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Abstract

The main purpose to study risk measures for portfolio vectors X = (X1, . . . , Xd) is
to measure not only the risk of the marginals Xi separately but to measure the joint
risk of X caused by the variation of the components and their possible dependence.

Thus an important property of risk measures for portfolio vectors is consistency
with respect to various classes of convex and dependence orderings. From this per-
spective we introduce and study convex risk measures for portfolio vectors defined
axiomatically and further introduce two natural and easy to interprete and calcu-
late classes of examples of risk measures for portfolio vectors and investigate their
consistency properties.
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1 Introduction

In this paper we consider risk measures defined for portfolio vectors X = (X1,
. . . , Xd) on a probability space (Ω, A, P ). The aim is to have a measure of risk
not only for the marginals Xi separately but to measure the joint risk of all
components caused by their variation and by possible dependence of the Xi.

In the first part of this paper we introduce two classes of examples of risk
measures for portfolio vectors which are easy to interprete and typically can
be calculated in more or less explicit form. An explicit calculation would be
prohibitive for an extension of the idea of worst case conditional expectation
to the multivariate case (see [6]). A natural idea to measure the joint risk of
X is to consider the one-dimensional risk of the joint portfolio or that of the
maximal component

Ψ(X) = Ψ1

( d∑

i=1

Xi

)
(1)



or
Ψ(X) = Ψ1(max

i≤1
Xi), (2)

where Ψ1 is a suitable one-dimensional risk measure like the expected shortfall,
the average value at risk or a distorted risk measure. One might also want to
consider a combination of both,

Ψ(X) = αΨ1

( d∑

i=1

Xi

)
+ βΨ1(max

i≤d
Xi)

An extension of the idea of measuring the risk of the joint portfolio or the
maximal portfolio as in (1) and (2) is to introduce some class F0 = {fα; α ∈ A}
or real functions on Rd and to measure the risk of the real ‘aspects’ fα(X) of
X, α ∈ A, by

ΨA := sup
α∈A

Ψα(fα(X)), (3)

and
ΨM := sup

µ∈M

∫
Ψα(fα(X))dµ(α). (4)

Here M is some class of weighting measures on A and {Ψα} is a class of
one-dimensional risk measures for α ∈ A. Thus we are measuring the maximal
risk of the real aspects fα(X) or the maximal average risk over some weighting
class M . If e.g. A = ∆ := {α ∈ Rd

+;
∑

αi = 1}, then

Ψ∆ := sup
α∈∆

Ψ1(α ·X) (5)

is the maximal risk of X over all positive directions α and

Ψµ :=
∫

∆
Ψ1(α ·X)dµ(α) (6)

is the risk of X averaged over all positive directions. The class of proposed
risk measures ΨA,ΨM will be investigated in the first part of this paper with
respect to its consistency properties concerning several types of multivariate
convex stochastic orderings.

In the second part of the paper we introduce axiomatically the class of all
convex risk measures i.e. monotone, translation invariant and convex func-
tionals and establish a representation result by scenario measures similar to
the one-dimensional case. It is however in the multivariate portfolio case not
clear how to single out axiomatically interesting subclasses of risk measures as
in the one-dimensional case, where one has as an important tool the Choquet
integral and the related distortion risk measures with nice characterizations
of their properties (see Wang et al. (1997), Wirch and Hardy (2000), Yaari
(1987), and Dhaene et al. (2004)). This is the reason to restrict to risk measures
ΨA, ΨM of the form (3), (4) which by their definition exhibit a simple repre-
sentation form, which in dimension one can be characterized axiomatically as
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in the Kusuoka representation result. Further in the multivariate case there
is not a natural and simple generating class of convex functions and quantiles
as in dimension 1 to compare the risk of the tails. It is therefore of interest to
study general ordering properties of multivariate risk measures. In particular
it turns out that all convex, law invariant risk measures are consistent with
respect to convex ordering for any dimension d ≥ 1.

In order to have monotonicity of the risk measures Ψ w.r.t. stochastic ordering
we adapt the insurance risk interpretation of X. In order to apply the following
results in the financial context where −X is the liability we have to switch to

%(X) = Ψ(−X). (7)

2 Consistency against various convex orderings

In this section we investigate consistency of the two classes of risk measures
in (3) and (4) against various convex orderings. In the multivariate case there
are several different relevant convex type stochastic orderings which all serve
different purposes but all are relevant for relating two random vectors X, Y
with respect to their diffusiveness and thus their risky status. The orderings
are defined via function classes F like the convex functions Fcx, the symmetric
convex functions Fsymm,cx, the directionally convex functions Fdcx, the super-
modular functions Fsm, the 4-monotone functions F4 and the Schur-convex
functions Fm or with respect to the increasing resp. decreasing elements of
these classes like Ficx, Fidcx. The corresponding stochastic orders are defined
by

X ≤F Y if Ef(X) ≤ Ef(Y ), (8)

for all f ∈ F such that the integrals exist. The stochastic orderings are denoted
by X ≤cx Y,X ≤dcx Y, X ≤sm Y, . . . For a survey of these stochastic orderings,
for criteria and their relevance for risk measurement see Müller and Stoyan
(2002), Rüschendorf (2005), and Bäuerle and Müller (2005).

In order to establish consistency of risk measurs ΨA, ΨM with respect to con-
vex type stochastic orderings a basic property is that the functions fα ∈ F0

preserve the convex stochastic orderings. We discuss this property for the var-
ious convexity classes mentioned above.

a) Convex order ≤cx

In order to obtain an ordering result for the risk measures ΨA, ΨM we need
the assumption

Assumption Aicx: Let {Ψα} be one-dimensional law invariant risk measures

3



such that Ψα is monotone and preserves the increasing convex order ≤icx,
α ∈ A.

It is easy to see that for F = Fcx the class of convex functions f : Rd → R1,
and for f ∈ Fcx holds:

X ≤cx Y ⇒ f(X) ≤icx f(Y ). (9)

As consequence of (9) we obtain the following proposition.

Proposition 2.1 (Consistency with the convex order) Under assump-
tion Aicx on {Ψα} let F0 = {fα, α ∈ A} ⊂ Fcx, then ΨA and ΨM are consistent
with the convex order, i.e.

X ≤cx Y ⇒ ΨA(X) ≤ ΨA(Y ) and ΨM(X) ≤ ΨM(Y ). (10)

If F0 ⊂ Ficx, then ΨA, ΨM are consistent with ≤icx.

Remark 2.2 In particular it follows from (10) that Ψ1

(∑d
i=1 Xi

)
, Ψ1(maxi Xi)

and Ψ4(X) = supα∈4 Ψ1(α ·X) are risk measures consistent with the convex
order if Ψ1 satisfies Aicx.

b) Supermodular and directionally convex ordering The supermodular
ordering and the directionally convex ordering are of particular interest for
multivariate risk comparison (for definition see [9] or [12, Definition 4.1]).
Twice differentiable functions f are supermodular if

∂2

∂xi∂xj

f(x) ≥ 0 for all x and i < j; (11)

f is directionally convex if

∂2f

∂xi∂xj

(x) ≥ 0 ∀ i ≤ j. (12)

If random vectors X, Y are comparable with respect to the stronger supermod-

ular ordering ≤sm, then necessarily the marginals are identical, i.e. Xi
d
= Yi,

1 ≤ i ≤ d. The comparison w.r.t. the directionally convex order X ≤dcx Y is
possible if the marginals increase convexly i.e. Xi ≤cx Yi, 1 ≤ i ≤ d. Similarly,
comparison w.r.t. the increasing directionally convex order ≤idcx is possible if
Xi ≤icx Yi, 1 ≤ i ≤ d.

Proposition 2.3 Let {Ψα} fulfill assumption Aicx

a) If X ≤ism Y , then f(X) ≤icx f(Y ) for all f ∈ Fism and for F0 ⊂ Fism

holds:
ΨA(X) ≤ ΨA(Y ), ΨM(X) ≤ ΨM(Y ). (13)
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b) If X ≤idcx Y , then f(X) ≤icx f(Y ) for all f ∈ Fidcx and for F0 ⊂ Fidcx

holds:

ΨA(X) ≤ ΨA(Y ), ΨM(X) ≤ ΨM(Y ). (14)

Proof: By an approximation argument it is sufficient for the ordering result
to consider twice differentiable functions f . Then for any h ∈ Ficx ∩ C2(R1)
holds

∂2h ◦ f

∂xi∂xj

= h′′ ◦ f
∂f

∂xi

∂f

∂xj

+ h′ ◦ f
∂2f

∂xi∂xj

. (15)

Since h′′ ◦ f ≥ 0, h′ ◦ f ≥ 0, we obtain that ∂2h◦f
∂xi∂xj

is positive for i 6= j and

f ∈ Fdcx ∩C2(Rd) and, therefore, (13) follows. The proof of (14) is similar. 2

Remark 2.4 Sufficient conditions for ≤sm and ≤dcx were established in [11],
e.g. for d = 2 assume:

FX(u, v)− FX1(u)FX2(v) ≤ F Y (u, v)− F Y1(u)F Y2(v). (16)

Then Xi ≤cx Yi, i = 1, 2 ⇒ X ≤dcx Y

Xi ≤icx Yi, i = 1, 2 ⇒ X ≤idcx Y,

(see [11, Corollary 3.2]).

In particular (13) and (14) imply results for the type that more positive de-
pendence of random vectors leads to higher risks. The classical result in this
direction going back to Tchen (1980) is that

X ≤sm Xc :=
(
F−1

1 (U), . . . , F−1
d (U)

)
, (17)

where Xc is the comonotonic vector to X and Fi are the d.f.s of Xi. (17) yields
in particular the consequence that the comonotonic vector is most risky for the
joint portfolio

d∑

i=1

Xi ≤icx

d∑

i=1

F−1
i (U), (18)

and

ΨM(X) ≤ ΨM(Xc), ΨA(X) ≤ ΨA(Xc). (19)

The comonotonic risk vector has the highest risk in the Fréchet class of X with
respect to all risk measures of the form ΨM , ΨA. For several related statements
on this topic see [2,4,9,12].
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c) Schur convex and symmetric convex ordering

Let ≺ denote the Schur order on Rd,

x ≺ y ⇔
k∑

i=1

x(i) ≤
k∑

i=1

y(i), 1 ≤ k ≤ d− 1 and
d∑

i=1

xi =
d∑

i=1

yi (20)

and the increasing Schur order

x ¹ y ⇔
k∑

i=1

x(i) ≤
k∑

i=1

y(i), 1 ≤ k ≤ d, (21)

where x(1) ≥ · · · ≥ x(d) is the ordered vector. The corresponding stochastic
orders are called majorization orders (see [8]) and denoted by ≺m and ¹m.
These are relevant diffusion orders. Note that choosing the convex cone K as

K = {x ∈ Rd; 0 ¹ x} (22)

we have that Rd
+ ⊂ K. Monotonicity of a risk measure Ψ w.r.t. the cone

ordering induced by K means that comparability of random vectors X in the
increasing Schur order ¹ implies comparison of the risks

X ¹ Y ⇒ Ψ(X) ≤ Ψ(Y ). (23)

Thus studying consistency w.r.t. Schur ordering is equivalent to studying
monotonicity w.r.t. the cone ordering induced by K.

Proposition 2.5 Let {Ψα} fulfill assumption Aicx.

a)
X ≺m Y implies X ≤symm,cx Y

X ¹m Y implies X ≤isymm,cx Y
(24)

b) If X ¹m Y and F0 ⊂ Fisymm,cx, then

ΨA(X) ≤ ΨA(Y ) and ΨM(X) ≤ ΨM(Y ). (25)

Proof: If X ≺m Y , then by Strassen’s representation result (see [10]) there ex-

ist versions X̃
d
= X, Ỹ

d
= Y such that X̃ ≺ Ỹ and, therefore, X̃ =

∑
π∈Sd

απỸπ

for some random απ ≥ 0 with
∑

π∈Sd
απ = 1, where Ỹπ is the reordered vector.

If f ∈ Fsymm,cx then f(X̃) ≤ ∑
απf(Ỹπ) = f(Ỹ ) and thus Ef(X) ≤ Ef(Y )

i.e. X ≤symm,cx Y . If X ¹m Y then by a variant of Strassen’s representation

theorem (see [10]) there exist X̃
d
= X, Ỹ

d
= Y and Z such that X̃ ≺ Z ≤ Ỹ .

If f ∈ Fisymm,cx, then

Ef(X) = Ef(X̃) ≤ Ef(Z)

≤Ef(Ỹ ) = Ef(Y ), i.e. X ≤isymm,cx Y.
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The other conclusions are similar to the corresponding ones in Propositions
2.1 and 2.3. 2

Conclusion:

a) The risk measures ΨA, ΨM define meaningful and interpretable classes
of risk measures, consistent with respect to the various classes of convex
orderings. Also the simple way of construction allows one easily to establish
the further relevant risk properties of ΨA, ΨM , which are inherited from the
basic one-dimensional risk measures {Ψα} used for their construction. If
we take e.g. Ψ4(X) = supα∈4 Ψ1(α ·X) from (5) then Ψ4 is a convex risk
measure if Ψ1 is convex and Ψ4 is a coherent risk measure if Ψ1 is coherent.

b) To measure the risk caused by dependence of the componentes of X it is
natural to consider the difference

Ψ̂(X) := Ψ(X)−Ψ(X∗) (26)

where X∗ is the vector with independent marginals X∗
i

d
= Xi, 1 ≤ i ≤ d.

3 Convex risk measures for portfolio vectors

In this section we introduce the general class of all convex risk measures for
portfolio vectors. It seems that further axiomatic classes of risk measures have
so far not been considered in the literature except in a paper of Jouini et
al. (2004) who introduced vector valued coherent risk measures as set valued
functionals R : L

∞
d (P ) → P(Rn), where n ≤ d represents n aspects of the

risk and where L∞d (P ) =
∏d

i=1 L∞(P ) is the set of risk portfolio vectors X =
(X1, . . . , Xd), Xi ∈ L∞(P ) for all i. They proved a representation result for
the risk sets which have monotone, homogeneous, translation invariant and
subadditive properties. Monotonicity is defined via a closed convex cone K ⊂
Rd, Rd

+ ⊂ K and K 6= Rd by

x ≥ 0 ⇔ x ∈ K, (27)

which is extended to L
∞
d (P ) by

X º 0 ⇔ X ∈ K [P ]. (28)

Jouini et al. (2004) postulated that any entry in the i-th position, i ≥ n+1 can
be substituted by some entry in the first position, i.e. ∀i ≥ n + 1 : ∃α, β > 0
such that

αe1 − ei ∈ K and ei − βe1 ∈ K, (29)
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where ei ∈ Rd are the unit vectors, which is motivated by considering dynamic
exchange processes. This assumption excludes e.g. the interesting case that
K = Rd

+. In our paper we do not pose this condition.

We use this ordering framework but restrict to one-dimensional risk measures
for risky portfolio vectors X = (X1, . . . , Xd) ∈ L

∞
d (P ). In this section we use

the notation of financial risk measures %(X) = Ψ(−X) (see (7)).

Definition 3.1 % : L
∞
d (P ) → R is a convex risk measure if for X, Y ∈ L

∞
d (P )

holds:

M1) X º Y ⇒ %(X) ≤ %(Y )
M2) %(X + mei) = −m + %(X) for all m ∈ R and 1 ≤ i ≤ d.
M3) %(αX + (1− α)Y ) ≤ α%(X) + (1− α)%(Y ) for all α ∈ (0, 1).

Thus convex risk measures are monotone, translation invariant convex func-
tionals on L

∞
d (P ).

As in the real case convex risk measures can be equivalently defined in terms
of acceptance sets. The risk of a portfolio X is the smallest amount which has
to be added to X, such that the payment X + mei is acceptable for some i.

Definition 3.2 A subset A ⊂ L
∞
d (P ) is called (convex) acceptance set if

A1) A is closed and convex
A2) X, Y ∈ L

∞
d (P ), X º Y and Y ∈ A implies X ∈ A

A3) X + mei ∈ A ⇔ X + mej ∈ A for all i, j
A4) Rd 6⊂ A.

For any acceptance set A we define a risk measure %A by

%A(X) := inf{m ∈ R; X + me1 ∈ A} (30)

Then as in the one-dimensional case holds

Proposition 3.3 a) If A is a convex acceptance set, then %A is a convex risk
measure.

b) If % is a convex risk measure, then

A% := {X ∈ L
∞
d (P ); %(X) ≤ 0} (31)

is a convex acceptance set.

Let
L
∞
d (K) = L

∞
d (K, P ) = {X ∈ L

∞
d (P ); X ∈ K} (32)
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and let bad(P ) denote the finitely additive measures on L
∞
d (P ) absolutely

continuous w.r.t. P , which are the positive part of the dual space of L
∞
d (P ).

We use the notation

Q(X) = EQ(X) =
d∑

i=1

EQi
Xi (33)

for Q ∈ bad(P ) and define the elements of bad(P ) which are positive on K by

bad(K) = bad(K, P ) = {Q ∈ bad(P ); EQX ≥ 0,∀X ∈ L
∞
d (K)}. (34)

Then we obtain the following representation of convex risk measures.

Theorem 3.4 A functional % : L
∞
d (P ) → R1 is a convex risk measure if and

only if there exists a function α : bad(K) → (−∞,∞] such that

%(X) = sup
Q∈bad(K)

{EQ(−X)− α(Q)}. (35)

α can be chosen as Legendre–Fenchel inverse of %

α(Q) = sup
X∈L

∞
d

(K)

(EQ(−X)− %(X))

= sup
X∈A%

EQ(−X). (36)

Proof: The proof uses similar ideas as in the one-dimensional case in [5].
Obviously any % as in (35) satisfies M1)–M3). Conversely, let % be a convex
risk measure and define

S(X) :=
{
m ∈ R1; sup

Q∈bad(K)
EQ(−(X + me1))− α(Q) ≤ 0

}
.

Then by definition of α in (36) holds

R(X) := {m ∈ R1; %(X + me1) ≤ 0} ⊂ S(X), (37)

as m ∈ R(X) implies X + me1 ∈ A%. Therefore, for any Q ∈ bad(K) holds
EQ(−(X + me1)) ≤ α(Q). Thus

sup
Q∈bad(K)

{EQ(−(X + me1))− α(Q)} ≤ 0

i.e. m ∈ S(X).

To prove the converse inclusion S(X) ⊂ R(X), assume that there exist some
m0 ∈ S(X) with m0 6∈ R(X). Then supQ∈bad(K){EQ(−(X+m0e1))−α(Q)} ≤ 0
and, as m0 6∈ R(X) it holds that X + m0e1 6∈ A%. By the separation theorem
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for convex sets there exists a continuous linear functional ` ∈ (L
∞
d (P ))∗ with

infY ∈A% `(Y ) > `(X + m0e1).

We next prove that ` is positive, i.e. `(Y ) ≥ 0 for Y ∈ L
∞
d (K). As K is a

convex cone λY ∈ K, ∀λ > 0. By M2) holds %(me1) ≤ %(λY + me1) and
thus R(0) ⊂ R(λY ). This implies that λY + me1 ∈ A% for all m ∈ R(0). As
consequence we get

−∞<`(X + m0e1) < `(λY + me1)

= λ`(Y ) + `(me1) for all λ > 0,

and, therefore, `(Y ) ≥ 0. Thus ` induces a finitely additive measure Q ∈
bad(K) with

inf
Y ∈A%

EQY > EQ(X + m0e1). (38)

On the other hand we have

EQ(X + m0e1) ≥ −α(Q) = inf
Y ∈A%

EQY, (39)

a contradiction.

In consequence for all X ∈ L
∞
d (P ) holds S(X) = R(X), which implies the

representation %(X) = supQ∈bad(K){EQ(−X)− α(Q)} as in (35). The equiva-
lence in (36) can be shown as in [5]. 2

To obtain a representation of % by P -continuous σ-additive measures positive
on K we need the Fatou property of %.

Definition 3.5 A functional % : L
∞
d (P ) → R has the Fatou property if for

any uniformly bounded sequence (Xn) ⊂ L
∞
d (P ) with Xn

P→ X for some X ∈
L
∞
d (P ) holds

%(X) ≤ lim
n→∞

%(Xn).

The class of σ-additive P -continuous measures, positive on K, can be repre-
sented by the corresponding class L1

d(K) of densities f = (f1, . . . , fd).

Theorem 3.6 Let % : L
∞
d be a convex risk measure. Then the following are

equivalent:

1) The class bad(K) in the representation (35) of % can be replaced by the
class L1

d(K) of σ-additive measures.
2) The acceptance set A% = {X ∈ L

∞
d (P ); %(X) ≤ 0} is w∗-closed in L

∞
d (P ).

3) % has the Fatou property.

Proof: The proof is analogously to that of Theorem 3.4. If L
∞
d (P ) is supplied

with the w∗-topology, then the dual space (L
∞
d (P ))∗ is given by L1

d(P ). There-
fore, the linear functional ` in the proof can be identified with a σ-additive
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measure. The proof of the equivalence to 2) and 3) is as in the one-dimensional
case. 2

Remark 3.7 a) A risk measure % : L
∞
d (P ) → R is called coherent if M1),

M2) hold and the convexity condition M3) is replaced by the homogeneity
and subadditivity conditions M4) and M5):
M4) %(tX) = t%(X) for all t > 0
M5) %(X + Y ) ≤ %(X) + %(Y ) for all X,Y ∈ L

∞
d (P ).

For coherent risk measures Theorems 3.4 and 3.6 imply the representation

%(X) = sup
Q∈P

EQ(−X) (40)

with some subset P ⊂ ba(K,P ) resp. P ⊂ M1(K, P ) under the Fatou-
continuity assumption. This representation corresponds in the result of
Jouini et al. (2004) for n = 1.

b) The representation results (35) and (40) generalize the one-dimensional
representation results in Artzner et al. (1998), Delbaen (2002) and Föllmer
and Schied (2004).

An important property of risk measures is consistency with respect to stochas-
tic orderings related to risk measurement. A necessary condition for this con-
sistency is the law invariance of the risk measures.

Definition 3.8 A risk measure % : L
∞
d (P ) → R is law invariant if for X,Y ∈

L
∞
d (P ) with identical law w.r.t. P i.e. PX = P Y holds %(X) = %(Y ).

In the following we generally assume that the underying probability space
(Ω, A, P ) is rich enough in the usual sense to allow the construction of enough
r.v.s on (Ω,A, P ). Let Fi denote the class of increasing functions on Rd, i.e.
x ¹ y in the sence of (27) implies that f(x) ≤ f(y). Similarly Fde denotes the
class of decreasing functions. The stochastic ordering is defined for random
vectors X, Y on (Ω,A, P ) by

X ≤st Y if Ef(X) ≤ Ef(Y ) (41)

for all f ∈ Fi ∩ L1({PX , P Y }) or equivalently for all f ∈ Fi ∩ L
∞

(P ), where
the expectation is with respect to P .

Proposition 3.9 Let % be a law invariant risk measure satisfying M1), then
% is consistent with stochastic ordering, i.e.,

X ≤st Y implies %(Y ) ≤ %(X).
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Proof: Strassen’s theorem which is valid for closed orderings X ≤st Y implies

the existence of versions X̃
d
= X and Ỹ

d
= Y such that X̃ ¹ Ỹ . Therefore, by

the monotonicity conditon M1) and the law invariance

%(Y ) = %(Ỹ ) ≤ %(X̂) = %(X). 2

The class Fcx of convex functions on Rd is suitable to measure diffusiveness
as in d = 1. Let Ficx and Fdecx denote the class of increasing resp. decreas-
ing convex functions on Rd. The induced stochastic orderings are defined for
random vectors X, Y by

X ≤cx Y (resp. X ≤icx Y resp. X ≤decx Y ) (42)

if Ef(X) ≤ Ef(Y ) for all f ∈ Fcx resp. Ficx resp. Fdecx such that f(X) and
f(Y ) are in L1(P ).

The ordering −X ≤icx −Y is equivalent to X ≤decx Y . In the one-dimensional
case d = 1 this ordering is also called second order stochastic dominance. In
contrast to d = 1 there is in d ≥ 2 no simple and natural generating class of
Fcx resp. Fdecx like ft(x) = (t − x)+, which relates the one-dimensional case
uniquely to the tail probabilities and quantiles.

Convex law invariant risk measures are consistent with the convex ordering.

Theorem 3.10 Let % be a convex law invariant risk measure on L
∞
d (P ). Then

% is consistent with the convex orderings ≤cx and ≤decx, i.e.,

X ≤cx Y implies %(X) ≤ %(Y ) (43)

and
X ≤decx Y implies %(X) ≤ %(Y ). (44)

Proof: By a recent result of Jouini et al. (2005) law invariant risk measures
have the Fatou property. Further by an extension of Lemma 2.2 in Schied
(2004) to the multivariate case we obtain that for any convex law invariant
risk measure % on L∞d (P ) and any X,Y ∈ L∞d (P ) holds:

%(X) ≥ %(E(X | Y )). (45)

1) By Strassens’s a.s. representation result (see e.g. [10]) there exist versions

X̃
d
= X, Ỹ

d
= Y on Ω such that E(Ỹ | X̃) = X̃ [P ]. Therefore, by (45)

%(Y ) = %(Ỹ ) ≥ %(E(Ỹ | X̃)) = %(X̃) = %(X).

2) If X ≤decx Y , then there are versions X̃
d
= X, Ỹ

d
= Y on Ω such that

E(Ỹ | X̃) ≤ X̃ [P ]. Therefore, %(Ỹ ) ≥ %(E(Ỹ | X̃)) ≥ %(X̃). 2
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Remark 3.11 In the one-dimensional case the convex ordering result of The-
orem 3.10 has been proved as consequence of the Kusuoka representation result
for convex risk measures in Föllmer and Schied (2004, Corollary 4.59) and in
a direct way in a recent paper in Bäuerle and Müller (2005).
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[12] L. Rüschendorf. Stochastic ordering of risks, influence of dependence and a.s.
constructions. In N. Balakrishnan, I. G. Bairamov, and O. L. Gebizlioglu,
editors, Advances in Models, Characterizations and Applications, volume 180
of Statistics: Textbooks and Monographs. CRC Press, 2005.

[13] A. Schied. On the Neyman–Person problem for law invariant risk measures and
robust utility functionals. Ann. Appl. Prob., 3:1398–1423, 2004.

13



[14] A. H. Tchen. Inequalities for distributions with given marginals. Ann. Prob.,
8:814–827, 1980.

[15] S. Wang, V. Young, and H. Panjer. Axiomatic characterization of insurance
price. Insur. Math. Econ., 21(2):173–183, 1997.

[16] J. Wirch and M. Hardy. Distortion risk measures: Coherence and stochastic
dominance. Preprint, 2000.

[17] M. E. Yaari. The dual theory of choice under risk. Econometrica, 55:95–115,
1987.

Ludger Rüschendorf
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