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The Monge-Kantorovich duality theorem has a variety of applications

in probability theory, statistics, and mathematical economics. There

has been extensive work to establish the duality theorem under general

conditions. In this paper, by imposing a natural stability requirement

on the Monge-Kantorovich functional, we characterize the probabil-

ity spaces (called strong duality spaces) which ensure the validity of

the duality theorem. We prove that strong duality is equivalent to

each one of (i) extension property, (ii) projection property, (iii) the

charge extension property and (iv) perfectness. The resulting charac-

terization enables us to derive many useful properties that such spaces

inherit from being perfect.

1 Introduction

Continuous versions of the classical transportation problem dating back to

Monge (1781) and developing into in�nite-dimensional linear programming

in the work of Kantorovich (1940, 1942) concern the validity of a duality the-

orem for the transportation problem (formally de�ned in the next section).

General treatment of Monge-Kantorovich duality theorems can be found in

R�uschendorf (1981), Kellerer (1984), Levin (1984), Rachev (1991) and Ra-

machandran and R�uschendorf (1995). They arise in the study of (i) probabil-

ities with given marginals and given support, stochastic ordering (Strassen

(1965), Sudakov (1975), Ho�mann-J�rgensen(1987), Dall'Aglio, Kotz and

Salinetti (1991), R�uschendorf, Schweizer and Taylor (1996) and Benes and

Stepan (1997)), (ii) probability metrics, central limit theorems and asymp-

totic analysis of algorithms (Rachev(1991), Rachev and R�uschendorf(1998),
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(iii) equlibria in assignment models in economics (Gretsky, Ostroy and Zame

(1992) and Ramachandran and R�uschendorf (1997)), (iv) operator algebras

(Arveson (1974), Haydon and Shulman (1996)) and many others.

Ramachandran and R�uschendorf (1995) established a general duality the-

orem when one of the underlying spaces is perfect. We say that a probability

space is a duality space if the duality theorem holds for all bounded measur-

able functions on its product with any other probability space. A duality

space is called a strong duality space if, further, for each measurable cost

function the optimal value is stable with respect to only `technically' di�er-

ent formulations of the duality problem(in a sense made precise in the next

section). The projection property for a probability space is the measure theo-

retic analogue of the analyticity of the projection of Borel sets in the product

of standard Borel spaces. The charge extension property (extension property)

concerns the extension of charges (probabilities) with given marginals on a

product space when a marginal space is enlarged. We show that strong dual-

ity, perfectness, projection property, charge extension property and extension

property are all equivalent. This new characterization enables us to obtain

several useful properties such spaces inherit from perfectness which are not

easily established by direct arguments.

2 Notation and Preliminaries

We use customary measure theoretic terminology and notation (as, for in-

stance, in Neveu (1965)). All measures that we consider are probabilities.

A charge is a �nitely additive probability. For a measurable space (X;A)

the notation f 2 A indicates that f is a real-valued, bounded A-measurable

function on X. We denote by B the �-algebra of Borel subsets of [0; 1]. If

P is a probability on (X;A) then P

�

and P

�

denote respectively the inner

and the outer measures induced by P . A �-algebra A

0

is said to be count-

ably generated (or c.g. for short) if A

0

= �(fA

n

; n � 1g) in which case ' :

(X;A

0

)! ([0; 1];B) de�ned by '(x) =

P

1

n=1

(2=3

n

)1

A

n

(x) is called the Mar-

czewski function. ' is measurable with '(x

1

) 6= '(x

2

) if x

1

and x

2

belong to

di�erent atoms of A

0

and so we can identify (X;A

0

) with ('(X);B \'(X)).

We say that (X;A; P ) is a thick subspace of (X

1

;A

1

; P

1

) and write (X;A; P )

� (X

1

;A

1

; P

1

) whenever X � X

1

, A = A

1

\ X = the trace of A

1

on X,

P

�

1

(X) = 1 and P = P

�

1

jA. If (X;A; P ) is a probability space then A

P

denotes the completion of A with respect to P .
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Let (X;A; P ) be a probability space. P is called perfect (equivalently,

the space (X;A; P ) is called perfect) if, for every A-measurable, real-valued

function f on X we can �nd a Borel subset B

f

of the real line such that

B

f

� f(X) with P (f

�1

(B

f

)) = 1. For properties of perfect measures we

refer the reader to Ramachandran (1979).

Let (X

i

;A

i

; P

i

); i = 1; 2 be two probability spaces. A probability � on

(X

1

�X

2

;A

1


A

2

) is said to have marginals P

1

and P

2

if

�(A

1

�X

2

) = P

1

(A

1

) for all A

1

2 A

1

; and

�(X

1

�A

2

) = P

2

(A

2

) for all A

2

2 A

2

:

Let

M(P

1

; P

2

) = f� on A

1


A

2

: � has marginals P

1

and P

2

g =M

A

1


A

2

(P

1

; P

2

):

~

M(P

1

; P

2

) is used to denote the collection of charges � on A

1


A

2

with the

marginals P

1

and P

2

. �

i

: X

1

� X

2

! X

i

denote the canonical projections

for i = 1; 2: The abbreviation �

i

g

i

is used for

P

2

i=1

g

i

� �

i

:

For h 2 A

1


A

2

the transportation problem is concerned with

S(h) = sup

�

Z

X

1

�X

2

h d� : � 2 M(P

1

; P

2

)

�

= S

A

1


A

2

(h)

while the dual problem deals with

I(h) = inf

(

2

X

i=1

Z

X

i

h

i

dP

i

: h

i

2 L

1

(P

i

) and h � �

i

h

i

)

= I

A

1


A

2

(h):

The measure theoretic version of the transportation problem due to Kan-

torovich(1942) is the validity of the duality

S(h) = I(h) : (D)

The main duality theorem of Kellerer(1984) deals essentially with second

countable or metrizable spaces X

i

; i = 1; 2 with tight(or Radon) probabilities

de�ned on the Borel sets in which case (D) is shown to hold for a suitably

large class containing all the bounded, measurable functions. The following

result of Ramachandran and R�uschendorf(1995) is the most general duality

theorem of this type.

Theorem 1 If at least one of the underlying probability spaces is perfect then

(D) holds for all h 2 A

1


A

2

.
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3 Strong Duality Spaces, Perfectness and

Related Properties

In order to study probability spaces which ensure the validity of the general

duality theorem we introduce

De�nition 1 A probability space (X

1

;A

1

; P

1

) is called a duality space if, for

every (X

2

;A

2

; P

2

), the duality (D) holds for all h 2 A

1


A

2

.

A natural strengthening of the notion of a duality space arises if we pos-

tulate additionally that for any sub �-algebra C

2

� A

2

such that h 2 A

1


C

2

the optimal value S

A

1


A

2

(h) = S

A

1


C

2

(h) (or equivalently, I

A

1


A

2

(h) =

I

A

1


C

2

(h)), i.e. the optimal value remains the same with re�nements on

the second space as long as the measurability conditions on h are ful�lled.

In other words the value of the transportation problem remains the same

for only `technically' di�erent formulations of the problem. The following

proposition shows that perfect spaces have this property.

Proposition 1 Let (X

i

;A

i

; P

i

); i = 1; 2 be two probability spaces where P

1

is perfect. If h 2 A

1


 C

2

� A

1


A

2

then

I

A

1


A

2

(h) = I

A

1


C

2

(h) :

Proof: See Corollary 1 in Ramachandran and R�uschendorf(1995).

This motivates the following

De�nition 2 A probability space (X

1

;A

1

; P

1

) is called a strong duality space

if

(i) it is a duality space, and

(ii) for every sub �-algebra C

2

� A

2

and for every h 2 A

1


 C

2

the condition

I

A

1


A

2

(h) = I

A

1


C

2

(h) (SD)

holds.

Theorem 1 and Corollary 1 together show that every perfect probability space

is a strong duality space. Since every measure on a standard Borel space is

perfect, the class of strong duality spaces is rich.
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Proposition 2 Every strong duality space is perfect.

Proof: Suppose (X

1

;A

1

; P

1

) is nonperfect. Then there exists a function

f : X

1

�! [0; 1] such that f 2 A

1

and Q

2�

(f(X

1

)) < 1 where Q

2

= P

1

f

�1

on ([0; 1];B). Let X

2

= [0; 1]; C

2

= B. Since

G = Graph of f = f(x

1

; f(x

1

)) : x

1

2 X

1

g 2 A

1


 C

2

if we de�ne for C 2 A

1


 C

2

�(C) = P

1

(�

1

(C \G)) = P

1

(fx

1

2 X

1

: (x

1

; f(x

1

)) 2 Cg)

then � 2 M(P

1

; Q

2

) and �(G) = 1. Hence I

A

1


C

2

(G) � S

A

1


C

2

(G) = 1:

Now let

A

2

= �(fC

2

; f(X

1

)g) = f(D

1

\f(X

1

)) + (D

2

\(f(X

1

)

c

) : D

i

2 C

2

; i = 1; 2g:

Choose D

0

� f(X

1

), D

0

2 C

2

with Q

2

(D

0

) = Q

2�

(f(X

1

)) < 1 and de�ne P

2

on A

2

by

P

2

((D

1

\f(X

1

)) + (D

2

\(f(X

1

)

c

))

def

= Q

2

(D

1

\D

0

) +

1

2

Q

2

(D

1

\D

c

0

) +

1

2

Q

2

(D

2

\D

c

0

):

It is easy to check that P

2

is a probability on A

2

such that P

2

j

C

2

= Q

2

and

P

2

(f(X

1

)) = Q

2

(D

0

)+

1

2

Q

2

(D

c

0

) < 1. Since G � (X

1

� f(X

1

)) 2 A

1


A

2

we

have

I

A

1


A

2

(G) � P

2

(f(X

1

)) < 1 � I

A

1


C

2

(G)

and so (X

1

;A

1

; P

1

) is not a strong duality space.

Perfect spaces have the following extension property for measures (see

Theorem 9, Ramachandran(1996)) which arises naturally in the marginal

problem.

De�nition 3 We say that (X

1

;A

1

; P

1

) has the extension property if for every

(X

2

;A

2

; P

2

) and for every sub �-algebra C

2

� A

2

, if � 2 M(P

1

; P

2

j

C

2

) then

�% �� 2 M(P

1

; P

2

), i.e., � extends to a measure �� on A

1


A

2

with marginals

P

1

and P

2

.
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Proposition 3 If (X

1

;A

1

; P

1

) has the extension property then it is a strong

duality space.

Proof: 1

0

. We �rst show that (X

1

;A

1

; P

1

) is a duality space. To this end,

let (Y

2

;D

2

; Q

2

) be an arbitrary probability space. There exists a perfect

probability space (X

2

; C

2

; Q

2

) � (Y

2

;D

2

; Q

2

) as a thick subspace ((X

2

; C

2

; Q

2

)

can be constructed using the Stone space of D

2

(see Sikorski(1960)) or by

using the map 	 : Y

2

! f0; 1g

D

2

de�ned by 	(y

2

) = f1

D

(y

2

)g

D2D

2

and

taking X

2

= f0; 1g

D

2

; C

2

= product �-algebra on X

2

and Q

2

= P

2

	

�1

). Let

A

2

= �(fC

2

; Y

2

g)

P

2

(A

2

) = Q

2

(A

2

\ Y

2

); A

2

2 A

2

:

Note that if C

2

2 C

2

then P

2

(C

2

) = Q

2

(C

2

\Y

2

) = Q

2

(C

2

) and so P

2

j

C

2

= Q

2

:

Suppose � 2 M(P

1

; Q

2

). Then, by the extension property � % � 2

M(P

1

; P

2

). So, �(X

1

� Y

2

) = P

2

(Y

2

) = Q

2

(Y

2

) = 1 implying that � j

X

1

�Y

2

2

M(P

1

; Q

2

). Thus to every � 2 M(P

1

; Q

2

) corresponds � 2 M(P

1

; Q

2

):

Conversely, if � 2 M(P

1

; Q

2

) de�ne �(C) = �(C \ (X

1

� Y

2

)); C 2 A

1




C

2

to obtain � 2 M(P

1

; Q

2

) extending �: Hence we have established that

M(P

1

; Q

2

) !M(P

1

; Q

2

).

Let h 2 A

1


D

2

. Since (Y

2

;D

2

; Q

2

) � (X

2

; C

2

; Q

2

); using standard mea-

sure theoretic arguments, we can �nd a h 2 A

1


 C

2

on X

1

� X

2

with

R

hd� =

R

hd� for all � 2 M(P

1

; Q

2

). Thus S

A

1


D

2

(h) = S

A

1


C

2

(h). Since

(X

2

; C

2

; Q

2

) is a duality space being perfect, by the de�nitions of S(:) and

I(:), we have

I

A

1


C

2

(h) = S

A

1


C

2

(h) = S

A

1


D

2

(h) � I

A

1


D

2

(h) � I

A

1


C

2

(h):

Hence (X

1

;A

1

; P

1

) is a duality space.

2

0

. Now, if (X

2

;A

2

; P

2

) is an arbitrary probability space, C

2

� A

2

is a

sub �-algebra and h 2 A

1


C

2

then

I

A

1


C

2

(h) = S

A

1


C

2

(h) (by 1

0

above)

= S

A

1


A

2

(h) (by the extension property)

= I

A

1


A

2

(h) (by 1

0

above)

and so (SD) holds for (X

1

;A

1

; P

1

).
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It is well known that the projection of a Borel set in the product of stan-

dard Borel spaces is an analytic set and therefore universally measurable (see

Ho�mann-J�rgensen (1970), Cohn (1980)). This property is useful in descrip-

tive set theory. There is no measure theoretic analogue for the projection

of a measurable set in the product of two probability spaces. The following

gives a suitable measure theoretic de�nition of the projection property.

De�nition 4 A probability space (X

1

;A

1

; P

1

) is said to have the projection

property if for every (X

2

;A

2

; P

2

) and for every C 2 A

1


 A

2

there exists

A

1

= A

1

(C) 2 A

1

with P

1

(A

1

) = 1 such that �

2

(C \ (A

1

�X

2

)) 2 A

2

P

2

.

Proposition 4 Every perfect probability space has the projection property.

Proof: Let (X

1

;A

1

; P

1

) be perfect. Let (X

2

;A

2

; P

2

) be arbitrary and let

C 2A

1


A

2

. Then C 2 D

1


D

2

where D

i

� A

i

are c.g. sub �-algebras for

i = 1; 2: Hence, using the Marczewski function, we can assume that X

i

�

[0; 1];D

i

= B \X

i

; i = 1; 2: Since P

1

is perfect there exists A

1

� X

1

; A

1

2 B

with P

1

(A

1

) = 1. Since C 2 D

1


D

2

, C = C \ (X

1

�X

2

); C 2 B 
 B.

D =

�

C \ (A

1

�[0; 1]) 2 B 
 B and so �

2

(D) is an analytic set. Hence there

exists B

2�

; B

�

2

2 B such that B

2�

� �

2

(D) � B

�

2

with P

2

(B

2�

) = P

2

(B

�

2

)

(where P

2

is the completion of the probability on B induced by P

2

j

D

2

). Since

�

2

(D) \ X

2

= �

2

(C \ (A

1

�X

2

)); we have B

2�

\ X

2

� �

2

(C \ (A

1

�X

2

)) �

B

�

2

\X

2

. Note that B

2�

\X

2

; B

�

2

\X

2

2 D

2

and P

2

(B

2�

\X

2

) = P

2

(B

2�

) =

P

2

(B

�

2

) = P

2

(B

�

2

\X

2

). Hence �

2

(C \ (A

1

�X

2

)) 2 D

2

P

2

� A

2

P

2

:

Charges on (X

1

�X

2

;A

1


A

2

) with given marginals P

1

and P

2

play a cru-

cial role in establishing duality theorems (see R�uschendorf (1981), Ramachan-

dran and R�uschendorf (1997)). The following charge extension property is

the �nitely additive analogue of the extension property given in De�nition 3.

De�nition 5 We say that (X

1

;A

1

; P

1

) has the charge extension property if

for every (X

2

;A

2

; P

2

) and for every sub �-algebra C

2

� A

2

, if � 2

~

M(P

1

; P

2

j

C

2

)

then � % �� 2

~

M(P

1

; P

2

), i.e., � extends to a charge �� on A

1


 A

2

with

marginals P

1

and P

2

.

Proposition 5 If (X

1

;A

1

; P

1

) has the projection property then it has the

charge extension property.
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Proof: Let (X

2

;A

2

; P

2

) be arbitrary, let C

2

� A

2

be a sub �-algebra and let

� 2

~

M(P

1

; Q

2

) where Q

2

= P

2

j

C

2

. Let D

1

= A

1


 C

2

; �

1

= �;D

2

= X

1


A

2

and �

2

(X

1

�A

2

) = P

2

(A

2

); A

2

2 A

2

. �

i

are charges on D

i

and if C

i

2 D

i

; i =

1; 2 are such that if C

1

� C

2

= X

1

�A

2

then, by the projection property, there

exists A

1

2 A

1

with P

1

(A

1

) = 1 such that D

2

= �

2

(C

1

\(A

1

�X

2

)) 2 C

2

Q

2

.

Let C

2�

; C

�

2

2 C

2

be such that C

2�

� D

2

� C

�

2

with Q

2

(C

2�

) = Q

2

(C

�

2

): Then

�(C

1

) = �(C

1

\(A

1

�X

2

))

� �

�

(X

1

�D

2

)

� Q

�

2

(D

2

)

= Q

2

(C

�

2

)

= Q

2

(C

2�

)

� P

2

(A

2

) (since X

1

�C

2�

� X

1

�A

2

)

= �

2

(X

1

�A

2

)

By a well known result of Guy(1961) there is a charge �� on alg(fD

1

;D

2

g)

extending �

1

and �

2

. �� can be extended as a charge to �(fD

1

;D

2

g) =A

1


A

2

.

By construction, �� 2

~

M(P

1

; P

2

).

Surprisingly the charge extension property already implies the(�-additive)

extension property.

Proposition 6 If (X

1

;A

1

; P

1

) has the charge extension property it has the

extension property.

Proof:Suppose that (X

1

;A

1

; P

1

) has the charge extension property. Let

(X

2

;A

2

; P

2

) be arbitrary, C

2

� A

2

be a sub �-algebra and let � 2 M(P

1

; P

2

j

C

2

).

Then � % ~� 2

~

M(P

1

; P

2

). Let (Y

2

;D

2

; Q

2

) be a perfect probability space

such that (X

2

;A

2

; P

2

) � (Y

2

;D

2

; Q

2

). Extend ~� to ~�

0

2

~

M(P

1

; Q

2

) by

de�ning ~�

0

(D) = ~�(D\(X

1

�X

2

));D 2A

1


 A

2

. Since Q

2

is perfect, �

1

=

~�

0

j

alg(R)

is �-additive where R is the semialgebra of measurable rectangles

in A

1


D

2

(see Marczewski and Ryll-Nardzewski (1953), Corollary 3.2.2 of

Ramachandran (1979)). Let ��

1

be the unique extension of �

1

as a measure

to �(R) = A

1


D

2

. Then ��

1

2 M(P

1

; Q

2

). Let D

2

= �(fD

2

;X

2

g) and

let Q

2

(D

2

) = P

2

(D

2

\ X

2

);D

2

2 D

2

. Again, by the charge extension prop-

erty, ��

1

% ~�

2

2

~

M(P

1

; Q

2

). ~�

2

(X

1

�X

2

) = Q

2

(X

2

) = P

2

(X

2

) = 1. Also

D 2 A

1


D

2

;D � (X

1

�X

2

) implies ��

1

(D) = ~�

2

(D) � ~�

2

(X

1

�X

2

) = 1.

Hence ��

�

1

(X

1

�X

2

) = 1. Thus � = ��

�

1

j

A

1


A

2

2 M(P

1

; P

2

) is an extension of

� 2 M(P

1

; P

2

j

C

2

) and so (X

1

;A

1

; P

1

) has the extension property.
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Combining the above propositions we obtain the following characteriza-

tion theorem.

Theorem 2 (Equivalence Theorem) Let (X

1

;A

1

; P

1

) be a probability space.

Then the following are equivalent:

(a) (X

1

;A

1

; P

1

) is a strong duality space

(b) (X

1

;A

1

; P

1

) is perfect

(c) (X

1

;A

1

; P

1

) has the extension property

(d) (X

1

;A

1

; P

1

) has the projection property

(e) (X

1

;A

1

; P

1

) has the charge extension property.

4 Consequences of the Equivalence Theorem

and Comments

The equivalence of the notions of strong duality and perfectness enables us to

obtain several new properties that strong duality spaces inherit from being

perfect spaces (see Ramachandran (1979) for details). These properties are

not easily established by direct arguments.

D1. (X

1

;A

1

; P

1

) is a strong duality space if (X

1

;D

1

; P

1

j

D

1

) is

a strong duality space for every c.g. sub �-algebra D

1

of A

1

.

D2: (X

1

;A

1

; P

1

) is a strong duality space i� (X

1

;A

1

; P

1

), the

completion of (X

1

;A

1

; P

1

) is a strong duality space.

D3. (X

1

;A

1

; P

1

) is a strong duality space whenever we can

�nd Y

1

� X

1

with P

�

1

(Y

1

) = 1 such that (Y

1

;A

1

\ Y

1

; P

�

1

) is a

strong duality space.

D4. Let f(X

i

;A

i

); i 2 Ig be a family of measurable spaces

and let P be a probability on the product space (�

i2I

X

i

;


i2I

A

i

).

Then (�

i2I

X

i

;


i2I

A

i

; P ) is a strong duality space i� everymarginal

space (X

i

;A

i

; P � �

i

) is a strong duality space.
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We recast a useful result of Marczewski and Ryll-Nardzewski(1953) as

D5. A charge on the semialgebra of measurable rectangles

of the product of two measurable spaces with countably additive

marginals is itself countably additive if at least one marginal space

is a strong duality space.

D6. Let (X

1

;A

1

; P

1

) be a strong duality space. Then for

every Q

1

on (X

1

;A

1

) with Q

1

� P

1

; (X

1

;A

1

; Q

1

) is a strong

duality space.

D7: Let (X

1

;A

1

) be a measurable space. Let fP

n

g

n�1

be a

sequence of probabilities on (X

1

;A

1

) such that (X

1

;A

1

; P

n

) is a

strong duality space for every n. Let

P =

1

X

n=1

�

n

P

n

;�

n

� 0 and

1

X

n=1

�

n

= 1:

Then (X

1

;A

1

; P ) is a strong duality space.

Concerning a subset of the real line which becomes a duality space with

respect to every probability on its Borel sets we have

D8. Let X

1

be a subset of the real line and let B be the class

of Borel subsets of IR. Then (X

1

;B \X

1

; P

1

) is a strong duality

space for every probability P

1

on B \ X

1

i� X

1

is universally

measurable.

Indeed, in connection withD8, we have the following general property(see

Theorem 2.3.2 of Ramachandran(1979)):

D9. Let (X

1

;A

1

) be a measurable space. Then the following

are equivalent:

(a) For every sub �-algebra D

1

ofA

1

, and for every probability

Q

1

on D

1

; (X

1

;D

1

; Q

1

) is a strong duality space.

(b) For every c.g. sub �-algebra D

1

of A

1

and for every prob-

ability Q

1

on D

1

; (X

1

;D

1

; Q

1

) is a strong duality space.

(c). The range of every real-valued A

1

-measurable function f

on (X

1

;A

1

) is universally measurable.
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Comments: 1. Using the construction in the proof of Proposition

2 it can be shown that S�stability (S

A

1


C

2

(h) = S

A

1


A

2

(h) for all h 2

A

1


 C

2

; C

2

� A

2

) implies perfectness and therefore S�stability alone im-

plies strong duality. The same is true for I�stability. Note that the same

construction yields a concrete example where the (charge) extension property

fails for a probability with given marginals (since � 2 M(P

1

; Q

2

) constructed

in the proof cannot be extended as a charge to

~

M(P

1

; P

2

)).

2. In the counterexample constructed in Section 4 of Ramachandran and

R�uschendorf (1995), contrary to the claim therein, I(h) = S(h) = 0 which

leaves open the question of the existence of a probability space which is

not a duality space (see Q1 below). As a result, the proof of Proposition

1 in Ramachandran and R�uschendorf (1996) is incorrect. The main result

of Ramachandran and R�uschendorf (1996) (Theorem 3) is proved now if we

replace \duality space" by \strong duality space" in statement (c).

3. In view of the results in this paper the following questions are still

open:

Q1. Is there a probability space which is not a duality space?

Q2. Is there a duality space which is not a strong duality

space?
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