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Abstract

We give analytical bounds on the Value-at-Risk and on convex risk measures for a portfolio
of random variables with fixed marginal distributions under an additional positive dependence
structure. We show that assuming positive dependence information leads to reduced dependence
uncertainty spreads compared to the case where only marginals information is known. In more
detail we show that the assumption of a positive dependence structure improves the best-possible
lower estimate of a risk measure, while leaving unchanged its worst-possible upper risk bounds. In
a similar way we derive that the assumption of a negative dependence structure leads to improved
upper bounds for the risk while it does not help to increase the lower risk bounds in an essential
way. As a result we find that additional assumptions on the dependence structure may result in
essentially improved risk bounds.
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1 Preliminaries and motivation

The problem of assessing the model risk associated with the risk measurement of a high dimensional
portfolio has recently gathered a lot of interest in the actuarial and financial literature. To set a
mathematical framework, we assume that a financial institution holds a d-dimensional risk portfolio
over a fixed time period. This risk portfolio is represented by a random vector X = (X1, . . . , Xd) on a
standard non-atomic probability space (Ω,F , P ). The total loss exposure associated with X is given
by the sum

X+
d = X1 + · · ·+Xd.

Using a risk measure ρ, the aggregate random position X+
d is mapped into the real value ρ(X+

d ), to be
interpreted as the regulatory capital to be reserved in order to be able to safely hold X. In this paper,
we mainly deal with the case where ρ is a convex risk measure or the case where ρ is the Value-at-Risk
(VaR). The evaluation of ρ(X+

d ) is mainly a numerical issue once the joint distribution of X has been
chosen or statistically evaluated. Estimating a multivariate distribution is a challenging task which is
usually performed in two steps: first, d individual models Fj for the marginal loss exposures Xj are
independently developed. Then, the marginal distributions are merged into a joint distribution using
a dependence structure.

In fact, banks/insurance companies typically have better methods/more data for estimating a
one-dimensional distribution for each risk type Xj than they have to estimate the overall dependence
structure of X. It is therefore reasonable to assume that the marginal distributions F1, . . . , Fd are
known, while FX , the joint distribution of X, varies in Fd(F1, . . . , Fd), the so-called Fréchet class
of all possible joint distributions having the fixed marginal models F1, . . . , Fd. The choice of a single
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distribution in Fd(F1, . . . , Fd) can lead to the miscalculation of the reserve ρ(X+
d ). The implied model

risk is referred to as dependence uncertainty.
A natural way to measure dependence uncertainty and, in more generality, model risk consists in

finding the minimum and maximum possible values of the risk measure ρ evaluated over the class of
candidate models; this is the approach taken in Cont (2006). In our framework, we define the smallest
and biggest capitals to be held coherently with the given marginal distributions as

ρ(X+
d ) = inf

{
ρ(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
, (1.1)

and
ρ(X+

d ) = sup
{
ρ(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
. (1.2)

For any risk portfolio (X1, . . . , Xd) having marginal distributions F1, . . . , Fd, it obviously holds that

ρ(X+
d ) ≤ ρ(X+

d ) ≤ ρ(X+
d ).

The difference ρ(X+
d )− ρ(X+

d ) is called the Dependence Uncertainty spread (DU-spread) for ρ and is
used to measure model uncertainty on the final capital reserve; see Embrechts et al. (2014b) for this
terminology.

Computation of DU-spreads has been treated in the recent literature. The analytical computa-
tion of best- and worst-possible bounds on Value-at-Risk can be performed only under some specific
assumptions on the marginal distributions; see the survey paper Embrechts et al. (2014a) for the
state-of-the-art and an history of the problem. The analytical computation of worst-possible bounds
on Expected Shortfall (ES) is in general straightforward, while for the best-case ES partial analytical
results can be found in Wang and Wang (2011) and Bernard et al. (2014). For several classes of risk
measures (including convex and distortion risk measures) Wang et al. (2014) provide a systematic way
to compute the worst (and best) possible bounds across any homogeneous portfolio.

The numerical computation of DU-spreads of VaR and ES for arbitrary portfolios can be performed
using the Rearrangement Algorithm described in Embrechts et al. (2013) (for the case of VaR) and
in Puccetti (2013) (for ES) for dimensions d in the several hundreds or possibly thousands. Even
if DU-spreads of VaR and ES are numerically available for practically any joint portfolio of risks,
their relevance in actuarial practice has been recently questioned since they can be considerably large;
see Aas and Puccetti (2014) for a real case study.

Therefore, in the recent literature many techniques to tighten DU-spreads were introduced. One
possibility is to add extra (statistical) information on top of the knowledge of the marginal distribu-
tions. For instance, in Embrechts et al. (2013, Section 4) it is shown that having higher order (typically
two-dimensional) marginals information on the joint portfolio leads to strongly improved bounds. The
DU-spread of the VaR can be similarly reduced by specifying the copula on some subset of its domain
(see Bernard et al., 2013a) or putting a variance constraint on the total position (see Bernard et al.,
2013b).

In this paper, we show that positive dependence restrictions do not help to improve upper risk
bounds essentially. It however allows to increase the lower risk bounds and therefore to reduce the
model risk faced by an institution. Positive dependence information is introduced in a natural way in
Section 2 by the notions of orthant orders and weakly conditional increasing in sequence order. These
orders are particularly capable to capture the concept of stronger dependence in the comparison of
portfolios with fixed marginal distributions. In Section 3, we introduce a class of models for joint
portfolios described by several independent groups with given marginals while entailing comonotonic
dependence within the groups. We provide analytical upper and lower bounds on the VaR of the joint
portfolio which are easily computable, widely applicable and are compared with the corresponding
unconstrained bounds obtained without positive dependence assumption. In Section 4, we deal with
the case of law-invariant, convex risk measures, where we draw similar conclusions. While assuming
a positive dependence structure typically improves the best-possible lower bound of a risk measure, it
generally leaves unchanged the worst-possible upper risk bound. Finally, in Section 5 we discuss how
negative dependence assumptions moderate also worst-case scenarios. We give a variety of applications
of interest in quantitative risk management that can be easily adapted and closed formulas to be used
in the risk management of real portfolios.
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2 Dependence orders between risk vectors

In quantitative risk management, the components of a risk portfolio often have some positive
dependence structure. A simple way to describe positive dependence is by using suitable stochastic
orders between random vectors. In this section, we recall some natural positive dependence orders
needed in the remainder of the paper. For more details on these dependence notions we refer to
Chapter 6 in Rüschendorf (2013). For a random vector X = (X1, . . . , Xd) in Rd we indicate with FX

its joint distribution function and with FX its survival function. Formally, for x = (x1, . . . , xd) ∈ Rd,
we denote

FX(x) = P (X1 ≤ x1, . . . , Xd ≤ xd), FX(x) = P (X1 > x1, . . . , Xd > xd).

For two random vectors X and Y in Rd, we define

• the upper orthant order Y ≤uo X, if FY (x) ≤ FX(x) for all x ∈ Rd;

• the lower orthant order Y ≤lo X, if FY (x) ≤ FX(x) for all x ∈ Rd;

• the concordance order Y ≤co X, if both Y ≤uo X and Y ≤lo X hold.

• the weakly conditional increasing in sequence order Y ≤wcs X, if, for all x ∈ R, all i with
1 ≤ i ≤ d, and all component-wise increasing functions f , we have

Cov(1(Yi > x), f(Yi+1, . . . , Yn)) ≤ Cov(1(Xi > x), f(Xi+1, . . . , Xn)). (2.1)

A random vector Y is smaller than X in the upper (lower) orthant order if the probabilities
for upper (lower) orthants are ordered, i.e. the probability that all components jointly assume large
(small) values is lower for Y rather than for X. A random vector Y is smaller than X in the weakly
conditional increasing in sequence order if on any level of values larger than x, the i-th component Xi

is more strongly positively correlated to (Xi+1, . . . , Xn) than Yi is to (Yi+1, . . . , Yn).
It is well known that in dimension d = 2 and assuming identical marginals for the two vectors X

and Y the four orders defined above are equivalent, i.e.

Y ≤uo X ⇔ Y ≤lo X ⇔ Y ≤co X ⇔ Y ≤wcs X.

The four orders are however different when d ≥ 3, where we have that

Y ≤wcs X ⇒ Y ≤co X ⇒ Y ≤lo (≤uo) X,

but not vice versa. The orders ≤uo,≤lo,≤co,≤wcs all imply a stronger positive dependence when
vectors with the same marginal distributions are to be compared. Here stronger positive dependence
means having bigger pairwise correlation or bigger rank correlation, as the following proposition (see
Remark 6.3 in Rüschendorf, 2013) shows.

Proposition 2.1. Let X and Y be two random vectors in Rd having joint distributions FX , FY ∈
Fd(F1, . . . , Fd) such that

Y ≤X,

where ≤ is one of the orders ≤uo,≤lo,≤co,≤wcs. Then:

Cov(Yi, Yj) ≤ Cov(Xi, Xj); ρS(Yi, Yj) ≤ ρS(Xi, Xj); τ(Yi, Yj) ≤ τ(Xi, Xj);

where ρS is Spearman’s and τ is Kendall’s rank correlation coefficient.

Remark 2.1. In the remainder of this section we use the assumptions Y ≤lo X and Y ≤uo X, while
in Section 4 we assume the stronger condition Y ≤wcs X. Note that the assumptions Y ≤lo X or
Y ≤uo X do not imply that FX and FY have the same marginal distributions. On the contrary,
assuming Y ≤wcs X or Y ≤co X implies that FX and FY belong to the same Fréchet class.
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Orthant orders lead to bounds for the distribution function, resp. the survival function of an
aggregate position. For a d-dimensional distribution function G, we define the generalized G-supremal
convolution as ∨

G(s) = sup
x∈G(s)

G(x),

where G(s) =
{

(x1, . . . , xd) ∈ Rd;
∑d

i=1 xi = s
}
. The following proposition will be used in Section 3

to obtain analytical bounds for the VaR of a joint portfolio under positive dependence.

Proposition 2.2 (Puccetti and Rüschendorf, 2012). Let X and Y be two random vectors in Rd.

1. If Y ≤lo X, then

P
(
X+
d ≤ s

)
≥
∨
FY (s); (2.2)

2. If Y ≤uo X, then

P
(
X+
d < s

)
≤ 1−

∨
FY (s). (2.3)

The two bounds in (2.2) and (2.3) are sharp when d ≤ 2.

3 Reducing the dependence spread of Value-at-Risk

In this section we introduce positive dependence conditions on the portfolio vector X which allow
to describe analytically the increase of the lower VaR bound as well as the decrease of the upper VaR
bound from marginals information only. It will turn out that positive orthant dependence alone does
not allow a reduction of the dependence spread of VaR. For this reason, in the following we introduce
and study a more specific class of positive dependence models. Recall that the Value-at-Risk (VaR)
of a loss random variable X, computed at a probability level α ∈ (0, 1), is defined as

VaRα(X) := F−1X (α) = inf{x ∈ R : FX(x) ≥ α},

where FX(x) = P (X ≤ x) is the distribution function of X.
Consider a decomposition {1, . . . , d} = ∪kj=1Ik of {1, . . . , d} into k disjoint subsets Ij with cardi-

nality nj = |Ij |, 1 ≤ j ≤ k, and let Y denote a random vector with distribution function

FY (x1, . . . , xd) =
k∏
j=1

min
i∈Ij
{Fj (xi)}. (3.1)

By definition the components within the subgroups Ij are homogeneous with distribution Fj and
comonotonic, while the different subgroups are independent. Our positive dependence restriction on
X is formulated by the condition that

Y ≤X, (3.2)

where ≤ is one of the orders ≤uo, resp. ≤lo, or ≤wcs as described in Section 2.
In case k = 1 condition (3.2) implies that Y and X are comonotonic vectors, the strongest possible

dependence restriction. The weakest form of dependence restriction is instead obtained in the case
k = d. Then Y = X⊥⊥ is an independent vector with the same marginals as X and condition (3.2)
postulates that X is positive upper (resp. lower) dependent, i.e. PUOD (resp. PLOD), or X is
weakly associated in sequence, i.e. WAS; see Rüschendorf (2004) on this terminology.

We are now ready to give the main result of this section, where we state lower and upper bounds
for the VaR when positive dependence information of the type Y ≤X is assumed.

4



Theorem 3.1. Assume that the random vector Y has distribution FY defined as in (3.1).

1. (Lower bound) If Y ≤uo X, then for any α ∈ (0, 1) we have

VaRα(X+
d ) ≥ sup

L(α)

k∑
j=1

nj F
−1
j (uj), (3.3)

where L(α) = {(u1, . . . , uk) ∈ [0, α]k;
∏k
j=1(1− uj) = 1− α}.

2. (Upper bound) If Y ≤lo X, then for any α ∈ (0, 1) we have

VaRα(X+
d ) ≤ inf

U(α)

k∑
j=1

nj F
−1
j (uj), (3.4)

where U(α) = {(u1, . . . , uk) ∈ [α, 1]k;
∏k
j=1 uj = α}.

Before proving the theorem we need the following lemma.

Lemma 3.2. We have that

sup
x1+...+xd=s

k∏
j=1

F j

(
max
i∈Ij
{xi}

)
= sup

y1+...+yk=s

k∏
j=1

F j

(
yj
nj

)
.

Proof. For any x = (x1, . . . , xd) ∈ Rd with
∑d

i=1 xi = s it is possible to define z = (z1, . . . , zd) ∈ Rd as

zi =

k∑
j=1

1{i ∈ Ij} ·

 1

nj

∑
r∈Ij

xr

 , 1 ≤ i ≤ d.

The vector z has the components zi’s with index i in the same subgroup Ij identical and equal to the

average of the x′is with index belonging to the same Ij . It is straightforward to check that
∑d

i=1 zi = s
and maxi∈Ij{xi} ≥ maxi∈Ij{zi}, 1 ≤ j ≤ k. Since the product operator is coordinatewise increasing

while the F j ’s are decreasing functions, we obtain that

k∏
j=1

F j

(
max
i∈Ij
{xi}

)
≤

k∏
j=1

F j

(
max
i∈Ij
{zi}

)
=

k∏
j=1

F j

 1

nj

∑
r∈Ij

xr

 =
k∏
j=1

F j

(
yj
nj

)
,

where yj =
∑

r∈Ij xr with
∑k

j=1 yj = s. Thus,

sup
x1+...+xd=s

k∏
j=1

F j

(
max
i∈Ij
{xi}

)
≤ sup

y1+...+yk=s

k∏
j=1

F j

(
yj
nj

)
.

The inverse inequality (≥) is immediate. �

Proof of Theorem 3.1, (1). By Proposition 2.2, it follows that

P
(
X+
d ≥ s

)
≥ sup

x∈G(s)
FY (x) = sup

x∈G(s)

k∏
j=1

P (Yi > xi, i ∈ Ij) = sup
x∈G(s)

k∏
j=1

F j

(
max
i∈Ij

xi

)
,

where F j = 1− Fj , 1 ≤ j ≤ d. Applying Lemma 3.2 leads to

P
(
X+
d ≥ s

)
≥ sup

y1+...+yk=s

k∏
j=1

F j

(
yj
nj

)
= sup

y1+...+yk=s

k∏
j=1

Gj (yj) , (3.5)
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where we set Gj(·) = F j(·/nj), 1 ≤ j ≤ k. From the duality principle given in Theorem 4.1 in Em-
brechts et al. (2003), it follows that

VaRα(X+
d ) ≥ sup

L′(α)

k∑
j=1

G−1j (uj) = sup
L′(α)

k∑
j=1

njF
−1
j (uj),

where L′(α) = {(u1, . . . , uk) ∈ [0, 1]k;
∏k
j=1(1 − uj) = 1 − α}. The upper bound in (3.3) now follows

by noting that the constraints
∏k
j=1(1− uj) = 1− α and uj ∈ [0, 1] imply uj ≤ α, 1 ≤ j ≤ d. �

Proof of Theorem 3.1, (2). Using Proposition 2.2, we have that

P (X+
d ≤ s) ≥ sup

x1+...+xd=s

k∏
j=1

min
i∈Ij
{Fj (xi)} = sup

x1+...+xd=s

k∏
j=1

Fj

(
min
i∈Ij
{xi}

)
. (3.6)

Using the same argument as in the proof of Lemma 3.2, we have that

P (X+
d ≤ s) ≥ sup

x1+...+xd=s

k∏
j=1

Fj

(
min
i∈Ij
{xi}

)
= sup

y1+...+yk=s

k∏
j=1

Fj

(
yj
nj

)
= sup

y1+...+yk=s

k∏
j=1

Gj (yj) . (3.7)

From Theorem 4.1 in Embrechts et al. (2003), it follows that

VaRα(X+
d ) ≤ inf

U ′(α)

k∑
j=1

G−1j (uj) = inf
U ′(α)

k∑
j=1

njF
−1
j (uj),

where U ′(α) = {(u1, . . . , uk) ∈ [0, 1]k;
∏k
j=1 uj = α}. The upper bound in (3.4) now follows by noting

that the constraints
∏k
j=1 uj = α and uj ∈ [0, 1] imply uj ≥ α, 1 ≤ j ≤ k. �

3.1 Computation of the lower bound on the VaR

Under additional hypotheses on the marginal models F1, . . . , Fk it is possible to compute analyti-
cally the supremum in (3.3).

Theorem 3.3. Fix α ∈ (0, 1) and assume that the function ψj : [ln(1− α), 0]→ R defined as

ψj(x) = F−1j (1− ex)

is continuous and convex for all 1 ≤ j ≤ k. Then, we have that

sup
L(α)

k∑
j=1

nj F
−1
j (uj) = max

1≤j≤k

njF−1j (α) +
∑
i 6=j

niF
−1
i (0)

 .

Proof. Applying the transformation uj = 1− evj , we obtain

sup
L(α)

k∑
j=1

nj F
−1
j (uj) = sup

V(α)

k∑
j=1

njF
−1
j (1− evj ), (3.8)

where V(α) = {(v1, . . . , vk) ∈ [ln(1 − α), 0]k;
∑k

j=1 vj = ln(1 − α)} is a convex and compact set. By

assumption, the function
∑k

j=1 njF
−1
j (1−evj ) is continuous and convex and by the maximum principle

it attains the maximum at an extreme point of V(α), that is at a point v such that vj = ln(1−α) for
some j and vi = 0 for every i 6= j. Hence, we have that

sup
V(α)

k∑
j=1

njF
−1(1− evj ) = max

1≤j≤k

njF−1j (1− eln(1−α)) +
k∑
i 6=j

niF
−1
i (1− e0)

 ,

which gives the desired result. �
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The assumptions of Theorem 3.3 are easy to check and satisfied for some models of interest in
quantitative risk management. We give some relevant examples below.

Example 3.1 (Pareto marginal distributions). Consider the case where all the Fj ’s are Pareto dis-
tributed with parameter θj > 0, that is

Fj(x) = 1− (1 + x)−θj , x > 0, 1 ≤ j ≤ d.

In this case the functions F−1j (1− ex) = exp(−x/θj)− 1 satisfy the assumptions of Theorem 3.3 and
for a vector X with Y ≤uo X we obtain

VaRα(X+
d ) ≥ max

1≤j≤d

{
nj

(
(1− α)

− 1
θj − 1

)}
. (3.9)

In Table 1 we report the lower bound in (3.9) obtained under the assumption Y ≤uo X for a sum
of d homogeneous Pareto(2) random variables. In the same table we also report the unconstrained
bound VaRα(X+

d ) defined, consistently with (1.1), as

VaRα(X+
d ) = inf

{
VaRα(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
, (3.10)

where Fi = Fj when i ∈ Ij . The bound VaRα(X+
d ) can be computed in the Pareto case using Corollary

4.7 in Jakobsons et al. (2014). The lower bound obtained in (3.9) under a positive dependence
assumption considerably improves the unconstrained bound for all k < d. Interestingly enough, the
case k = d = 8, where the vector X is assumed to be PUOD, exactly returns the unconstrained
bound VaRα(X+

d ), i.e. the PUOD condition alone does not increase the lower risk bound induced by
marginals information only. The improvement implied by the extra dependence assumption decreases
with increasing k, which corresponds to weaker positive dependence assumption (recall that k = 1
gives comonotonic Xj ’s while k = 8 corresponds to independent Yj ’s).

Example 3.2 (Exponential marginal distributions). Consider the case where each Fj is an Exponential
distribution with positive parameter θj , that is

Fj(x) = 1− e−θjx, x > 0, 1 ≤ j ≤ d.

Since F−1j (1− ex) = − x
θj

is linear, from Theorem 3.3 we obtain

VaRα(X+
d ) ≥ max

1≤j≤k

{
−nj
θj

ln(1− α)

}
. (3.11)

Again the lower bound obtained in (3.11) under a positive dependence assumption considerably im-
proves the unconstrained bound for all k < d; see Table 2 (with a slight abuse of notation the case
k = 1 indicates the inhomogeneous case when all the X ′js are comonotonic). Note that Theorem 3.3
allows to compute bounds for portfolios with different families of marginal distributions; see Table 5
below.

In case the conditions of Theorem 3.3 are not satisfied, the supremum in (3.3) might be attained
in an internal point of L(α). We can rewrite (3.3) as

VaRα(X+
d ) ≥ sup

u1,...,uk−1∈[0,α]

k−1∑
j=1

nj F
−1
j (uj) + nkF

−1
k

(
1− 1− α

Πk−1
j=1(1− uj)

)
. (3.12)

First order conditions for sup = max in (3.12) are given by
ni(1−u∗i )

fi(F
−1
i (u∗i ))

= nk(1−α)

(
∏
j∈C(1−u∗j ))fk

(
F−1
k

(
1− (1−α)∏

j∈C (1−u∗
j
)

)) , for i ∈ C;

u∗i = 0, for i /∈ C,

(3.13)

where we define C = {j ∈ {1, . . . , k − 1} : u∗j > 0} and fj = F ′j .
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Example 3.3 (Homogeneous marginal distributions). The system of equations in (3.13) generally
needs to be solved numerically. To get solutions in closed form, we consider the simplified framework
where the marginal distributions Fj are assumed to be all identical and each subgroup to have the
same cardinality, i.e. Fj = F and nj = d

k , 1 ≤ j ≤ k. The set of equations in (3.13) then becomes
1−u∗i

f(F−1(u∗i ))
= 1−α

(
∏
j∈C(1−u∗j ))f

(
F−1

(
1− (1−α)∏

j∈C (1−u∗
j
)

)) , for i ∈ C;

u∗i = 0, for i /∈ C.

(3.14)

The equations in (3.14) are clearly solved by u∗j = 1− (1− α)
1
|C| , j ∈ C. It is also straightforward to

prove that, if the density of F is monotone in [F−1(0), F−1(α)], this solution is unique. Considering
all the possible cardinalities of C in (3.14), we collect a set of k candidate vectors, one of which gives
(in case uniqueness holds) sup = max in (3.12). Under this simplified framework, the lower bound for
VaR in (3.3) becomes

VaRα

(
X+
d

)
≥ max

0≤r≤k−1

{
d(k − r)

k
F−1

(
1− (1− α)

1
k−r
)

+
d r

k
F−1(0)

}
. (3.15)

It is important to remark that the inequality in (3.15) always holds in an homogeneous framework
and does not need any extra assumption on the distribution F . In case F is not monotone on
[F−1(0), F−1(α)], the bound given in (3.15) might however be improved by finding other different
solutions of (3.14).

Figures for the bound (3.15) are reported in Table 3 for an homogeneous portfolio of d = 16
Gamma distributions. As one can see from this table, figures for the lower bound tend to deteriorate
with increasing dimensions. For example, for k = 8 and k = 16 the bound (3.15) becomes smaller
than the unconstrained one. In Table 3, the unconstrained bound VaRα(X+

d ) is obtained using the
rearrangement procedure described in Embrechts et al. (2013).
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d = 8 k = 1 k = 2 k = 4 k = 8

VaRα VaRlb
α VaRα VaRlb

α VaRα VaRlb
α VaRα VaRlb

α

α = 0.990 9.00 72.00 9.00 36.00 9.00 18.00 9.00 9.00
α = 0.995 13.14 105.14 13.14 52.57 13.14 26.28 13.14 13.14
α = 0.999 30.62 244.98 30.62 122.49 30.62 61.25 30.62 30.62

Table 1: Values (rounded) for the VaR bound in (3.9) (denoted by VaRlb
α ) for an homogeneous portfolio

with d Pareto(2) risks, k subgroups, d/k variables in each subgroup and dependence assumption
Y ≤uo X. The unconstrained bound VaRα(X+

d ) in (3.10) is also reported. In this and the forthcoming
tables, the indication of the random variable X+

d is omitted.

d = 8 k = 1 k = 2 k = 4 k = 8

VaRα VaRlb
α VaRα VaRlb

α VaRα VaRlb
α VaRα VaRlb

α

α = 0.990 2.30 13.82 2.30 9.21 2.30 4.61 2.30 2.30
α = 0.995 2.65 15.89 2.65 10.60 2.65 5.30 2.65 2.65
α = 0.999 3.45 20.72 3.45 13.82 3.45 6.91 3.45 3.45

Table 2: Values (rounded) for the VaR bound in (3.11) (denoted by VaRlb
α ) for an inhomogeneous

portfolio with d/2 Exp(2) risks and d/2 Exp(4) risks, k subgroups, d/k variables in each subgroup
and dependence assumption Y ≤uo X. The unconstrained bound VaRα is also reported.

d = 16 k = 1 k = 2 k = 4 k = 8 k = 16

VaRα VaRlb
α VaRα VaRlb

α VaRα VaRlb
α VaRα VaRlb

α VaRα VaRlb
α

α = 0.990 23.47 67.25 23.47 42.58 23.47 28.20 23.47 19.43 23.47 13.82
α = 0.995 23.70 74.19 23.70 46.53 23.70 30.55 23.70 20.89 23.70 14.77
α = 0.999 23.93 89.83 23.93 55.31 23.93 35.70 23.93 24.05 23.93 16.81

Table 3: Values (rounded) for the VaR bound in (3.15) (denoted by VaRlb
α ) for an homogeneous port-

folio of d Gamma(3,1/2) risks and dependence assumption Y ≤uo X. The unconstrained bound VaRα

is also reported. The parameterization of the Gamma distribution used can be found in Example 4.1.
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3.2 Computation of the upper bound on the VaR

We can rewrite (3.4) as

VaRα(X+
d ) ≤ inf

u1,...,uk−1∈[α,1]

k−1∑
j=1

nj F
−1
j (uj) + nkF

−1
k

(
α

Πk−1
j=1uj

)
. (3.16)

First order conditions for inf = min in (3.16) are given by
niu
∗
i

fi(F
−1
i (u∗i ))

= nkα

(
∏
j∈B u

∗
j)fk

(
F−1
k

(
α∏

j∈B u∗
j

)) , for i ∈ B;

u∗i = 1, for i /∈ B,
(3.17)

where we denote B = {j ∈ {1, . . . , k − 1} : u∗j < 1} and fj = F ′j .

Example 3.4 (Homogeneous marginal distributions). In general, the set of equations in (3.17) needs
to be solved numerically. To get solutions in closed form, we consider a simplified framework, where
we assume that all the Fj are identical, and each subgroup has the same cardinality. In practice, we
set Fj = F and nj = d/k for 1 ≤ j ≤ d. The equations in (3.17) then become

u∗i
f(F−1(u∗i ))

= α

(
∏
j∈B u

∗
j)f

(
F−1

(
α∏

j∈B u∗
j

)) , for i ∈ B;

u∗i = 1, for i /∈ B.
(3.18)

The equations in (3.18) are clearly solved by u∗j = α
1
|B| , j ∈ B. It is also straightforward to prove

that, if the density of F is monotone in [F−1(α), F−1(1)], this solution is unique. Considering all the
possible cardinalities of B in (3.18), we collect a set of k candidate vectors, one of which gives (in case
uniqueness holds) inf = min in (3.16). Under this simplified framework, the upper bound for VaR
in (3.4) becomes

VaRα(X+
d ) ≤ min

1≤r≤k

{
d r

k
F−1

(
α

1
r

)
+
d(k − r)

k
F−1(1)

}
. (3.19)

It is important to remark that the inequality in (3.19) always holds in our homogeneous frame-
work and do not need any extra assumption on the distribution F . In case F is not monotone on
[F−1(α), F−1(1)], the bound given in (3.19) might however be improved by finding other different
solutions of (3.18).

In Table 4 we report the upper bound in (3.19) obtained under the assumption Y ≤lo X as well
the unconstrained bound VaRα(X+

d ) for a sum of d identically distributed Pareto(2) random variables.
The unconstrained bound VaRα(X+

d ) is defined, consistently with (1.2), as

VaRα(X+
d ) = sup

{
VaRα(X+

d );FX ∈ Fd(F1, . . . , Fd)
}
, (3.20)

and is obtained in the homogeneous case from Proposition 4 in Embrechts et al. (2013). Since the
Pareto distribution is unbounded from above (i.e. F−1(1) = ∞), the min in (3.19) is attained when
r = k, therefore (3.19) simplifies to

VaRα(X+
d ) ≤ dF−1

(
α

1
k

)
.

Unfortunately, the bound given in (3.19) with positive dependence information improves the un-
constrained bound only for k = 1 (obviously, since in this the case the Xj ’s are assumed to be
comonotonic) and k = 2 (when the bound is known to be sharp).
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d = 8 k = 1 k = 2 k = 4 k = 8

VaRα VaRub
α VaRα VaRub

α VaRα VaRub
α VaRα VaRub

α

α = 0.990 141.67 72.00 141.67 104.99 141.67 151.70 141.67 217.78
α = 0.995 203.66 105.14 203.66 151.90 203.66 218.06 203.66 311.65
α = 0.999 465.29 244.98 465.29 349.73 465.29 497.87 465.29 707.39

Table 4: Values (rounded) for the VaR bound in (3.19) (VaRub
α in the table) for an homogeneous

portfolio with d Pareto(2) risks, k subgroups and dependence assumption Y ≤lo X. The unconstrained
bound VaRα defined in (3.20) is also reported.

3.3 General lower and upper bounds

If Y has a set of marginal distributions for which the assumptions of Theorem 3.3 are not satisfied,
it is however important to notice that from (3.3) the inequality

VaRα(X+
d ) ≥ max

1≤j≤k
{njF−1j (α) +

∑
i 6=j

niF
−1
i (0)}. (3.21)

always holds in case Y ≤uo X. Analogously, since the vector u = (α1/k, . . . , α1/k) is admissible
in (3.4), we have

VaRα(X+
d ) ≤

k∑
j=1

njF
−1
j (α1/k), (3.22)

when Y ≤lo X. The inequalities in (3.21) and in (3.22) might yield improved bounds for general
portfolios and are straightforward to compute. Both bounds hold if Y ≤co X is assumed; see Table 6.

In Tables 5–7 (k = 2) we report the bounds (3.21) and (3.22) for some inhomogeneous portfolios of
Pareto, Exponential and LogNormal marginal distributions. In these tables, the lower bound in (3.21)
is shown to improve the corresponding unconstrained one for k = 2, 4, while the upper bound in (3.22)
is useful to reduce model uncertainty only in the case k ≤ 2. In Tables 5–7 , the unconstrained bounds
VaRα and VaRα are computed according to Corollary 4.7 in Jakobsons et al. (2014) (when possible)
or via the RA technique described in Embrechts et al. (2013).
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d = 8, k = 4 VaRα VaRlb
α VaRα DU-S DU-S’ ∆DU-S

α = 0.990 9.21 18.42 77.41 68.20 58.99 −13.5%
α = 0.995 13.14 26.28 98.45 85.31 72.17 −15.4%
α = 0.999 30.61 61.25 175.46 144.85 114.21 −21.2%

Table 5: Values (rounded) for the VaR bounds in (3.21) (denoted by VaRlb
α ) for a inhomogeneous

portfolio with k = 4 subgroups of two Pareto(2), Pareto(3), Exp(1), Exp(2) distributed risks and
dependence assumption Y ≤uo X. Values for VaRub

α are not reported since they do not improve the
corresponding unconstrained bounds. Dependency uncertainty spreads prior (DU-S=VaRα − VaRα)
and after (DU-S’=VaRα −VaRlb

α ) the introduction of dependence information are also reported.

d = 8, k = 2 VaRα VaRlb
α VaRub

α VaRα DU-S DU-S’ ∆DU-S

α = 0.990 9.00 36.00 73.68 89.05 80.05 37.68 −52.9%
α = 0.995 13.14 52.57 99.91 120.58 107.44 47.34 −55.9%
α = 0.999 30.62 122.49 205.27 248.24 217.62 82.78 −62.0%

Table 6: Values (rounded) for the VaR bounds in (3.21) (denoted by VaRlb
α ) and in (3.22) (denoted

by VaRub
α ) for a inhomogeneous portfolio with k = 2 subgroups of four Pareto(2), Exp(1) distributed

risks and dependence assumption Y ≤co X.

d = 8, k = 4 VaRα VaRlb
α VaRα DU-S DU-S’ ∆DU-S

α = 0.990 285.1 570.1 1975.9 1690.8 1405.8 −16.9%
α = 0.995 469.5 939.0 3338.2 2868.7 2399.2 −16.4%
α = 0.999 1313.5 2627.0 11119.2 9805.7 8492.2 −13.4%

Table 7: Values (rounded) for the VaR bounds in (3.21) (denoted by VaRlb
α ) for a inhomogeneous port-

folio with k = 4 subgroups of two LogNormal(0,1), LogNormal(1,2), Pareto(2), Pareto(3) distributed
risks and dependence assumption Y ≤uo X. Values for VaRub

α are not reported since they do not
improve the corresponding unconstrained bounds.
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4 Reducing dependency spreads of convex risk measures

To find reduced dependence uncertainty spreads on convex risk measures, throughout this section
we assume

Y ≤wcs X, (4.1)

where the vector Y is a random vector having the same univariate marginal distributions as X. We
also denote by X∗ a comonotonic vector having the same univariate marginal distributions as X, that
is having joint distribution

FX∗(x1, . . . , xd) = min{F1(x1), . . . , Fd(xd)}, where Fi = Fj , if i ∈ Ij , 1 ≤ i ≤ d.

We shall make use of the convex order X ≤cx Y between random variables X,Y defined by X ≤cx Y
iff E[f(X)] ≤ E[f(Y )] for all convex functions f : R→ R such that the expectations exist.

Let Y +
d =

∑d
j=i Yj , X

+
d =

∑d
j=iXj and S∗d =

∑d
j=1X

∗
j . The dependence ordering result given in

Theorem 2.1 in Rüschendorf (2004) and a classical result in Meilijson and Nádas (1979) imply that

Y +
d ≤cx X

+
d ≤cx S

∗
d . (4.2)

According to Theorem 4.3 in Bäuerle and Müller (2006), law-invariant, convex risk measures
satisfying the so-called Fatou property are consistent with respect to the convex order. Therefore
(4.2) implies the following result.

Theorem 4.1. Let ρ be a law-invariant, convex risk measure satisfying the Fatou property and assume
that Y ≤wcs X. Then

ρ(Y +
d ) ≤ ρ(X+

d ) ≤ ρ(S∗d). (4.3)

The Fatou property is a technical condition which is satisfied by the risk measures used in the
following.

Remark 4.1. Theorem 4.1 holds under the weaker assumption Y ≤sm X, resp. Y ≤dcx X, where
≤sm is the supermodular order and ≤dcx is the directionally convex order ; see Remark 6.27 (b)
in Rüschendorf (2013). Since ≤wcs has a more direct positive dependence interpretation and can
be checked in several functional models (see Rüschendorf, 2004) we state Theorem 4.1 under this
ordering condition. For the non convex risk measure VaR the conclusion in (4.3) is not true; see the
several examples given in Embrechts et al. (2014a).

The upper bound ρ(S∗d) in (4.3) corresponds to the case of maximally correlated risks and can be
easily computed in the examples to follow. Furthermore, once fixed the marginal distributions of X,
the upper bound ρ(S∗d) in (4.3) holds without any dependence assumption, therefore we have

ρ(S∗d) = ρ(X+
d ).

Again, the dependence assumption Y ≤wcs X has only influence on the lower bound ρ(Y +
d ) which is

generally strictly bigger than the unconstrained bound ρ(X+
d ) obtained without any positive depen-

dence information.
To keep the connection with Section 3, in the examples below we assume that Y has the joint

distribution defined in (3.1) and we study portfolios of Gamma distributed risks since the Gamma
distribution allows to obtain all the quantities in (4.3) in closed form. For general portfolios: the uncon-
strained lower bounds ρ(X+

d ) can be computed using the numerical procedures described in Puccetti
and Rüschendorf (2015) (for entropic risk measures) and in Puccetti (2013) (for the Expected Short-
fall); the constrained lower bound ρ(Y +

d ) can be generally computed numerically or by Monte Carlo
simulation; the upper bound ρ(S∗d) = ρ(X+

d ) is easily available numerically considering that X∗ is
comonotonic.
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Example 4.1 (Expected Shortfall). We now compute the bounds in (4.3) when ρ = ESα for a portfolio
of Gamma-distributed random variables. For a random variable X with E[|X|] < ∞, the Expected
Shortfall (ES) at confidence level α ∈ [0, 1) is defined as

ESα(X) =
1

1− α

∫ 1

α
VaRq(X) dq.

If a random variable X follows a Fa,s = Gamma(a, s) distribution with positive parameters a, s and
density function

fa,s(x) =
1

saΓ(a)
xa−1e−

x
s , 1 ≤ j ≤ d,

it is elementary to show that

ESα(X) =
1

1− α
Γ(a+ 1)s

Γ(a)

(
F a+1,s

(
F−1a,s (α)

))
. (4.4)

Assuming that Fj = Gamma(aj , s), 1 ≤ j ≤ d in (3.1), it follows that
∑

i∈Ij Yi is again a Gamma

random variable with distribution Faj ,njs, 1 ≤ j ≤ k. Setting nj = d/k, 1 ≤ j ≤ k and taking the
convolution of Gamma with identical scale parameter, we obtain that Y +

d has Gamma distribution
F∑k

j=1 aj ,ds/k
. From (4.4) we finally find that the constrained lower bound ESα(Y +

d ) in (4.3) is given

by

ESα(Y +
d ) =

d s

k(1− α)

Γ
(

1 +
∑k

j=1 aj

)
Γ(
∑k

j=1 aj)

(
F 1+

∑k
j=1 aj ,ds/k

(
F−1∑k

j=1 aj ,ds/k
(α)

))
.

The unconstrained lower bound ESα(X+
d ) defined in (1.2) with ρ = ESα is very well approximated by

the sum of the first moment µ = 12 of the Gamma marginals under study, that is

ESα(X+
d ) ' ESα(µ) = µ.

In fact, using the mixability detection procedure in Puccetti and Wang (2014), it is possible to show
that the set of Gamma distributions Fj used in Table 8, conditional to the intervals [0, F−1j (1−10−7)],
are very close to being jointly mixable, that is there exist a random vector (W1, . . . ,Wd) having the
prescribed conditional marginal distributions under which

P (W1 + · · ·+Wd ∈ [µ− 10−3, µ+ 10−3]) = 1.

Note that this also directly implies that ρ(X+
d ) ' ρ(µ) in the forthcoming examples where other

convex risk measures ρ are considered. For more details on joint mixability, we refer to Puccetti and
Wang (2014) and references therein.

Since ESα is a comonotonic additive convex risk measure, the upper bound ESα(X+
d ) = ESα(S∗d)

is equal to the sum of marginal expected shortfall, i.e. we have

ESα(X+
d ) = ESα(S∗d) =

d∑
j=1

ESα(Yj) =
d s

k(1− α)

k∑
j=1

Γ(aj + 1)

Γ(aj)

(
F aj+1,s

(
F−1aj ,s(α)

))
.

In Table 8, we report the bounds ESα(X+
d ),ESα(Y +

d ) and ESα(X+
d ) = ESα(S∗d) for a portfolio of inho-

mogeneous Gamma distributions as well as the implied DU-spreads. With a slight abuse of notation
the case k = 1 indicates in the forthcoming tables the case when all the X ′js are comonotonic.
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d = 8 unconstrained k = 1 k = 2 k = 4 k = 8

ESα ESα DU-S ESlb
α ∆DU-S ESlb

α ∆DU-S ESlb
α ∆DU-S ESlb

α ∆DU-S

α = 0.990 12.00 38.27 26.27 38.27 −100% 29.15 −65.3% 23.29 −43.0% 19.56 −28.8%
α = 0.995 12.00 41.64 29.64 41.64 −100% 31.15 −64.6% 24.52 −42.2% 20.33 −28.1%
α = 0.999 12.00 49.27 37.27 49.27 −100% 35.63 −63.4% 27.21 −40.8% 22.02 −26.9%

Table 8: Values (rounded) for the bounds ESα(Y +
d ) (denoted by ESlb

α ), ESα(X+
d ) and ESα(X+

d ) for
an inhomogeneous portfolio with d/2 Gamma(2,1/2) risks and d/2 Gamma(4,1/2) risks, k subgroups,
n = d/k variables in each subgroup and dependence assumption Y ≤wcs X. In this and in the
forthcoming tables, the reduction of DU-spreads implied by additional dependence assumption is also
reported.

Example 4.2 (Entropic risk measure). For a random variable X with E[|X|] <∞, the Entropic Risk
Measure (ERM) with (risk aversion) parameter β > 0 is defined as

ERMβ(X) =
1

β
logE

[
eβX

]
,

provided the expectation is finite. The entropic risk measure is well known to be a convex risk measure
(see for instance Föllmer and Schied, 2004). For a random variable X with Gamma distribution Fa,s,
it follows immediately by the definition of the moment generating function (MX(t) = E[etX ]) that:

ERMβ(X) =
1

β
log (1− sβ)−a for 0 < β <

1

s
.

We already know from Example 4.1 that Y +
d has Gamma distribution F∑k

j=1 aj ,ds/k
, hence we obtain

ERMβ(Y +
d ) =

1

β
log

(
1− ds

k
β

)−∑k
j=1 aj

for 0 < β <
k

ds
.

From Theorem 4.1 the upper bound in (4.3) for the entropic risk measure is obtained when all the
Xj ’s are comonotonic, that is

ERMβ(X+
d ) = ERMβ(S∗d) =

1

β
logE

[
eβ(n1F

−1
a1,s

(U)+···+nkF−1
ak,s

(U))
]
,

where F−1aj ,s is the Gamma inverse cumulative distribution function with parameters aj , s and U is a
random variable with uniformly distributed on (0, 1). Similarly to what discussed in Example 4.1, we
obtain ERMβ(X+

d ) ' 12. In Table 9, we report the bounds ERMβ(X+
d ), ERMβ(Y +

d ) and ERMβ(X+
d )

for a portfolio of inhomogeneous Gamma distributions as well as the corresponding dependence un-
certainty spreads.

d = 8 unconstrained k = 1 k = 2 k = 4 k = 8

ERMβ ERMβ DU-S ERMβ
lb ∆DU-S ERMβ

lb ∆DU-S ERMβ
lb ∆DU-S ERMβ

lb ∆DU-S

β = 0.10 12.00 15.22 3.22 15.22 −100% 13.38 −42.9% 12.64 −19.9% 12.31 −9.6%
β = 0.15 12.00 18.14 6.14 18.14 −100% 14.27 −37.0% 13.00 −16.3% 12.47 −7.7%
β = 0.20 12.00 23.80 11.80 23.80 −100% 15.33 −28.2% 13.39 −11.8% 12.64 −5.4%

Table 9: Values (rounded) for the bound ERMβ(Y +
d ) (denoted by ERMβ

lb), ERMβ(X+
d ) and

ERMβ(X+
d ) for an inhomogeneous portfolio with d/2 Gamma(2,1/2) risks and d/2 Gamma(4,1/2)

risks, k subgroups, n = d/k variables in each subgroup and dependence assumption Y ≤wcs X.
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Example 4.3 (Expectiles). We now compute the bounds in (4.3) using expectiles as risk measure,
ρ = ep, for a portfolio of Gamma-distributed random variables. Expectiles are attracting increasing
interest in the literature on risk measures since they are the only coherent risk measure with the
additional property of being elicitable; see for instance Ziegel (2014) and Bellini and Bignozzi (2014)
for more details on this. For a random variable X with E[|X|] < ∞, the expectile ep, computed at
confidence level p ∈ (0, 1), is defined as the unique solution to

pE[(X − ep(X))+] = (1− p)E[(X − ep(X))−],

where x+ = max(0, x) and x− = max(0,−x). When p ≥ 1/2, expectiles are coherent risk measures.
Expectiles are generally not available in closed form and need to be computed numerically.

Again from Theorem 4.1 the upper bound in (4.3) for the expectiles is obtained when all the Xj ’s
are comonotonic. Hence we have to find numerically the unique solution to

pE[(n1F
−1
a1,s(U) + · · ·+ nkF

−1
ak,s

(U)− ep
(
n1F

−1
a1,s(U) + · · ·+ nkF

−1
ak,s

(U)
)
)+]

= (1− p)E[(n1F
−1
a1,s(U) + · · ·+ nkF

−1
ak,s

(U)− ep
(
n1F

−1
a1,s(U) + · · ·+ nkF

−1
ak,s

(U)
)
)−].

The computation of ep(Y
+
d ) is analogous while, similarly to what discussed in Example 4.1, we obtain

ep(X
+
d ) ' 12. In Table 10, we report the bounds (4.3) for a portfolio of inhomogeneous Gamma

distributions as well as the unconstrained bounds ep(X
+
d ) and ep(X

+
d ).

d = 8 unconstrained k = 1 k = 2 k = 4 k = 8

ep ep DU-S elbp ∆DU-S elbp ∆DU-S elbp ∆DU-S elbp ∆DU-S

p = 0.90 12.00 18.71 6.71 18.71 −100% 16.67 −69.6% 15.22 −47.8% 14.23 −33.2%
p = 0.95 12.00 21.34 9.34 21.34 −100% 18.39 −68.4% 16.36 −46.7% 15.00 −32.1%
p = 0.99 12.00 27.52 15.52 27.52 −100% 22.35 −66.7% 18.92 −44.6% 16.70 −30.3%

Table 10: Values (rounded) for the bound ep(Y
+
d ) (denoted by elbp ), ep(X

+
d ) and ep(X

+
d ) for an in-

homogeneous portfolio with d
2 Gamma(2,1/2) risks and d

2 Gamma(4,1/2) risks, k subgroups, n = d
k

variables in each subgroup and dependence assumption Y ≤wcs X.

5 Using negative dependence assumptions

We have introduced a class of positive dependence restrictions allowing to determine analytically
improved lower risk bounds for the risk of a joint portfolio compared to the case where only marginals
information is available. In a variety of examples of interest in quantitative risk management, positive
dependence assumptions added on top of marginals information allow to increase the best-possible
lower risk ρ(X+

d ) and therefore reduce the implied dependence uncertainty spread ρ(X+
d )− ρ(X+

d ).
However, positive dependence assumptions seem to be ineffective in reducing the worst-possible

estimate ρ(X+
d ) apart from some trivial cases of limited applicability. Some kind of negative depen-

dence allows to construct worst-case VaR distributions with VaR value bigger than in the comonotonic
case (see Wang and Wang, 2011; Embrechts et al., 2013) and approaching asymptotically the worst
ES bound (see Puccetti et al., 2013; Puccetti and Rüschendorf, 2014).

It seems intuitively clear that one has to assume some negative dependence constraints in order
to reduce the upper bound on a risk measure. A negative dependence condition on X is obtained
assuming that

X ≤wcs Y . (5.1)

If Y has the distribution specified in (3.1), then (5.1) does not pose essential restriction on the
dependence structure within the groups Ij but affects the joint dependence of the groups which is
assumed to be more negatively dependent compared to independent groups. Similarly to Theorem 4.1,
the assumption X ≤wcs Y implies the following result.
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Theorem 5.1. Let ρ be a law-invariant, convex risk measure and assume that X ≤wcs Y . Then

ρ(X+
d ) ≤ ρ(Y +

d ) ≤ ρ(S∗d). (5.2)

The upper bound ρ(Y +
d ) in (5.2) is in general a strong improvement of the comonotonic upper

bound ρ(S∗d). The assumption X ≤wcs Y may be realistic in hierarchical insurance models where
some branches (groups) of insurance companies are approximately independent or possibly negatively
dependent. For examples bad weather type insurance (like hail, heavy rain, storm, etc...) could be
supposed realistically to be negatively dependent to hot weather type insurances (like draught, fire,
thunderstorm, etc...). Some more detailed study of this type of applications is planned for a future
study.
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