( Pl) B;/(”“)n(l/("“))(l"’/"‘)L;’/(”H)(Xl, x5

Proof. Let ()?,-, X: ) be independent pairs of random variables in ¥ (I,). Then

~

for S = EZ;I X, S'= Zf=1 X; we have

n n
L;: (n/ VERSTRY §;:>
k=1 k=1
n

n 1% n n 1/p—p
£ n—P/aLg( V §k1 V §1:) a n—P/aE [Z, V g,gj) 2 4 v g;(i),pJ
k=1 k=1

(4 7) k=1 j=1 k=1
’ 001% R I i oo B v el
<nPleg V ’S,EJ) T S,:‘(J), o n—P/aZ E V ’SIEJ) g SZ(J)
7=1k=1 J=1 k=1

the last inequality following from Doob’s inequality. Therefore, we can continue ap-
plying the Ma.rcinkiewicz—Zygmund inequality with

o = p/2
—pla= P Y0 _ 502
<n Jzzlp\—prE<§(Xz Xi ) )
0 n e oA Y
B Y Y BIR - XOP = 2 p ety %, g

Jj=1i=1

S

p—1

the last inequality following from the assumption that 2/p < 1. Passing to the minimal
metrics we obtain (4.5), (4.5"). Finally by means of n?*! < I? we have (4.6).

The same proof also applies to the Banach space I, ,, (cf. Theorem 3.2 and
Example 2.1).

THEOREM 4.3. If0 Sa<p<2, 1<p<2and XA, Xoke X(lp,,) are i.i.d.
and X7, ..., X: € X(l,,) are i.i.d. such that E(X; — X{) =0, then

n n
48) I, <n‘l/" V Sk, n7V\/ s,:) <5 2B ntPVeE (x, x3)
k=1 k=
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and

»/(1+p) o
) B,nMG+0)(-p/a) Ep/o41) (.,  x7)

49)  w(Zaw Z0) < (ﬁ

5. Stability of queueing systems. The stability problem in queueing theory
concerns the “domain” within which the “ideal” queueing model may be applied as
a good approximation of the real queueing system under consideration. We consider
here the G|G|1|oo model. For this system the random variables (,, = s,, —e,, are i.i.d.,
E(; <0, s, (respectively, e,,) denoting the waiting (respectively, interarrival times).
Then the one-dimensional stationary distribution of the waiting time coincides with
the distribution of the following maximum

-1
(5.1) W=swS, Si=3 ¢ Yo=0 (;%¢
= j=—k

The superscript (*) will denote the characteristics of the disturbed model (i.e., e, si,
Sk) which we assume to be also of type G|G|1|oo. For reference to these problems we
refer to [6], [11], [9], [19], [20], [2, Chap. IV], and [10]. As Borovkov [2, p. 239], noted,
one of the aims of the stability theorems is to estimate the closeness of E f*(W™) and
E f(W) for various kind of functions f, f*. Borovkov [2, pp. 239-240] proposed to
consider the case

(5.2) @) - fly) < Alw—y| for all z, yeR".
He proved in [2, p. 270] that

(5.3) sup{|E fW") - E f(W)|: |{&) - )| s Ala -], =, yeR'}<es,

assuming that |[({ — (;| £ € a.s. Here and in what follows ¢ stands for an absolute
constant that may be different in different places.
By the Kantorovich duality theorem we have

(54)  AL(W', W) =sup{Ef*(W") - Ef(W); (f", f) satisfy (5.2)}
provided that E|W*| + E|W| < co. So the estimate in (5.3) essentially says that
(5.5) Liw*, W) cLo(l, G)-

The estimate in (5.5) needs strong assumptions on the disturbances to conclude stabil-
ity. In this section, we shall precise and extend the estimate (5.5) considering estimates

of
AL,(W*, W) =sup{E f*(W") - E f(W); f"(z)~ f(y) < Ale -y

(5.6) ;
for all z, yeR'}, 0<p< oo,

assuming that E|W”|” + E|W|? < co. The following lemma considers the closeness
of the prestationary distributions of W,, = max(0, W,,_; +(,—1), Wy = 0, and of W,
(defined like W,,).

LEMMA 5.1. Forany0<p< oo and E¢; = E(]

(5.7) LWy, W,) £ 4,
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where
n(n+1 . 1/(1+5) |
aus (_(_2 € cl/p-l’i%é‘z/p 1 62(1“")) for, p €6, 1];
A,,=cn/”ep for 1<pg2,
A, = cnl/zep for p> 2,

and Ep = Ep(ch Cf)
Proof. We have that

W, = max(O, Cnziy niqt Crgyovioray Cno1 Fone Cl) = Oglaéxk S],

Wy =max(0, (a1, (a1 +Cng, ---» Gy +---+ () 2 2 P Sj- |

If 0 < p < 1 then by the (p,II) ideality of L, follows (see Remark 4.1)

= - n(n+1
5.8 Eowi, W) s HDE e ),
If 1 < p £ 2 then from Theorem 4.3. follows
1/p
(5-9) Lp(W;:, Wn) é (pp%l) Bpnl/pep.

From (5.9) and fp < ip(1+5) forany 0 <p<land1l/p—1<§<2/p—1 we have
1<p(1+6)<2and

= i B
(510) Lp(Wna Wn) S cnl/(1+ )€§(1+6)
For p > 2 we have

LA(W,, Ws) = E

§

P E S, - SiP £ en®Ly(¢1, G-

AR

This last inequality is a consequence of the Marcinkiewicz—Zygmund inequality (cf.
3, p. 357]).

Remark 5.1. a) The estimates in (5.7) are of the right order as can be seen by
examples.

If, e.g., p > 2 consider (, = N(0, 1) and ¢;" = 0, then L,,(Wn, W,)=cn e

b) If p = oo, then Loo(Wn, W,) £ neg.

Define now the stopping times

0= mf{k Wi = max §; = W—supS}

(5.11) 0<j<k 720

6* = inf{k: Wy = W*}.
From Lemma 5.1 we now obtain estimates for L »(W*, W) in terms of the distributions
of 6, 6. Define G(n) := P (max(6*, ) = n) < P(0 =n)+ P (0 =n).

THEOREM 5.2. If1<p<2, A, p21 with1/A+1/u=1 and E¢; = E(} <0,
then

(5.12) 2(W*, W) < cepn Zn (G(n)) /"

n=1
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Proof.

Ly(W*, W)= E|W* - W’ = S EW -—wp 1{ max(6*, 6) = n}

n=0
=Y E|W, - W, 1{ max(6*, 6) = n}
n=0
oo oo
<D (BIW — W) G (m) " < 3 42, G(n)
n=0 n=0
o0
=Y en'e6m)¢ by (5.7)).
n=>0
Remark 5.2. a) If
(5.13) G(n) £ Cn~#(1/2+1te)

for some & > 0, then Y >° nl/’\G(n)l/“ =0y 1/n < o5 For conditions on
(i» ¢ ensuring (5.13) cf. 2, pp. 229, 230, 240)].

b) For 0 < p < 1 and P > 2 we similarly get from Lemma 5.1 corresponding
estimates for EP(W*, W).

c) Note that L,(W*, W) < EP(W*, W) (i.e. Ep considers more functions w the

deviation) but on the other hand Epx = Ep,\(ﬁ* Ay Eoo((f y €1). Therefore, the
estimates in Theorem 5.2 improve that of Borovkov.

Acknowledgments. This research was performed while S. T. Rachev was vis-
iting Professor at the University of Miinster. He wants to acknowledge gratefully the
grant received by the Deutsche Forschungsgemeinschaft (DFG). We thank a referee
for pointing out to us that it was proved by Gine in “Stochastica” (1980), p. 43-76,
that (,.-convergence, r > 1, implies weak convergence in a Hilbert space. Also in
connection with Theorem 2.2 & reference to Kiihn, Soob. AN. Gr. SSR, 110 (1983),
Pp. 253-256, was pointed out by the referee.

Our ideas on probability metrics were developed during many stimulating con-
versations with Professor V. M. Zolotarev and his students. The paper also benefited
from constructive suggestions by two referees and the Associate Editor.

REFERENCES

(1] V. Yu. BENTKUS AND A. RACHKAUSKAS, Estimates of the distance between sums of indepen-
dent random elements in Banach spaces, Theor. Probab. Appl., 29 (1985), pp. 50-65.

(2] A. A. Borovkov, Asymptotic Methods in Queueing Theory, John Wiley, 1984.

[3] Y.S. CHOW AND H. TEICHER, Probability Theory:Independence,Interchangeability,Martinga,les,
Springer-Verlag, New York, 1978.

[4] L. pE HAAN AND S. T. RACHEV, Estimates of the rate of convergence for maz-stable processes,
Ann. Probab., 17 (1989), pp. 651-677.

[5] P. HALL, Two-sided bounds on the rate of convergence to a stable law, Z. Wahrscheinlichkeit-
stheor. verw. Geb., 57 (1981), pp. 349-364.

[6] B. V. GNEDENKO, On some unsolved problems in queueing theory, Sixth Internat. Telegraphic
Conf., Munich, 1970. (In Russian.)

[7] J. HOFFMANN-J ORGENSEN, Probability in Banach spaces, In: Lect. Notes Math., 598, Springer-
Verlag, 1977, pp. 2-187. :



RATE OF CONVERGENCE FOR SUMS AND MAXIMA 235

(8] J. HOFFMANN-JORGENSEN AND G. PISIER, The law of large numbers and the central limit
theorem in Banach spaces, Ann. Probab., 4 (1976), pp. 587-599.
[9] D. L. IGLEHART, Weak convergence in queueing theory, Ady. Appl. Probab., 5 (1973), pp. 570

594.

(10] V. V. KALASHNIKOV AND S. T. RACHEV, Mathematical Methods for Construction of Queueing
Models, Nauka, Moscow, 1988. (In Russian.)

[11] D. KENNEDY, The continuity of the single server queue, J. Appl. Probab., 9 (1972), pp. 370-
381.

[12] E. OMEY AND S. T. RACHEV, On the rate of convergence in eztreme value theory, to appear.

[13] W. PHILLIP, Weak and LP-invariance principles for sums of B-valued random variables, Ann.
Probab., 8 (1980), pp. 68-82.

[14] G. PIsiER AND J. ZINN, On the limit theorems for random variables with values in the spaces
Ly (2< p < ), ZWT, 41 (1977), pp. 289-305.

[15) S. T. RACHEV, Minimal metrics in the real random variables space, In: Lect. Notes Math.,
982, Springer-Verlag, 1983, pp. 172-190.

[16] S. T. RACHEV, Eztreme functionals in the space of probability measures, In: Lect. Notes
Math., 1155, Springer-Verlag, 1985, pp. 320-348.

7] v. V. SENATOV, Some lower estimates for the rate of convergence in the central limit theorem
in Hilbert space, Sov. Math. Dokl., 23 (1981), pp. 188-192.

(18] A. N. SHIRYAYEV, Probability, Springer-Verlag, New York, 1984.

(19] W. WHITT, Heavy traffic limit theorems for queues: A survey, Lecture Notes in Economics and
Math., Systems 98, Springer-Verlag, 1974.

(20] W. WHITT, The continuity of queues, Adv. Appl. Probab., 6 (1974), pp. 175-183.

[21] W. A. Wovczynski, On Marcinkiewicz-Zygmund laws of large numbers in Banach spaces
and related rates of convergence, Probab. and Math. Statist., 1 (1980), pp. 117-131.

[22] V. M. ZOLOTAREV, Approzimation of distributions of sums of independent random variables
with values in infinite dimensional spaces, Theor. Probab. Appl., 21 (1976), pp. 721-737.

[23] » Metric distances in spaces of random variables and their distributions, Math. USSR
Sbornik, 30 (1976), pp. 373-401.

[24] , Ideal metrics in the problem of approzimating distributions of sums of independent
random variables, Theor. Probab. Appl., 22 (1977), pp. 433-449.

[25] » On pseudomoments, Theor. Probab., Appl., 23 (1978), pp. 269-278.

[26] » Probability metrics, Theor. Probab., Appl., 28 (1983), pp. 278-302.

[27] V. M. ZOLOTAREV AND . T. RACHEV, Rate of convergence in limit theorems for the Magz-
scheme, In: Lect. Notes Math., 1155, Springer-Verlag, pp. 415-442.




