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PROJECTIONS AND ITERATIVE PROCEDURES
Ludger RUSCHENDORF
University of Freiburg, West Germany

1. Conditional expectations and projections

Let (M, ¥, P) be a probability space and A, C A, 1<si<k, be k sub
o-algebras. Define the subspace

k
F={Zf,.;f,ELz(%I,.,P),lsisk}
i=1

and F the closure of F in L,(%, P). Our aim is to describe explicitly the
best approximation of ¢ € L,(%U, P) by a (more simple) element of F,i.e.
to determine the projection T: L,(%, P)— F. In the special case that ¥,
and ¥, are conditionally independent given A, NA, i#j (i.e.

E(L, 1, |%,N%,)= E(Ly, |4, NA)E(1, | %,NA)

for A,€¥; and A, € ¥Y;; cf. Loeve [10, p. 351]), this problem has the
following solution:

Proposition 1. Let for i # j, A, and U, be conditionally independent given
A, N Y. Define for J C{1,...,k}, %; =M ;c;¥; and for ¢ € L,(A, P)

k

To=3 (-1 E(e | %,), 1)

j=11Ccil,..., k}

then Ty € F is the projection of ¢ on F = F.

Proof. Clearly, for ¢ € L,(%, P) holds Te € F. Furthermore, for f, €
L,(A,, P), we have using E(f,|%,,) = E(f|%;) (cf. Loeve [10, p. 351])
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that

:é("l)j+l{2= 2= }E(fIIQIJ)

k-1
=f1+2(—1)j+1 2 E(f1|9[1)
S

3 S EGIA)=

Similarly, Tf; = f; for f;€ L,(¥,, P) and, therefore, Tf = f for all fEF
and T?= T. Using the relation Ef,E(¢|%,)= Ef,¢ and Ef,E(¢|¥%,)=
Ef E(¢@ |, y) for ¢ € L,(A, P), f,€ L,(A,, P), we obtain

Ef(Te)= Eflz( 1™ > E(el¥,)

[J=j

- EA{EG19)+ 3 )" S Eel%))

j=1 =i
1€J

30 S B l%)) = B

Similarly, Ef,(Te)= Ef,p, 1 <i=<n, and, therefore, Tp is the orthogonal
projection on F implying F = F, since the range of an orthogonal pro-
jection is closed. [

Remark 1. (a) The condition that %, and ; are conditionally in-
dependent given A, N A, can be shown to be equivalent to the condition
that the conditional expectation operators T;¢ = E(¢ |;) are commut-
ing, i.e. T;Tjp = T;,T,p = E((p |2; N A,). Furthermore, Tg is easily shown
to be identical to (I —II¥ 1(I T))go, where I is the identity operator.
But for T; commutmg I*.,(I- T,) is the orthogonal projection of

L,(A,P)on Ni, (L,(A, P))" and, therefore, T is the projection on F.
From this pomt of view Proposition 1 follows from Corollary 7 of Rao
and Yanai [12].

(b) T is well defined also on L (%, P), s=1, and can be shown to
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define the orthogonal projection on F;, where

k
F={SfifeL®, Pr1<is<k},
i=1
ie. 1) TopEF, for € L,(A,P), 2) T*=T and (3) for ¢ € L (¥, P)
and fE€ F,, (1/r)+ (1/s) =1 holds Ef(T¢)= Efe.
(c) Let X, ..., X, be stochastically independent random variables on
(M, A, P). If we take A, = A(X,), 1 <i <k, we obtain from Proposition 1

Te =2 E(¢|X;)— (k—1)Egp 2)

i=1

is for ¢ € L,(YA, P) the orthogonal projection on F. This projection was
considered by Hajek [6] and was shown to have important applications in
asymptotic statistics.

Clearly, a better approximation of ¢ can be obtained by considering
A= AKX, X;), 1<i<j<k. Also, ¥; and A, are conditionally in-
dependent given %; NYA,,. By Proposition 1 the best approximation of
¢ € L,(Y, P) by functions of the type Z,_; f;(X;, X;) is of the form

TQ":ZE(‘PIXi’Xj)+ﬁEE(¢|Xi)+7E‘P- (3)
i<j =1

Since E(K;(¢)|X;)=0 for all ij,I where K;(e)=E(e|X, X;)-
E(¢|X;)— E(¢|X;)+ Eg, we obtain

Te =2 K;(¢)+ 2 E(¢|X;)— (k- 1)Ep. (4)

i<j i=1

Equation (4) shows that the best approximation is given by means of a
V-statistic and a linear statistic. This procedure can be extended to more
than two variables and is known in the literature under the name of
Hoeftding decomposition (cf. Karlin and Rinott [9], Rubin and Vitale [14]
and Efron and Stein [5]).

2. Projections and iterative procedures

In the general case an explicit description of the projection T' by means
of the conditional expectations T, 1 <i <k, is not possible, but T" can be
described by the following iterative procedure which is an analogon to the
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Diliberto-Strauss [4] leveling process used by these authors to ap-
proximate continuous functions w.r.t. the Chebychev norm.

Define for f€ L,(X, P),
S,(f)= E(f|¥,) (Sa)
andforn=mk+r,1sr<k,

S, ()= S, (N+E(f = S,(HIA,) - (5b)

The idea of this procedure is to do in each step the best you can using the
known conditional expectations on %, i.e. for each g € L,(¥,, P) holds

E(f— (S,(N+ 8 =E(f= S, (f))- (6)

Proposition 2. For f€ L,(%, P), S(f)=1lim, . S, (f) exists in L,(U, P)
and S(f) is the projection of f on F.

Proof. The proof follows from a theorem due to von Neumann [11],
Wiener [15] and Halperin [8] on the iterated products of projection
operators in Hilbert spaces, stating that for subspaces H,C H, 1<i <k,
and projections 7, of H on H;, T" converges to the projection on
H,Nn---NH, where T=TT,, - -T,. Observing that S, =
I-[(I-T,):--(I-T,]", we obtain that S, converges to the projection

on F = (N7 (LA, P)")". O

Burkholder and Chow [2] and more generally Rota [13] observed that
for bistochastic linear operators (such as conditional expectations) even
a.s. convergence holds in the alternating projection theorem. In order to
obtain a.s. convergence results we restrict ourselves to the case k =2;
certain generalizations to the case k =2 are obvious. Define

p = p(U,, A,) = sup{cor(f,, f); f; € L(U;, P),
E(f,|%, N YA)=0,i=1,2}.

With Fi= FEQF,NF,), F,=L,%,P) and Tp=E(p|%), i=12,
p=p(, 2, is the cosinus of the smallest angle between F| and F3.
The proof of the following theorem is immediate from results of

Aronszajn [1, pp. 375-379].
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Theorem 3. (a) [(T.T\)'¢ll<p™llel, ¢ €F; and |(T\T,)el<
p”llel, ¢ € Fj.

(b) p <1 is equivalent to the condition that F is closed in L,(U, P).

(c) If p<1 and S denotes the projection on F, then S = Q,+ Q,+ Q,,
where Qyp = E(¢ [A, N A),

Qo =(T,- T\ T+ T\ T, T,— - )¢ — Que),
Q,p = (Tz T,T,+T,T,T, Ne — Qo‘P);

Q,, Q, are uniformly and a.s. convergent.
(d) If P ¥ 1’ then ”S(P i (QO + Ql,n + Q2,n )(P ” 0K 2p2n_1“¢ “9 Where Qi,n
denote the first n-terms of Q,, i = 1,2, and lim S,(¢) = S(¢) a.s. [

We remark that Aronszajn’s results also provide a simple and general
alternative proof of the Burkholder—Chow result. For some applications

we shall need the projection on the intersection of affine spaces of
LAA¥, P).

Lemma 4. Let G,=c;+F,, 1<i=<k, be affine subspaces of a Hilbert
space H and let T be the projection on F,N--- N F,.
@ If GiN---NG,#9, then

Gln"'nGk=x0+Fln"°an,

forall x, e G,N--- N G,.

(b) If x,€ G,N---NG, is orthogonal to F,N---NF,, then Tx =
x,+ Tx is the projection on G,N --- N G,.

Proof. (a) is trivial.
(b) Forye G,N---NG,, x € H holds

ly = xIP=lly = TxlP+ | Tx — x|+ 2(y — Tx, Tx — x).

But y-— Txe F,N---NF, and Tx—x=x,+(Tx—x) implies (y-—
Tx, Tx —x)=0. O

Corollary 5. Let G,=c;+ F, 1<i=<k, be affine subspaces of a Hilbert
space H with nonempty intersection. Let T, denote the projections on G,

and T Tk T,, then (T)"h converges for h € H to the projection on
Gl n i n Gk
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Proof. We consider only the case k = 2. Let hy€ G, N G, be orthogonal
to F, N F,, then by Lemma 3, Sh = hy+lim,_, T"h is the projection of h
on G,NG,, where T=T,T, and T; are the projections on F;. But

T.h = a,+ T,h, where a, € G; are orthogonal to F;, i = 1,2. Therefore,
after some calculations we obtain

n-1 n—1
(T,T,)"h = 2 (T, T))a,+ T, Z (T, T,)"a,+ (T, T,)"h. (7)
v=0 v=0

For h = hy, (T,T,)"hy= h, and (T,T,)"h, converges to 0. Therefore, we
obtain

n—1

h, —hm(Z(T TV a,+ T, S (T, Tz)a>

no® ty=( v=0
which implies that lim(T,T,)"h = Sh. [

Remark 2. (a) Let X,,..., X, be i.i.d. real random variables and let
A, =A(R,), 1 <i=<k, where R, is the rank of X;. In order to determine
E(¢|F) for ¢ € L,(YU, P) it is sufficient to consider functions ¢ =
©(R,,...,R,), since ¢ and E(¢|R,, ..., R;) have the same projection
on F. If E¢ = 0, we obtain by simple calculation

E(E(¢|R)|R, = )=~ = E(¢|R = 1)

and

1
E(p|R,=1)=

TR > o(ry, ..., L...,r).

FlyeeosPg—1sTg4+1s--+>» Tk

From a symmetric argument and from Proposition 2, Ty is of the form
a 2% E(¢|R,)+ BEg. It is now easy to determine a and B from the
orthogonality conditions to obtain

k k
=——k—-—§_: (¢|R;,)—(k—2)Egp; ¢ €E€L,(YU,P). ®

This result was also given by Hajek and Sidak [7, p. 59]. It allows one to
identify certain linear rank statistics as projections of more complicated

nonlinear rank statistics.
If we consider ¥, = A(R,, R;), i<}, and use for ¢ = ¢(R;, ..., R,)
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with Ep =0 and g;;(R;, R;) = E(¢|R;, R;), that

E(E(¢|R,R)IR; =k, R;=1)

1
=10 i 5 {8l k)+ gu(k, D}
k-1
—(k_z)(k_3){E(q0|Rz: k)+E(p[Ry=1)

+E(¢|R,=k)+ E(¢|R = 1)}

for i #j, i, j & {1, 2}, we obtain similarly that the projection is of the form

To=aS E(o|R, R)+B S E(p|R)+vEg, ©)

i<j i=1

where a, B and y have to be determined by the orthogonality relations
E(Te¢|R,)= E(¢|R,), E(Te|R,,R)=E(¢|R,,R;), ET¢=Eg and
are independent of ¢.

(b) Let R be a probability measure on (M, %) and let Q;/%;, 1 <i<k,
be probability measures with Q,<R,=R/%, 1l<is<k. Let F;=
{f€ L,(A, R); Ex(f|¥A,)=0} and assume that

dO;
—e L, (A, R
dR LZ( i’ )

]

and that

dO,
G,.=—Q+F,., 1=<i=<k,
dR,

have a nonempty intersection. Any element f€ G = N %, G, determines
a signed measure on (M, ) with marginals Q; 1<i<k, and square
integrable densities w.r.t. R.

By Proposition 2 with T=I,(I-T;), T,¢ =E(¢|%;), T ¢=
¢ — S,p converges to the projection on F;N---NF,. Therefore, by
Corollary 5, T" converges to the projection on G = [ “ | G,, where

it " dQ;
T=[]T, and T¢o=—F"+¢-E(e|U).
i=1 dR;

1
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So in this case we obtain asymptotically the projection of a measure R
to a measure with marginals Q, and L, density w.r.t. R.

If we are interested in the projection of a measure R on a nonnegative
measure with marginals Q; and L, density w.r.t. R we would use
T'=T,,,T, where T)., is the (nonlinear but contractive) projection on
the nonnegative elements of L,(A, R).

By a fixed point theorem as, for example, Theorem 1 of Cheney and
Goldstein [3] we would obtain convergence of (T')"f of this projection
but only in the weak topology on L,(U, R) if the o-algebras U, are
finite.

(c) If we take (M, ¥, P)= ([0, 1]%, B*[0, 1]%, P), P being any prob-
ability measure and U, to be the o-algebra generated by the ith pro-
jection, then the leveling process S,(f) for f=f(x,,...,x,)€
L,(%B*[0, 1], P) converges to the best approximation by means of func-
tions =%, f;(x;) w.r.t. L,(P) distance.

So this case corresponds to the theorem of Diliberto and Strauss [4],
who consider the Chebychev norm for continuous functions. The case
P = 1A* the Lebesgue measure on [0, 1] is contained in Proposition 1.
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