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Abstract

The Monge-Kantorovich transportation problem has a long and interest-

ing history and has found a great variety of applications (see Rachev and

R�uschendorf (1998)). Some interesting characterizations of optimal solutions

to the transportation problem (resp. coupling problems) have been found

recently. For the squared distance and discrete distributions they relate op-

timal solutions to generalized Voronoi diagrams. Numerically we investigate

the dependence of optimal couplings on variations of the coupling function.

Numerical results con�rm also a conjecture on optimal couplings in the one-

dimensional case for nonconvex coupling functions. A proof of this conjecture

is given under some technical conditions.

1 Introduction

In the transportation problem of Monge-Kantorovich there are given two mass dis-

tributions P , Q on (E;A) and a product measurable cost function c : E�E ! IR

+

.

The aim is to determine an optimal transportation plan �

�

in M(P;Q), the class

of probability measures on (E � E;A 
 A) with marginals P , Q, such that the

transportation cost is minimal. For technical reasons we consider the equivalent sup

problem; for the inf problem just switch from 'c' to '�c'.

C(P;Q) = sup

�

Z

c(x; y)d�(x; y);� 2M(P;Q)

�

=

Z

cd�

�

: (1.1)

Note that any � 2 M(P;Q) has the interpretation as a transportation plan which

transports the mass P to the mass Q. In terms of random variables an optimal

�
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transportation plan �

�

corresponds to an optimal c-coupling (X;Y ) of the distribu-

tions P , Q. If Y = �(X) is a function of X then we call � a Monge-function for

the coupling problem.

The Monge-Kantorovich problem has a long history dating back to Monge (1781)

and Kantorovich (1942). A detailed exposition of this problem and of its many

applications is given in Rachev and R�uschendorf (1998). A basic result in this

context is the duality theorem

C(P;Q) (1.2)

= inf

�

Z

fdP +

Z

gdQ; f 2 L

1

(P ); g 2 L

1

(Q); f(x) + g(y) � c(x; y) 8x; y

�

:

This duality result holds true for all bounded (or uniformly integrable) measurable

functions c if (E;A; P ) is a perfect measure space. It has been found recently that

in a somewhat stronger form it holds true in general only for perfect measure spaces

(see Ramachandran and R�uschendorf (1998)).

A real function f on E is called c-convex if

f(x) = sup

(y;a)2A�E�IR

	

y;a

(x) (1.3)

where A is any subset of E � IR

	

y;a

(x) = c(x; y) + a (1.4)

is determined by the shift a and the translation y. The c-subdi�erential

@

c

f(x) = fy : f(z)� f(x) � c(z; y)� c(x; y) 8z 2 domfg (1.5)

then is characterized in the following way (see Figure 1):

y 2 @

c

f(x) if and only if there exists a shift a such that

	

y;a

(x) = f(x) and 	

y;a

(z) � f(z); 8z 2 domf: (1.6)

x y

ψ

f

y

ψ

Figure 1: c-convexity and c-subdi�erentiability
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A basic characterization of optimal transportation plans resp. c-optimal couplings

has been given in R�uschendorf (1991): A pair (X;Y ) with X � P , Y � Q is a

c-optimal coupling if and only if

Y 2 @

c

f(X) a:s: (1.7)

for some c-convex function f .

A condition equivalent to (1.7) characterizes the c-optimal couplings by c-cyclical

monotonicity of the support (see Smith and Knott (1992)). For the quadratic cost

function c(x; y) = �kx � yk

2

a function f is c-convex if and only if

b

f(x) = f(x) +

1

2

kxk

2

is convex and lower semicontinuous and y 2 @

c

f(x) if and only if y 2 @

b

f(x).

The optimal coupling of multivariate normal distributions has been found in Olkin

and Pukelsheim (1982) by direct methods. For the general case and several examples

see R�uschendorf and Rachev (1990).

For the optimal coupling of P with a discrete measure Q =

P

n

i=1

�

i

�

y

i

one can

restrict to c-convex functions of the form

f(x) = sup

1�i�n

(c(x; y

i

) + a

i

): (1.8)

as the c-subgradients are given by the translations (see (1.6)). Then with

A

i

:= fx : f(x) = c(x; y

i

) + a

i

g

y

i

2 @

c

f(x) if and only if x 2 A

i

: (1.9)

Therefore, the problem to determine optimal couplings is reduced to determine

shifts a

i

, such that the `Voronoi type' partitioning set A

i

has the correct mass

P (A

i

) = �

i

; 1 � i � n. For coupling to discrete distributions and related examples

see R�uschendorf and Uckelmann (1997). A connection to generalized Voronoi dia-

grams (power diagrams) in the case of squared distance kx� yk

2

has been given in

Aurenhammer, Ho�mann, and Aronov (1998) where for P discrete supported by m

points an algorithm is introduced which uses time of order O(n

2

m logm+nm log

2

m).

@
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In the following example based on the characterization in (1.9) (see Figures 2

and 3) the exact optimal solution is determined for the squared distance where

P = U([0; 1])

2

is the uniform distribution on [0; 1]

2

; n = 8 with

y

i

=

 

0

1

!

;

 

0:5

0:5

!

;

 

1

1

!

;

 

1

0

!

;

 

0

0

!

;

 

1

4

!

;

 

2

3

!

;

 

1

2

!

and masses �

i

= 0:105; 0:2; 0:125; 0:125; 0:125; 0:125; 0:12; 0:1; 0:1.

The next three dimensional example is for P = U([0; 1]

3

) and n = 3 with y

i

=

0

B

@

0:2

0:2

0:2

1

C

A

;

0

B

@

0:2

0:2

0:8

1

C

A

;

0

B

@

0:8

0:8

0:8

1

C

A

, (see Figure 4).

Figure 4:

`

2

-partition of unit cube

Figure 5:

optimal partition
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c-convex function

The method also applies to nondi�erentiable coupling functions. In the following

example the coupling function c is nondi�erentiable, c(x; y) = �h(kx� yk), where

h(t) = min(�; t), P = U([0; 1]

2

),

y

i

=

 

100

100

!

;

 

1/3

2/3

!

;

 

2/3

2/3

!

;

 

1/2

1/2

!

; 1 � i � 4 and

y

k

=

 

t

k

f(t

k

)

!

; t

k

2

�

1

3

;

2

3

�

; 4 � k � n; f(t) =

�

t�

1

2

�

2

+

1

4

:

So in this case the optimal coupling produces a `smile e�ect' (see Figures 5 and 6).

2 Approximative solutions and linear programs

For the approximative optimal c-couplings of P = U([0; 1]

2

) and Q =

P

m

k=1

�

k

"

a

k

,

a

k

2 IR

2

one can use a discretized version

e

P of P of the form

e

P =

1

(n+ 1)

2

n

X

i=0

n

X

j=0

�

x

i;j

; x

ij

=

�

i

n

;

j

n

�

(2.1)
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and then solve the linear program

m

X

k=1

n

X

i;j=0

c

ijk

x

ijk

= min! (2.2)

where c

ijk

= c(x

ij

; a

k

) and

P

n

i;j=0

x

ijk

= (n+ 1)

2

�

k

; k = 1; : : : ;m,

P

m

k=1

x

ijk

= 1.

The following examples were calculated using the program Soplex by Wunder-

ling (1996). They show the dependence of optimal couplings on a variation of the

distance. The qualitative form of dependence of optimal couplings on the coupling

functions seen in the numerical examples is expected from the nature of the `

p

-

metrics which for increasing p weight heavily mis�ts in the couplings of a larger

magnitude. The �rst example is based on the same data as in Figure 2 for m = 8.

It also shows that the numerical results are in good coincidence with the theoretical

optimal coupling in Figure 2.
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Figure 7: Approximative `
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-partition, m = 8

The second example adds seven more points to the discrete distribution consid-

ered above, so m = 15 (see Figure 8).
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-partition, m = 15

Note that the linear program in (2.2) is not easy to solve. For 2 two-dimensional

distributions with a discretized 50 x 50 grid one obtains a linear program with about

6 million variables. So one has to restrict to coarser grids or use carefully designed

programs. The Soplex program can handle up to 2 million variables.
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3 Optimal couplings of one-dimensional distribu-

tions

By a classical result of Dall'Aglio (1956) EjX � Y j

�

; � � 1 is minimized in the

class of random variables with one-dimensional distributions P;Q by X = F

�1

P

(U),

Y = F

�1

Q

(U) where U

d

= U([0; 1]) is uniformly distributed on [0; 1]. This result has

been generalized to quasi-monotone costs c(x; y) such as �(jx� yj), or �(x+ y);�

convex in Cambanis, Simons, and Stout (1976).

More general nonconvex costs of the form c(x; y) = �(x� y) or �(jx� yj) have

been dealt with in Uckelmann (1997) and McCann (1999). While Uckelmann used

the duality based approach as described in section one to obtain explicit solutions

in the uniform case, McCann gave an analysis for concave costs �(jx� yj) based on

an elementary geometric no crossing rule already noticed by Monge. His detailed

analysis reduces the optimal transportation to a (�nite) parametric optimization

problem for the coupling of general distributions.

Consider c(x; y) = �(x + y) where � : [0; 2] ! IR is in C

2

, � is convex on

[0; k

1

] [ [k

2

; 2] and concave on [k

1

; k

2

] in other words � is convex, concave, convex.

Let P = Q be uniform on [0; 1] and let 0 � k

1

< k

2

� 2, 0 < � < � < 1 be solutions

of the equations

�(2�)� �(� + �) + (� � �)�

0

(�+ �) = 0 (3.1)

�(2�)� �(� + �) + (� � �)�

0

(�+ �) = 0

then an optimal coupling of P;Q w.r.t. c(x; y) = �(x + y) is given by (U;�(U))

where U

d

= U([0; 1]) and

�(x) =

(

x x 2[0; �] [ [�; 1]

� + � � x x 2(�; �)

(3.2)

(see Uckelmann (1997) (see Figure 9)).

Similar solutions are obtained for costs �(x� y);� as above and for �(jx � yj)

where � is concave, convex. These cases can be reduced directly to the case of costs

of the form �(x+ y) (see Figure 10).
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Optimal measure for c(x; y) = �(x+y)
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c(x; y) = �(jx�yj), �(t) = at

4

+bt

2

+c

The strategy to prove optimality is to de�ne

f = f

1

1

[0;�]

+ f

2

1

[�;�]

+ f

3

1

[�;1]

(3.3)

where

f

1

(x) =

1

2

�(2x);

f

2

(x) =

1

2

�(2�) + �

0

(�+ �)(x� �)

and f

3

(x) =

1

2

�(2x) +

1

2

(�(2�) � �(2�)) + (� � �)�

0

(�+ �)

and, furthermore,

	

1

(�) = �(x+ �) �

1

2

�(2x) (3.4)

	

2

(�) = �(�+ � � x+ �) + (x� �)�

0

(�+ �) +

1

2

�(2�) � �(�+ �)

	

3

(�) = �(x+ �) �

1

2

�(2x) +

1

2

(�(2�) � �(2�)) + (� � �)�

0

(� + �):

f is patched together by f

1

; f

3

corresponding to the convex parts of � and f

2

corre-

sponding to the concave part and 	

1

= 	

1

x

; x 2 [0; �];	

2

= 	

2

�+��x

; x 2 [�; �];	

3

=

	

3

x

; x 2 [�; 1] are as in (1.6) (see also Figure 11) for the convex and concave parts. By

de�nition f

i

(x) = 	

i

(x);8i; x. Equation (3.1) allows to patch continuously together

the 	-functions, 	

�(�)

(�) = f(�);	

�(�)

(�) = f(�).

These equations are used to establish that f(�) � 	

i

(�); � 2 [0; 1]; i = 1; 2; 3.

This inequality implies that f is c-convex and by de�nition of 	

i

one obtains � 2 @

c

f ,

i.e. � is an optimal coupling function.

These results now seem to suggest a solution for costs of the form �(x + y)

where � changes its convexity behavior more than two times. Assume e.g. that � is
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Figure 11: Patching of 	-functions

convex-concave-convex-concave-convex (i.e. four changes) and let � < � solve (3.1)

and 0 < � < � < � < " < 
 solve additionally

�(2�)��(� + ") + ("� �)�

0

(� + ") = 0 (3.5)

�(2") ��(� + ") + (� � ")�

0

(� + ") = 0

then

�(x) =

8

>

<

>

:

x; x 2[0; �] [ [�; �][ ["; 1]

�+ � � x; x 2(�; �)

� + "� x; x 2(�; ")

is conjectured to be optimal.

We do not have a formal proof of this statement (the admissibility part is not

easy). One can see however analytically that � is optimal in the class of all distri-

butions of this special form (i.e. with alternating linear increasing and decreasing

parts); the equations for �; �; �; " are the critical �rst order equations. Also examples

calculated approximatively by the corresponding linear programs con�rm this.

Consider e.g. c(x; y) = �(x+ y) with �(t) = 0:092t

6

� 0:498t

5

+ t

4

+ 0:910t

3

+

0:406t

2

then � has four convexity changes and one obtains � = 0:1; � = 0:3; � =

0:6; " = 0:8.
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Figure 12: Solution for 4 convexity changes
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The example is calculated by discrete approximation based on a 100 � 100 grid

with help of Mathematica.

Changing the coupling function (by componentwise transformation) one can sim-

ilarly produce coupling problems which have a shifted pattern of the linear terms

as `optimal' solutions; thus for any shu�ing of min distribution (see Mikusinski,

Sherwood, and Taylor (1991)) one can produce coupling functions c such that this

distribution is a c-optimal coupling.

To deal with the optimal coupling for general distributions P;Q on (IR

1

;B

1

)

with continuous distribution functions F;G and coupling function c : IR

2

! IR

1

let

S = F

�1

; T = G

�1

and de�ne the transformed costs

e

c(x; y) = c(S(x); T (y)) on [0; 1]

2

then for X

d

= P; Y

d

= Q

Ec(X;Y ) = Ec(S � F (X); T �G(Y ))

= E

e

c(F (X); G(Y )) and, conversely, for

U; V

d

= U([0; 1])

E

e

c(U; V ) = Ec(X;Y ) with X = S(U); Y = T (V ):

This implies

sup

X

d

=P;Y

d

=Q

Ec(X;Y ) = sup

U

d

=V

d

=U[0;1]

E

e

c(U; V ); (3.6)

so the optimal coupling problem (P;Q; c) can be reduced to the optimal coupling of

two uniform distributions w.r.t.

e

c.

The constructions in the following convex resp. concave case are used in the

further development of the problem.

Example 3.1

a) convex costs

Let F;G be continuous strictly monotone and c(x; y) = �(x + y); � convex,

then

(F

�1

(U); G

�1

(U)) is a c-optimal coupling. (3.7)

We prove this wellknown result based on the characterization of optimal couplings

as given in the introduction.

Let

f(x) := �(S(x) + T (x)) +

Z

1

x

T

0

(t)�

0

(S(t) + T (t)) dt

	

x

(�) := �(S(�) + T (x)) +

Z

1

x

T

0

(t)�

0

(S(t) + T (t)) dt
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then

f(x) = 	

x

(x)

and

f(�) �	

x

(�) = �(S(�) + T (�))� �(S(�) + T (x)) +

Z

x

�

T

0

(t)�

0

(S(t) + T (t)) dt

=

Z

x

�

T

0

(t) [�

0

(S(t) + T (t))� �

0

(S(�) + T (t))] dt:

Convexity of � implies

�

0

(S(t) + T (t))��

0

(S(�) + T (t))

(

� 0 for t � �

� 0 for t � �:

Using T

0

(t) � 0 this implies

f(�) � 	

x

(�) for all x; � 2 [0; 1]

and the pair (U;U) is an optimal

e

c coupling,

e

c(x; y) = �(S(x)+T (y)). Therefore,

by (3.6) (F

�1

(U); G

�1

(U)) is an optimal c�coupling of P;Q.

b) concave case

If � is concave, c(x; y) = �(x+ y), then

(F

�1

(U); G

�1

(1 � U) (3.8)

is c-optimal.

The proof is similar to that of (3.7) using now

g(x) = �(S(x) + T (1� x))�

Z

1

x

T

0

(1 � t)�

0

(S(t) + T (1� t))dt

as a

e

c-convex function and showing that 1� x 2 @

~c

g(x) for all x 2 [0; 1].

Consider next the case where the convexity behavior of � changes once. Let

� 2 C

2

, be strictly convex on (�1; �] and strictly concave on [�;1), i.e.

�

00

(t)

(

> 0 for t < �

< 0 for t > �:

De�ne

�(t) = �

�

(t) = F

�1

(t) +G

�1

(1 + �� t) (3.9)

= S(t) + T (1 + � � t);

H

x

(t) = �

0

(S(x) + T (1 + �� t))� �

0

(�(t));

G

y

(t) = �

0

(S(t) + T (1 + �� y))� �

0

(�(t));

then the following explicit optimal coupling result holds.
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Theorem 1 Let P;Q have bounded support and strictly increasing di�erentiable

distribution functions F;G. Let � 2 (0; 1) be a solution of the equation

�(S(�) + T (1))��(S(�) + T (�)) =

Z

1

�

T

0

(1 + �� t)�

0

(�(t)) dt: (3.10)

and assume that

a) �(t) � � for t 2 [�; 1]

b) �

0

(S(�) + T (�)) � minf�

0

(�(�));�

0

(�(1))g

c) For y 2 [�; 1] the functions H

�

; G

y

have at most two zeros in [�; 1].

Then (F

�1

(U); G

�1

(�U)) is a c-optimal coupling with

�(x) =

(

x for x 2 [0; �]

1 + �� x for x 2 (�; 1]

i.e. G

�1

� � � F is a c-optimal coupling function.

Proof: For the proof we construct a

e

c-convex function f , with

e

c(x; y) = �(S(x) +

T (y)) such that �(u) 2 @

ec

f(u); u 2 [0; 1]. Then the result follows from (3.6).

De�ne

f(x) = f

1

(x)1l

[0;�]

(x) + f

2

(x)1l

[�;1]

(x) (3.11)

with

f

1

(x) := �(S(x) + T (x))�

Z

x

�

T

0

(t)�

0

(S(t) + T (t))dt

f

2

(x) := �(S(x) + T (1 + �� x))�

Z

1

x

T

0

(1 + �� t)�

0

(�(t))dt:

De�ne for x 2 [0; �]

	

1

(�) :=

e

c(�; x) + a

1

= �(S(�) + T (x))�

Z

x

�

T

0

(t)�

0

(S(t) + T (t))dt

and for x 2 (�; 1]

	

2

(�) :=

e

c(�; 1 + � � x) + a

2

= �(S(�) + T (1 + �� x))�

Z

1

x

T

0

(1 + �� t)�

0

(�(t))dt:

Note that f

i

;	

i

correspond to the convex resp. concave case in Example 3.1. Since

f(x) = 	

1

(x)1l

[0;�]

(x) + 	

2

(x)1l

[�;1]

(x)



Results for the transportation problem of Monge-Kantorovich 12

it remains to prove that

f(�) �  

i

(�) for all � 2 [0; 1]; i = 1; 2 (3.12)

which implies that �(u) 2 @

ec

f(u). Note that from (3.10)

0 =

Z

1

�

T

0

(1 + � � t) [�

0

(�(t))� �

0

(H

�

(t))] dt:

Therefore, there exists � 2 (�; 1) such that �

0

(�(� )) = �

0

(H

�

(� )). This implies

S(�) + T (1 + � � � ) � � � �(� ) and using monotonicity of T;�

0

on [(�1; �] it

follows that S(�) + T (�) � � and so �(S(t) + T (t)) is convex on [0; �].

To prove (3.12) one has to consider several cases. For x; � 2 [0; �] is

D

1

(�; x) := f

1

(�) �	

1

(�)

= �(S(�) + T (�))� �(S(�) + T (x))�

Z

�

x

T

0

(t)�

0

(S(t) + T (t)) dt

� 0

as in Example 3.1 a).

Similarly, using the assumptions of the Theorem one obtains (after a lot of cal-

culations and case distinctions) for (x; �) 2 [0; �]� [�; 1][ [�; 1]� [0; �][ [�; 1]� [�; 1]

that f

i

(�) � 	

j

(�) (with i; j corresponding to the combination of intervals). The

proof of these inequalities is technically somewhat involved; for details we refer to

the dissertation of Uckelmann (1998). 2

Example 3.2

a) Consider c(x; y) = �(x + y � 1)

3

and P;Q with densities f(x) � 1, g(x) =

12(x�

1

2

)

2

. Then G(x) = 4

�

x�

1

2

�

3

+

1

2

; F (x) = x and G

�1

(u) =

�

u

4

�

1

8

�

1=3

+

1

2

.

The assumptions of the theorem are ful�lled with �(t) = �(t� 1)

3

, � = 1. This

can be seen from Figure 13.

Therefore,

�

1

(u) := G

�1

(u)1l

[0;�]

(u) + G

�1

(1 � u)1l

(�;1]

with � = 0:261

is a c-optimal coupling of P;Q.

b) If g(x) = 2x, then similarly as in a) �

2

(u) =

p

u1l

[0;�]

(u) +

p

1 � u 1l

[0;�]

(u), with

� = 0:121 is c-optimal.

c) approximative solutions

If we discretize the transportation problem on the grid

i

n+1

, 0 � i � n, with

marginal densities f

�

i

n+1

�

, g

�

i

n+1

�

then we obtain with help of Mathematica

(for n = 50) the following solutions in examples a) resp. b) which con�rm the

result of Theorem 1 (see Figures 14 and 15).
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x
10.80.60.40.20

t

1

0.8

0.6

0.4

0.2

0

y
10.80.60.40.20

t

1

0.8

0.6

0.4

0.2

0

t 10.80.60.40.2

1.4

1.3

1.2

1.1

1

f(x; t) : H

x

(t) = 0g f(y; t) : G

y

(t) = 0g �(t)

Figure 13: Validity of assumptions in Theorem 1

0 10 20 30 40 50

0
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20

30
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50

Figure 14:

solution in the linear case g(x) = 2x

0 10 20 30 40 50
0

10

20

30

40

50

Figure 15:

quadratic case g(x) = 12(x �

1

2

)

2

Open Question. It is not known whether the conditions in Theorem 1 are necessary

to prove optimality of the pair (F

�1

(U); G

�1

(�U)). From several numerical results

it seems that this coupling is optimal in general for the considered type of coupling

function.

References

Aurenhammer, F., F. Ho�mann, and B. Aronov (1998). Minkowski-type theorems

and least-squares clustering. Algorithmica 20, 61 �.

Cambanis, S., G. Simons, and W. Stout (1976). Inequalities for Ek(X;Y ) when

the marginals are �xed. Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 285{

294.

Dall'Aglio, G. (1956). Sugli estremi dei momenti delle funzioni di repartitione



Results for the transportation problem of Monge-Kantorovich 14

doppia. Ann. Scuola Norm. Sup. Pisa 10, 35{74.

Kantorovich, L. (1942). On the transfer of masses. Dokl. Akad. Nauk USSR 37,

7{8.

McCann, R. (1999). Exact solutions to the transportation problem on the line.

Proc. R. Soc. London A 455, 1341{1380.

Mikusinski, P., H. Sherwood, and M. Taylor (1991). Probabilistic interpretations

of copulas and their convex sum. In Advances in Probability distributions with

given marginals. G. Dall' Aglio, S. Kotz, G. Salinetti.

Monge, G. (1781). M�emoire sur la th�eorie des d�eblais et des remblais. In His-

toire de l'Acad�emie Royale des Sciences de Paris, avec les M�emoires de

Math�ematiques et de Physique, pour la même Ann�ee, Tir�es des Registres de

cette Acad�emie, Paris, pp. 666{704. M�emoires de l'Acad�emie Royale.

Olkin, I. and F. Pukelsheim (1982). The distance between two random vectors

with given dispersion matrices. Journal of Linear Algebra and its Applica-

tions 48, 257{263.

Rachev, S. and L. R�uschendorf (1998). Mass Transportation Problems, Vol. I:

Theory, Vol. II: Applications. Springer.

Ramachandran, D. and L. R�uschendorf (1998). On the Monge Kantorovich duality

theorem. To appear in: Theory Probab. Appl.

R�uschendorf, L. (1991). Fr�echet-bounds and their applications. In G. Dall'Aglio,

S. Kotz, and G. Salinetti (Eds.), Advances in Probability Measure with Given

Marginals, pp. 151{188. Amsterdam: Kluwer.

R�uschendorf, L. and S. Rachev (1990). A characterization of random variables

with minimum L

2

-distance. Journal of Multivariate Analysis 32, 48{54.

R�uschendorf, L. and L. Uckelmann (1997). On optimal multivariate couplings.

In V. Bene�s and J.

�

St�ep�an (Eds.), Distributions with Given Marginals and

Moment Problems, pp. 261{273. Kluwer Acad. Publ.

Smith, C. and M. Knott (1992). On Hoe�ding{Fr�echet bounds and cyclic mono-

tone relations. Journal of Multivariate Analysis 40, 328{334.

Uckelmann, L. (1997). Optimal couplings between onedimensional distributions.

In V. Bene�s and J.

�

St�ep�an (Eds.), Distributions with Given Marginals and

Moment Problems, pp. 275{282. Kluwer Acad. Publ.

Uckelmann, L. (1998).

�

Uber das Monge Kantorovich Transportproblem und dessen

Verallgemeinerungen. Ph. D. thesis, Universit�at Freiburg.

Wunderling, R. (1996). Paralleler und objektorientierter Simplex-Algorithmus.

Technical Report TR 96-09, ZIB (Berlin) technical report.


