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SOLUTION OF SOME TRANSPORTATION PROBLEMS WITH RELAXED OR
ADDITIONAL CONSTRAINTS*

S. T. RACHEV' AND L. RUSCHENDORF!

Abstract. The authors consider some modifications of the usual transportation problem by allowing bounds
for the admissible supply—respectively, demand—distributions. In particular, the case that the marginal distribution
function of the supply is bounded below by a df F|, while the marginal df of the demand is bounded above by a
df is considered. For the case that the difference of the marginals is fixed—this is an extension of the well-known
Kantorovich-Rubsinstein problem—the authors obtain new and general explicit results and bounds, even without the
assumption that the cost function is of Monge type. The multivariate case is also treated. In the last section, the
authors study Monge-Kantorovich problems with constraints of a local type, that is, on the densities of the marginals.
In particular, the classical Dobrushin theorem on optimal couplings is extended with respect to total variation.
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1. Introduction. For distribution functions F\,F let F (Fy, F,) denote the set of all

df’s on R? with marginals Fy, F; (ie., F(z, 00) = Fy(z), F(oo,y) = F5(y)). Then the
transportation problem with cost function c>0isto

(1.1) minimize/ c(z,y)dF (z,y) overall F' € F(F\, F).
)

F) may be viewed as the supply distribution and F, as the demand distribution, Clearly, (1.1)
is an infinite dimensional analogue of the discrete transportation problem: given a; >0,b; >

0, Z:ZI a; = Z;';l bj,

m n
minimize ZZC"J"""J" subject to the conditions:
(12) » i m
Zz;j=a,-, 1<i<m, Zx,-j=bj, F=1400m zi; 20, Vi,j.
i=1 i=|

If c(z,y) (respectively (cij)) satisfies the “Monge” conditions, i.e., c is right continuous and

(1.3) (2 y') - e(z,y) - e(z’, y) + e(a, Y) <0 foralla’ >z,y >y,
respectively
(1.4) Cij F Cit1j+1 = Cijjp1 — €41, <0, V1 Si<m,1<j<n,

then the solution of (1.1), (1.2) is well known and based on the “North-West corner rule,”
which leads to a greedy algorithm. For (1.1) the solution is given by the df F*

(1.5) F*(z,y) = min {Fi(z), F(y)}.

673



674 S. T. RACHEV AND L. RUSCHENDORF

F™ is the upper Fréchet-bound. The Fréchet-bounds provide the following characterization
of F (F Is F; 2)2

(1.6)
F e F(F\,F,) if and only if

Fz,y) = (Fi(@) + B(y) - )+ < F(z,y) < F*(z,y) (here (-)4 = max (0, )).

The lower Fréchet bound yields to a solution of the maximization problem corresponding to
(L.1) (cf. [4], [5), [11]-{13]).

In terms of random variables an equivalent formulation of the transportation problem is
the following:

(1.7) minimize Ec(X,Y), subjectto Fy = F,Fy = F,

where X, Y are random variables on arich enough (e.g., atomless) probability space (Q,U, P).
The solutions (1.5) respectively (1.6) then can be represented as distributions of Tv’s X* Y*:

(1.8) X*=F'\(U), Y*=F'U) (for(1.1), (1.5)),
respectively
(1.9) X*=F'U), Y*'=F'(1-U) (for F,),

where U is uniformly distributed on (0,1), and F'(u) = inf{y : F, (y) > u}isthe generalized
inverse of Fy (cf. [4], [1 1]-{13]). (Throughout the paper we assume that df’s are right
continuous.) For a general review on the Monge-Kantorovich transportation problem we refer
to [8] and [1].

In this paper we study modifications of the transportation problem (1.1), where we relax
or add new constraints. One type of additional side conditions has been studied by Barnes
and Hoffman [2], in the discrete transportation problem (1.2); namely, additional capacity
constraints 3’ | Y7 _ 1%rs < %51 <m—1,5 < n— 1, and a solution was obtained by a
greedy algorithm.

In the first part of this paper we make use of the assumption that the cost function is of
Monge type. These conditions seem to be necessary, since already in the simpler discrete
case there are no general explicit solutions without conditions of this type. In the second part, :
under the restrictions of given difference of the marginals, we obtain explicit results without
the Monge condition. We study extensions to the multivariate case for cost functions of the >
type ¢p(z,y) = ||z — yllp, || ||, the p-norm on R™(cp is not a Monge function for n > 2, ;
and this problem is unsolved also in the discrete case). In the final section we consider local |
constraints on the marginals. In particular, we extend the classical Dobrushin result providing '
a construction of optimal couplings.

As for the proof of our results we use different methods from marginal problems, stochastic
ordering, and duality theory. It seems that it is not possible to derive them all in a unified way;

e.g., in §2, we construct in Theorems 1 and 2 solutions of the transportation problem with
upper and lower bounds on the marginals under different assumptions on the cost functions.
The proof of Theorem 1—for symmetric cost functions—is based on marginal problems, .
while the proof of Theorem 2—for unimodal cost functions—is based on stochastic ordering 5
arguments. ‘

2. Relaxation of the marginal constraints. Consider for df’s Fy, F; the set

2.1)  H(F\,Fy) = {F: F is a df on R? with marginal df’s F, < F,F > R}
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of all df’s F with F,(:c) = F(z,00) < Fi(z), always z ¢ R', and 13'2(y) = F(oco,y) >
F(y),Vy e R'. we study the transportation problem:

2.2) minimize / c(a:,y)dF(:z:,y), subjecttoF‘EH(F,,Fz)
12

or, equivalently,
(2.3) minimize Ec(X, Y), subjectto Fx <F,Fy > F.

In the discrete case the problem is to minimize > CijTi; where for some “supplies” s lyeeoy8p,
@ < 8,01 40 < 81+ $2,..., and for some demands d.,...,d,,,b. 2 di,b + b, >
dy +d,,... , (@i, b; as in (1.2)). This describes production and consumption processes based
on priorities (e.g., by time) with capacities s, . . , » Sn, such that what is remained in stage 7
of the production (respectively consumption) process can be transferred to some of the next

THEOREM 1., Suppose the cost Junction c(z, Y) is symmetric, (%, y) satisfiés the Monge-
condition (1.3), and let c(z,z) =0,Vz. Define

(2.3) H*(z,y) = min {F\(z), max {Fi(y), F(y)}}, T,y € R.
Then

(a) H*e H(F, B),
(b) H* solves the relaxed transportation problem (2.2),
1

24)
©) / o(z,y)dH* (z, ) / e(F™ (), min (™ (u), B (u))) s
12 (i]

Remark 1. Setting the df G 1(¥) = max {F(y), B (v)}, we see from Theorem 1 that
the relaxed transportation problem (2.2) is equivalent to the transportation problem (1.1) with
marginals F}, 3,. In terms of random variables a solution is given by

@5 X*=F'U), y*_ G (U) = min (Fr\(0), B '(wy) (cf. (1.8)).

Proof. From the Monge condition the function —c(z,y) may be viewed as a “distribution
function” corresponding to a nonnegative measure 4, on R Let X » Y be any real ry’s and
for z,y € R! denote z v Y =max{z,y},2 A y = min {z,y}. Theorem 1 is a consequence
of the following two claims,

CLAIM 1 (Cambanis, Simons, and Stout [4], Dall’Aglio [5f for c(z, y)‘)

2Ec(X,Y) =/ (P(X < TAYY >zvy)
12
TPX2>zvyY<zp Y)ke(dz, dy).

(2.6)

For the proof of Claim 1 define the function f (Ty,w) :R2x Q —, R by

Heigin) = { 0 o) <ZY <Y () or (¥ (u) <2,y < x(u)

By Fubini’s theorem,

@D By [ e u(de,dy) < S Bt ), a,
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Next the symmetry of ¢(z, y) and ¢(z, z) = 0 yields

(2.8) /1:2 f(@,y, w)dp, = =[e(Y (w), Y (w)) + (X (w), X (w))
—c(X(w),Y (w)) - (Y (w), X (w))] = 2¢(X (w), Y (w)).

Clearly,

29)  Euf(z,y,w)=P(X <zAy,Y > TVY)+P(X 2zVyY <zAy).

Combining (2.7), (2.8), (2.9), we obtain (2.6).
CLAIM 2. Define X* = F\(U), Y* = min (F7'(U), BN (U)); then

(2.10) Ee(X*,Y") = min{Ec(X,Y); Fx < F\, Fy > B}

and the value of the expectation in (2.10) is given by

Ec(X*,v*) = % /l ,max {0, Fy(@ A y)=) — Fy(& V y) =)} (dz, dy)
(2.11)

= /0 c(F',"(t),min{Fl"(t),Fz"'(t)})dt.

For the proof of Claim 2 let X, Y beany rv’s with df’'s Fx < F, T Fy > B, Using Claim
1 we obtain

2Ec(X,Y) > /m PX 22Vy,Y <z Ay, (ds,dy)
=/n2{P(Y <EAY) = P(X <2VY,Y <2 Ay)}pe(ds, dy)
2.12) > /m {PYY <z Ay) —min{P(X <2Vy), P(Y < 2 A y)}pc(da,dy)
= [P <A1 = PX <2V 3)), (e,

2 [ (B M) = Fil(o v ) e ).

Next we check that the lower bound we get in (2.12) is attained for X* = F,"'(U ) Y* =
min (F;"'(U), Fr'(U)). In fact, by Claim 1 using X* > Y* and {U < B(2)} =
{F;'(U) < 2} almost surely we obtain

2Ec(X*,Y*)
=/2{P(X* 2zVy, Y <zAy) +P(X*<zAyY* 2z Vy)}e(dz, dy)
B

- /n P(X* 2 2Vy,Y* < o A y)uo(ds, dy)

@13) = /l ,PETO) 2 0 vy, min (F7 (), B 0)) < 2 A y)ue(da, dy)
= /mz P(FT\U) > zvy, F7'(U) <z A Y)ne(dz, dy)
- /mz P(U2 Fi(zVy),U < Fy(e Ay)) s po(da, dy)

= [ B@AD) = Fl(e v 1)) e ).
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Obviously, F X+y+) =H*" € H(F, F3) and the proof of Theorem 1 s completed. 2]
Remark 2, Equation (2.5) suggests the following “greedy” algorithm for solving the finite
discrete transportation problem with relaxed side conditions:

n n
minimize E E CijTij
i=1 j=I

subject to: Zi; >0

(2.19) }J:ixmzib, =:Gj, ISan_
' s=]

s=| r=|
i n

i
Z mraszar=:ﬂa 151571,
r=1| s=| r=|

where the sum of the “demands” ) S equals the sum of the “supplies” vl 9 assuming

that (c;;) are Symmetric, ¢;; = 0 and ¢ satisfying the Monge condition (1.4). Denote

H; = max (F},G’i), 1<i<n, and

2.15) 6|=H|,5,-+|=Hi+l—Hi I<isn-g;

(2.14) is equivalent to the standard transportation problem (1.2) with side conditions (a;), (6:).
Inthe following example we compare the solution of problem (2.14) with inequality constraints

with the “greedy” solution of the standard transportation problem with equality constraints
(1.2). For the problem with inequality constraints we first calculate the new artificial demands

10

Tij = solution of the standard tran
classical North-West corner
Yij = solution of the transportation problem with relaxed side conditions,

Sportation problem (1.2), using the
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We next extend the solution to the non-symmetric case. We assume instead of symmetry
the following unimodality condition, saying that for any z, y the functions c(z,-),c(-,y) are
unimodal; more precisely,

c(z,y1) <c(z,1p) ifz<y <grory, <y < z, and

(2.16) c(z1,y) < c(@r,y) ifz, <z <yory<a < z3.

For the proof of this unimodal case we basically make use of stochastic ordering argu-
ments.

THEOREM 2. If ¢(z,z) = 0 for all z, and ¢ satisfies the Monge condition (1.3) and the
unimodality condition (2.16), then the relaxed transportation problem,

(2.17) minimize Ec(X,Y) subject to: Fx > F\,Fy < B,
has the solution

X*=F'(U),  Y*=max(F'(U),F'(U)), so
Fx-y-(z,y) = mlin (Fi(z), min (F(y), Fy(y)) and

(2.18)
Be(X*,¥*) = [ elFy (), max (B ), By ()
0

Proof. Let X,Y be rv’s with Fx > F\, Fy < F; then by (1.8)
(2.19) Ec(X,Y) > Ec(Fx'(U), Fy\(U)).

LetG(y) = min (Fx (y), Fy (y)); then ' < F,F;' > Fy'and G- = max (s P2,
We now state the following.
CLAIM 1.

1 1
(2.20) / c(Fx'(v), Fy' (u))du > / c(Fx'(u), G (u))du.
0 0

To show Claim 1 let for fixed u € 0,1),z = Fx'(u),y = Fi'(u) v Fyl(u) = G '(u),
v = Fy'(u).

Case 1. © < y,. In this case, < %1 < w», and, therefore, the unimodality condition
(2.18) implies c(z, y,) > c(z, Yi)-

Case 2. y, < z. In this case, y1 = z and therefore, y, < y, = z. Again by the
unimodality condition c(z, y,) > c(z,y1). So Claim 1 holds.

CLAIM 2.

(2.21) /o l e(Fx'(u), Fy''(u) v Fx'(u))du > /0 l e(Fy (u), Fy ' (u) V FT\ (u))du.

For the proof, define 7, = Fx'(u),%, = Fy'(u),z, = F ' (u),zy = F; ' (u) for fixed u.
Then z, < 2,2, < 7,.

If &, <, then )<V, < Iy,
(2.22) vl - 5 = =
if & >3I,, then T =Z)Vz > I,

From (2.22) we obtain the following claim,
CLAIM 3.

(2.23) c(zy, %, V.'l:z) > c(zy, V(L‘z).
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For the proof of Claim 3 We use the relation ) > 7. By (2.22) we have two cases,

Case 1. g, > ) > Z,. Then c(i:,,zz) = (), Z V) > c(:z:.,xz) = c(zy, V)
by the unimodality condition,

Case2. (a) Z)y 235 > 3. Then, trivially, (%), z;) = c(&), x, V) > c(zy, z, Vi) =
c(x.,:z:,) =0.

®) 21 > > 2, Then againe(z, 7)) = (21, Ve,) > (1,21 V,) = c(zy,z)) =
0, trivially.

Claims 1, 2,and 3 imply (2.18).

Remark 3.

2.29) minimize / f(y)dFy(y) subject to Fy, < B,

i.e., we are looking for a df Fy < F3, such that the distribution of [ with respect to F} has a
minimal first moment, Obviously, the solution (2.20) of Theorem 2 js not a solution of (2.29).

(b) For the proof of Theorem 2 the assumption ¢(z, ) = 0 cap be replaced by the weaker
one,

(2.25) c(z,z) < c(z,y) A c(y,z), Vaz,y.

3. Givensum of the marginals, Considera flow in anetwork with n-nodes ; — L....m
and let z;; be the flow from node i to node J. Assume that for all nodes k the value of
2 T + Z:j Tk; is fixed to be hi. For a motivation of this problem let q; — 20 | Tik,

3.1 h,~=a,~+b,~, lSzSn

Let Fi(k) = % o, Fy(k) = Y%, H(k) = 3°F | hy; then he = Fy(k) + F(k) -
(Fi(k-1) + F5(k - 1)) and (3.1) is equivalent to

3.2 H(k) = F(k) + Bk), <k<n
Let ¢;; denote the cost of transporting a upjt from node ; to node j; then the problem is to
minimize the total cost X Cij%i; subject to condition (3.2) and Zi; > 0.

The ge

neral formulation of this problem is the following, For two df’s Fy, F, define
G(z) := ez (z) + F3(z)). For a cost function ¢(z, ¥) consider the problem,

3.3) minimize / c(z,y)dF(z, Y) subject to F € Fg,
]2
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where F¢ is the set of all df’s F(z,y) with marginal df’s F, F, satisfying F)(z) +

ﬁ‘z(l‘) =2G.
In the special case ¢(z,y) = |z —y|, let X, Y be real 7v’s. Then by the triangle inequality
34) E|IX-Y|< in]fI (E|X —a| + E|Y — a),
ac

(3.4) is the optimal bound if one knows only E|X —al,a € R'. Note that E|X —a| +
ElY —a| = [ |z — ald(Fx + Fy)(z) only depends on the sum of the marginals. Equation
(3.3) is the best possible improvement of (3.4) provided Fy + Fy is known.

It was shown in [9] that

1
(35)  sup{E|X - Y|”; Fx + Fy = 2G} = / IG7'&) - G\ (1 = t)Pdt,  p>1.
0

PROPOSITION 3. If ¢ > 0 is symmetric and satisfies the Monge condition (1.3), then

(3.6) inf{/c(m, y)dF(z,y); F € .FG} = /I c(G—l(u),G—l(u))du,
0

3.7 sup {/c(.’z;, y)dF(z,y); F € fc} = /Ol (G '(u),G~'(1 - u)du.

Optimal pairs of rv’s are given by (G~'(U), G='(U)) respectively (G~'(U), G~'(1 - U)).
Proof. Since ¢ is symmetric, we obtain for any F' € Fg, [c(z,y)dF(z,y) =
[ 3(c(2,1) + ey, x))dF(z,y) = [c(z,y)d{[F(s,y) + F(y,2)|/3}. But Fy(zg)
[F(z,y) + F(y, )]/2 € F(G, G), so we obtain (3.6), (3.7) by application of (1.8), (1.9). O
For non-symmetric cost functions we have the following.
PROPOSITION 4. If ¢(z,y) satisfies the Monge condition and furthermore z, < y < z,
implies that c(x), ;) > c(y,y), then

(3.8) inf {/c(z, dF(z,y); F € .7-'0} = /IC(G_'(u),G_'(u))du.
0

Proof. For rv’s X,Y with Fxy € Fayp, by the Monge condition Ec(X,Y) >
Ec(Fx'(U), F;'(U)). Since Fx(z) + Fy(x) = 2G(x), it follows that Fx A Fy <
G < Fx V Fy, and therefore, Fx' A Fy' < G- < Fg'v Fy'. 1t follows that
o(Fx'(U), iy (1) > (G~ (U), G-"(U)) implying 38). " ©

Remark 4. The set of marginals in the class F¢ has a smallest and a largest element,
namely

- >

Flt(x) e { fG(-T)’ :;;2 and F;(.’L’) — { (2)'0(-'17) 1, ; z :: ,

where 2o = inf{y; 2G(y) > 1}. There is no smallest df in Fg. For the prooflet H (z), Hy(z)
be the marginal df’s of a smallest element H € Fq and let Gy, G, be df’s such that G, () +
Ga(x) = 2G(z). If the lower Fréchet bounds satisfy (H\(z) + Ha(y) — 1)+ < (Gy(z) +
Gz(y) - l)+. then H, < G, and H, < G>, which amounts to H, = G],Hz = G,y. In
particular, this implies that (G~'(U), G~ (1 — U)) is in the general non-symmetric case no
longer a solution to the problem to maximize J c(z,y)dF(z,y) in the class Fg. Leteg., G
be the df of § 3°;_, e(;); then P, = P(G™'(0),67'(1-0)) _ i(€am e +epn +e@n),
while P, = P((F)T'(0).(F)~'(1-0)) _ 30,4 +e@) Forei(z,y) = 1(_o0,(3,2)) (2, 9),
we have Ep ¢, = }, Ep,c; = 0, while for ¢, = 1{(2,3),00)s ER,C2 = 3, Epycy = 3. Note that
both functions, —c;, —¢,, are Monge functions (but are not unimodal).
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4. Given difference of the marginals. We next consider the case where in the network
example we fix the total outflow minus the inflow of each node. This problem is known in
the literature as minimal network flow problem (cf. e.g., [3, §9], or [1]). Similarly to §3 the
outflow minus the inflow of each node is fixed; i.e., the following Kirchhoff equations hold:
2k Tik — 2k Tki = a;—b; = h; forall i, or, equivalently, with F} (k) = ZL, aj, (k) =
Z;?:, bj, H(k) = 2;;, hj, H(k) = Fi(k) — F5(k),1 < k < n. Let more generally
F), F; be distribution functions and let JFu be the set of all “df’s” of finite measures on R2
with marginals F, F, satisfying F} — F, = F| — F, =: H. We consider the following
transportation problem:

4.1) minimize / c(z,y)dF(z,y) subjectto F € Fp.

¢(z,y) is symmetric, nonnegative and continuous, but does not need to satisfy the Monge
conditions. For the solution we shall make use of the following dual representation (cf.
Rachev and Shortt [10]):

2) inf{/ o(z,y)dF(z,y); F € fn}

= sup { [ far@y 1@ - £0) < et y),v:c,y} .

We first consider a special type of cost functions.
PROPOSITION 5. Let c(z,y) = |& — y|max (1, h(|z — al), h(ly — a|)), where h is mono-
tonically nondecreasing. Then

4.3) inf {/c(a:, y)dF(z,y); F € .7-';;} = /max(l,h(lz —al|))|H|(z)dz,

provided h(|x — a|) is locally integrable.

Proof. For the cost function c we observe that f (z) = f(y) < c(z,y), for all z,y, if and
only if f is absolutely continuous with |f’(x)| < max (1, A(|z — a])) almost surely. By the
dual representation (4.2) and partial integration we obtain

inf{/c(z, y)dF(z,y); F € fy}
= sup{ [ fa() (@) 11/ < max (1, (e - a).va)
= s { [ £/@) () @)z @) < max (1, (e ~a)va
= /max (L, h(|lz — a]))|H|(z)dz. O
On the basis of the idea of this proof, we next consider more generally
(4.4) ca,) = e~ sk@) (ie. Clap) = panl).
THEOREM 6 (Generalized Kantorovich-Rubinstein problem). Assume that for any x <

t < y,((tt) < C(z,y),¢(z,y) symmetric and continuous on the diagonal and also that
t — ((t,t) is locally bounded:; then

@.5) inf{ / ole, y)dF(z, y); F € .7-'1;} - / C(t, )| H|(t)dt.
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Proof. Let F = {f : (@) - f(y) < c(a, y), for all z,y} and let F* = {f absolutely
continuous and [f'(t)| < ((t,¢), for all t}; then F C F* asfor f ¢ F, we have [f(z) —
JWl/lz =yl < ((@,y) and, therefore, Tim, . [£(z) — £(y)}/iz — y| < C(o. 2], Al
lim, ., [£(z) - f))/|= - y| = —Tim [f(y) - F@)/|z —y| > ~Tim ¢(y,2) = —¢(z, z).
As((t,t) is locally bounded, f is locally Lipschitz, absolutely continuous, and the inequalities
above imply that | f'(t)| < ¢ (,t) almost surely. If, conversely, f € F*, then f(z) — f (y) =
J; f'(t)dt, and therefore, |f(z) - f(y)| < J 1 ®ldt < [ ¢t t)dt < | - yl(z,y) =
c(z,y). The dual representation (4.2) again implies (4.3) as in the proof of Proposition 5.
|&]

It is very interesting to observe that restrictions on the difference of the marginals allow
this general explicit result without “special” assumptions on c. Note that the solution only
depends on the behavior of ¢ at the diagonal, a property that is observed in the minimal network
flow problems. Note that from Theorem 6 one obtains the remarkable consequence that

(4.6) inf{ / |z — y|PdF(z,y); F € f,,} =0

for all p > 1, which confirms that cost functions as in Theorem 5 are of the right order.
We next consider an extension to the multivariate case R™ with the class of cost functions

n 1/p
Cp(xv y) = ”:L' - y”p = (Z ':L‘,' - yi'p> ) 1 <p<oo.

i=]

Let Fy, F, be n-dimensional distribution functions and let for H:=F - PF; Frr denotes
the class of all 2n-dimensional (joint) distribution functions F with n-dimensional marginals
Fy, F; such that F; — F, = H. Denote

Anttt) =it { [ oyl dr(a,); P e Ful),

the value of the optimal multivariate transportation costs. Let 1/g+ 1/p = 1 and assume that
F\, F, have densities J1, f2 with respect to the Lebesgue measure A := fi — fo.

THEOREM 7. (Multivariate transportation problem). () For the value of the optimal
transportation costs we have the upper bound

48) A(H) < By(H) = [ Iyl u)lay,

where Jy (y) := fol t‘("‘“)h(y/t)dt.

(b) If there exists a continuous Junction g : R* — R!, almost everywhere differentiable
and satisfying for p = 1

4.9 Vo(y) = (sgn(y:Ju(y))) ae.,

respectively forp > 1,

1\ 9/p
4.10) Vo(y) = (sgn(y: I (v))) (”';’T'q) ,

then equality in (4.8) holds.
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Proof. (a) From the duality theorem in Rachev and Shortt [10]
aytt) =sup{| [ san 1760) - 160 < e - vlb}.
From the Radermacher theorem we infer that any Lipschitz function f is almost everywhere

differentiable, and as sup{(V f(y), a); |||, = 1} = ||V £(y)||¢, We obtain from the Lipschitz
condition that ||V f(y)||, < 1 almost everywhere. Using a Taylor expansion

1
fv) = £(0) + /0 (V(ty), v) dt,

we conclude that

1
Ay(H) <sup { | [, [ s anwanliwsei, < e}

sup {l /m" /0'(Vf(y),y)t,,—l+|-h (%) dt dy ‘; IVF@W)ll, <1 a.e.}

<sw { [ Wl a ) I97 0l 19500l < 10}

(4.11)

< [ Wl
(b) In the inequalities

(2.0l < D lzagil < llzllp lllar Nl =1,

equality is attained for p > 1 if and only if

Iyilq/p |y'.|q/p—l
T; = sgny; =Y )
llyll3/® lyll &’

while for p = 1 equality holds if and only if sgn z; = sgn y;. This implies part (b) of the
Theorem. 0

Remark 5. Conditions (4.9), (4.10) are fulfilled in dimension 1 so that the bound 4.8) is
sharp and coincides with (4.3). A simple sufficient for p = 1 for (4.9) is given by

(4.12) Jg >0 ae,

which is a stochastic ordering condition. More generally we can allow a “simple” structure
of the set {Ji > 0}. We remark that the optimal multivariate transportation problem is a
longstanding open problem also in the discrete case.

5. Upper bounds on the total transport mass. Let I'(z, ) be a “distribution function”
of a finite measure and define for two fixed distribution functions Fi,FonR'the transportation
problem:

(51) Hr‘(.’t, y) ‘= sup {F(x) y);F(ziayi) S F(-’”i,yi)ai € I’F € }-(FlvFZ)})

where (2, ¥i)ier C R? may be finite or not. From the Fréchet-bounds in (1.6), we have the
following conditions ensuring the nontriviality of the problem:

(5.2) D(zi ) > (Fi(z:) + Fa(y;) = 1)y, Viel
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Problem (5.1) is an extension of a problem treated by Barnes and Hoffman [2] in the finite
discrete case and by Olkin and Rachev [7] in the general case. In these papers it was assumed
that F'(z,y) < I'(z,y) forall (z,y). Problem (5.2) is motivated by capacitated transportation
problems with linearly ordered supply and demand nodes (cf. [2]). Several examples of this
problem and extensions to further restrictions on the support of solutions (“staircase supports”)
are discussed in Hoffman and Veinott [6]. An application to a graph partitioning problem is
given in Barnes and Hoffman [2].
THEOREM 8. Let assumption (5.2) be fulfilled and define

F(2,) = inf {(zi,3) + (Fi(2) - Fi(2)) + (Fa(y) - Fa(y))}
(5.3) vy
A min {F\(z), F>(y)}

(with the convention that the infimum is zero, if there do not exist z: <z,y; < y).
(a) HI‘(-’E, y) < F'(.’E, y)) V.’L‘, y.
(b) If F* is a df, then

5.4) Hr(z,y) = F*(z,y) and F* isa solution of (5.1).

(©) (cf. [2), (7). If {(zi,3:),i € I} = R?, then F* isa df.

Proof. (a) For z; < z,y; < Yy, we have for any admissible F' using rv’s X,Y with
Fxy = F,F(z,y) = P(X <z;,,Y < Y+Pi<X<azY SyY)=PX <z,Y <
Yi)+ P(X <2, <Y <y) + P(z; < X < .Y <y) <T(zi,5) + Fi(z) - Fi(z:) +
F3(y) — F>(y;). Furthermore, by the Fréchet bounds (1.6), F(z,y) < min{F,(z), F(y)}.
Therefore, F(z,y) < F*(z,y).

(b) If F* is a df, then F* € F (F1, F3). For the proof observe that for (z,y:) < (z,y)
by (5.2), I'(wi, yi) + Fi(z) — Fy(z:) + Fy(y) — F2(yi) 2 (Fi(z) + Fy(y) — 1) and so by
definition of F*, (F\(z) + Fy(y) - 1) < F*(z,y) < min {Fi(z), F>(y)}, which implies
by (1.6) that F* ¢ F(F\,F,). Since F* (ziyy:) < [(zi,y;), F* is an admissible df, and,
therefore, by (a) a solution of (5.1).

(¢) For the proof of (c) we refer to [7]. (]

Remark 6. (a) Parts (a) and (b) of Theorem 7 remain valid for any function I'(z, y) > 0.
The difficult part to verify is that F* is a df. But it seems to be clear from the proof that,
even in case when F™* is not a df, part (a) gives a good upper bound. An indication for this
conclusion is part (c) of the theorem,

(b) From (5.4) one obtains for Monge functions ¢ with the regularity condition

[ et w)Fiaa) + [ etao,)Fa(ay) < oo
for some z, 19 € R that

inf { / c(z,y)dF(z,y); F(z,y) < I(z,y),Vz, v, FeF (Fn,Fz)}

5.5) ‘
= / o(z,y)dF*(z,y).

(c) In the discrete case the solution F* of (5.5) can be determined by the Barnes-
Hoffman greedy algorithm (see [2], [6], [7]). In fact, if a; = Fi(z;) — Fy (zi—),i e M =
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{L,....m},j e N={1,...,n},b; = Fy(y;)-F(y;-),j € N = RN 5 e
Yjenbi=1,0= I'(z;,y;), then

i j
F'(xi’yj) = ZZPN,

r=1 s=I

where p,.; are recursively defined:
Pu =min (ay,by,0y;);

=1 i1
Pij = min { a; — Zpis,bj - Zprj,oij ¥ Z Zprs
s=1 r=]

r<i s<j
(r,8)3(i,5)

if p,s is determined for r <i<mands < J <mn;and

J=l i—1
Pij = min {ai — ) Pisybj — Zprj}
s=] r=I

ifi=morj=n.

(d) F(z,y) canbe viewed as the analogue of the upper Fréchet bound in the set (F, F)
under the side constraint F*(z, y) < I'(z,y). To obtain a similar analogue for the lower
Fréchet bound, consider

max {G(.’L‘, y) : G(SL’,‘, yt) S A(III.‘, yi)’i € I’ G € G(Fl ) F2)}1
where G(F\, F) is the set of all probabilities
G(z,y) = Gu(z,y) = p((~o0, 2] x [y, 00)),

Z,y € R of probability measures y having marginal df’s F and F5, and where A determines
a positive measure § by G5 = A. Then the above maximum is attained at

G(z,y) = Jnf {A(zi, v:) + Fi(z) — Fi(2:) + Fy(yi-)
(5.6) visy
~F(y=-)} A Fi(2) A (Fy(yi-) — Fy(y-))
if and only if A(z;,y;) > max (0, Fi(z;) — F5(y;—)),i € I and & generates a measure. If

{(zi,1:),i € I} = R?, then G defines an optimal measure /i by G; = G. Moreover under
the same regularity conditions as in (b)

s [ ete, a4, € 0,6, (5,0) < A1),y R}

= / olz, y)ii(dz, dy),

(cf. [7] and Theorem 8).
(e) Consider the discrete version of the extremal problem in (d): Find

max {Z . Z CijPij, subject to Zp,-j =a; Z Pij = bj

iEM jeN JEN iEM

and 3" p,, < Azi,y;), i€ M,j e N},

r<i 8>j
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where

ij=Zai=l.

JEN iEM

Then the solution is determined by

z‘HyJ) = ZZPT’

r=] s=j
= min {A(:,45) + (@41 + 00+ a0) + (b + -+ becy }AZaTAst,
i<s<n 3~J

or in other words by the following greedy algorithm:

Pin = Min {aia bn, A(E] y y'n)},

bij = min ¢ a; Z pzs, Zpr]a xnyJ Z Zprs )

s=j+1 r<i 825
(re)# (i.9)

if pys is determined forr <7 <m — land s > j > 1; and

Pij = min { Z pzs) Zpr]}

s=j+I1

ifi=morj=1(cf. [7)). O
Consider more generally a finite measure y on (R?, B?) and define for two probability
measures Py, Py on (R',B")and A; x B; e B'®B',i€ I,

(5.7)  M*(P,B)={Pe M'(P,P,); P(A; x B;) < u(A; x B;),i € I},

where M'(P;, P;) denotes the set of all probability measures P on R? with marginals P,, P,.
As in (5.2), we assume

(5.8) u(A; x B;) > (Pi(Ai) + Py(B;) — 1) 4.
THEOREM 9. Under assumption (5.8) define

P*(Ax B)=inf {u(A; x Bi) + (Pi(A) - Pi(A))
(5.9) s
+ (Py(B) — Py(B;))} Amin (Pi(A), P»(B), A, B € B'.

Then
(5.10) h.(A x B) :=sup{ P(A x B); P € M*(P,,P,)} < P*(A x B).
If P* defines a measure, then

(5.11) hu(A x B) = P*(A x B) and P* is a solution of (5.9).

The proof of Theorem 9 is similar to that of Theorem 8. In contrast to Theorem 8 it allows
us to consider “local” bounds in the transportation problem. Observe that in the finite discrete
case bounds of the type
(5.12) zij < pij for some (3, 5)

are of this “local” type. So far in the literature there are no results concerning the solution of
problem (5.6) respectively (5.12) with local bounds.
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Some respect much stronger than those in §2 and generally they are much more difficult to
handle.
Our first result deals with a transportation problem with the cost function

_ _J1 ifz#y
6.1 @i =lepy={f Tty
i.e., the cost of transportation is one for any unit that has to be moved and zero otherwise. ¢
does not satisfy a Monge-type condition. We formulate this problem in a general measure
space (S,U) only assuming that

6.2) {zv):z#y}eusu.

Let My(S), My(S x S) denote the set of all finite measures on (S,U) respectively. (Sx8,
UBU) and let for u € M £(Sx8),mp,i = 1,2, denote the marginals of 4. This transporta-
tion problem leads to an extension of Dobrushins result on optimal couplings.

THEOREM 10. (Optimal couplings with local restrictions). Assume that (6.2) holds and
let 1, po € My(S) with 11 (8S) < ua(8S). Then

(@)
inf{u((z,y):2 # y); € My(S x Shmip > py,mop < py)
(6.3) =A7(8) = sup (u(C) - wy(C)).
ceu
(b) The infimum in (6.3) is attained for
AT (A (B
6.4) 1 (Ax B)=~(AN B) + %)(),

where X (A) = supe 4 (11— 1) (C), A™(A) = supgc 4 (11— ) (C) and V(A) = pa(A) -
A(A) = m(4) - A= (4A).

Proof. Forany i € My(S x S), u(z # y) > Supc 4(C' x (S\C)) = supo{u(C x §) -
O3 O 2 S (1(C X 5) ~ u(S X C)) > supiy (s (C) — py(O)] sup{A~(C) —
A*(C)} = A~ (supp A7) = A~(S). On the other hand, u*(A x §) = 1(A) +A7(4)A*(S)/
X'(8) = 1 (d) and 4*(S x B) = 5(B) + A~(S)X*(B) A+ (5) < Y(B) + A*(B) =
#2(B) and p*(z # y) = [ I(z # y)(y(de, dy) + A~ (dz)X* (dy)/A*(S)) = [I(x # )
A7 (dz)A (dy)/A+(S) = A‘(S)A*(S)/A*(S) =A7(9). O

Consider next finite measures fuy, 1 on R with densities hi, hy with respect to a domi-
nating measure 4 on R'. Define

(6.5) Pul ={P e M"(R*, B®); m,P > H, P <y}

Any P € P4 has marginals Py =mP, P, = m,P with densities f, > h, and f2 < hy with

respect to 1. We assume first that | — m(R" < m2(R'), ie., A1 is a probability measure and
SO f| = h].
PROPOSITION 11. Define 2, = inf{y : f(y o) h2dp < 1},

ha(y) ify > 2

1- h d
(6.6) ) = /<z.,.oo) i

#(20)
0 otherwise

ify = 2y and {2z} >0
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and P* the corresponding probability measure with p-density .

(a) sup {Fp(z,y); P € Pii} = 1 — max(F,, (z), Fp. (), for all z,y, where
Fp(z,y) = P(|z,00) x [y, 00)) is the survival function.

(b) The sup in (a) is attained for the distribution F* = Fx. y«, where X* = o L),
Y* = Falh,

(©) If c is a cost function, which is componentwise antitone and satisfies the Monge
condition, then

(6.7) inf {/c(z, y)dFp(z,y); P € 'Pﬁf} — /c(:v, y)dF*(z,y).

Proof. (a), (b) For P € P! with marginals Fl,, Gy we know that Fp(z,y) <
P(F(U) 2 2,G;'(U) > y) = P(U > max (F,, (z), G2(y)) = 1-max (F,, (z), Ga(y)).
By our construction of P* we see that Fp. (y) < Ga(y), for all y, and therefore, Fp(z,y) <
I — max (F,, (z), Fpe (y).

(c) The conditions on the cost function ¢ were considered in [11]. In that terminology
—c is a A-monotone function. Therefore, (c) follows from (a), (b), and [11]. O

The “antitone” assumption in (c) of Proposition 11 does not have a good interpretation
in terms of costs. Under some additional assumptions on the bounding measures we can
construct solutions for more natural cost functions. Let again p; have densities h; with
respect to p1, 1 = py(R') < p2(RY).

THEOREM 12. Assume that for some yy € R, we have

(6.8) hi(u) < hy(u) foru < Yo and h(u) > hy(u) foru > Yo-

Define xy = inf{y : f(y,m) hy(u)dp(u) > f(ym) hy(u)dp(u)} and define

ha(u) ifu >z,
= by (w)dp(u) — ha(u)dp(u)
©9) fo(u):= /["°°) ,u(:v(ézo,w) if u =z and pu{zo} > 0,
hi(u) if u < .

Then for any cost function c satisfying the Monge condition (1.3) and the unimodality condition
(2.16) holds:

(6.10) inf{ / c(z,y)dFp(z,y): P € P;‘?} _ /0' c(F5 (u), Fy (u))du,

where F; is the df of the measure with density f; with respect to 1. The optimal distribution
is induced by the rv's X* = AU Y =B\,

Proof. For any P € Pl? with marginals F,,,Ga, we have by the Monge condition:
Je(z,y)dFp(z,y) > fol c(F,' (u), G5 ' (u))du. By our construction of F; we find that

Ga(v) 2 Fa(y) > F, (y) forally >z, and

6.11
i Fy(y) = F,, (y) forally < zy;

(6.11) implies that F, ! (u) > F;!(u) > G5 ' (u) for u > Fy(x0) and F; ' (u) = F,; ' (u) for
u < F3(xo). Our assumptions on ¢ imply that c(Fr'(u), Gy () > c(F (u), F5 ' (u)) for
all u. ]
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Remark 7. tis not difficult to extend the solution of Theorem 12 to the case m(RY <1
and the conditions f, > h,, f» < h,, for the densities of an admissible plan P, if we still have
assumption (6.8). Again choose z; as in (6.9) and define

h2($),x > 2,
= ha(z)d
(6.12) fi(z) = /(Zom) A if £ = 29 and p(2) > 0
1(20) ’

otherwise,

where zp = inf{y : f(y‘oo) ha(z)du(z) < 1}. Define yo = inf{y : f(y,w) ha(z)du(z) <
Jiy oy M1 @s(@)},

hi(z) ifx > yo,
fa(x) ifz < g,
(6.13) filw) = / (ha(z) — hu(z))dp(z)
[t0,00) if 14(yo) > 0.
“(wo)

Then we have for ¢ as in Theorem 12

1
(6.14) inf{/c(z, Y)dFp(z,y); mP > p), mP < pz} =/0 c(F,"'(u),F{'(u))du,

where F; have densities f; with respectto pu, i = 1,2. ]
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