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We develop the importance of the local structure of the estima-
tion model to the theory of unbiased estimation, especially, in
the case of large nonparametric models. On one side this gives
us an useful tool for the constructiocn of MVUE, justifying al-
ready in the finite theory intuitively appealing construction
methods, which are known from the asymptotic theory. On the
other side our results show under general conditions, that UMVUE
typically are asymptotically efficient and, furthermore, that
asymptotically efficient estimators are obtained from MVUE for
a linearized estimation functional combined with an adaption
procedure.

BMS subject classification: 62G05

1. INTRODUCTION

In the theory of unbiased estimaticn many examples are
known, where unbiased estimators are very bad and, more worse,
where unbiased estimators do not exist (e.g. in many models in-=-
volving nuisance paramters). Furthermore, for bounded loss func-
tions the principle of MVUE is not effective as was demonstrated
by Basu (1955). A beautiful presentation of the relation of un-
biasedness with different estimation principles can be found in
the recent book of Lehmann (1983).

On the other hand it was shown by Sharma (19733 and‘Portnoy
(1977), that UMVUE in regular exponential families typically are
asymptotically eguivalent to the MLE and, therefore, are asympto-
tically efficient. So the bad behaviour in these cases is due
to too small sample sizes. We want to show that this behaviour
extends to a general class of estimation problems, especially
in nonparametric models, and that on the other side MVUE lead

in a natural way to a construction method for asymptotically



In the asymptotic theory the importance of the local struCF-

ture was impressively demonstrated in the LAN-theory of Le Cam
and Hajek for parametric models, while for general models one
can find a convincing and far reaching presentation in the
recent book of Pfanzagl (1982). We want to show, that the local
structure is already important in the finite unbiased theory,

at least for large nonparametric models.
2. UNBIASED ESTIMATION AND TANGENT CONES

Let P be a class of probability measures on (X,B) and
g:P - R"' a function which we want to estimate assuming a
quadratic loss. The leading idea of the following construction
method of minimum variance unbiased estimators (MVUE) of g is
that the local structure of P contains essential information on
the estimation problem at least in large nonparametric models.

We shall concentrate in this paper on the first order
tangent'coneé and, therefore, to linear estimation functionals
g:; nonlinear estimation functionals and the corresponding higher
order tangent structure will be treated in a forthcoming paper.
For PE€ P let T(P,P)C=L2(P) denote the set of all tangent vectors
at P in P, i.e. the set of a1111€If(P) such that there exists
a path (Pt) < P with

t>0
a) P0=P
dPt"%
b) ||2 aﬁ-— -1 "thli = o(t) (1)

, dPt ( 2
c Pt{ai— = =o{t ) for t = 0

dap
2
il |l denoting the norm in L (P), EFE the generalized Radon

Nikodym derivative.

2
For the general theory of L -differentiation we refer to

2 .
Pukelsheim (1981) -and Witting (1985). The importance of L -dif-

ferentiation and of the concept of tangent cones in asymptotic
estimation theory was fully established by Pfanzagl (1982)
where one can find many parametric and nonparametric examples

for the calculation of T(P,P).
dp

If (P)CP and h, = € 1°(P), £20 such that
ar ap
. —_E - _ _ + 2
gldP 1 - thl| = ol(t) and Pt{d—P— = oo} = o{t ) (

then he€ T(P,P). We remark that derivatives in the sense of (2
have been considered by Barankin (1949) and Parzen (1959) 4in
parametric model in connection with unbiased estimation We

extend this result to the general nonparametric case. Define

T (p,P) = T(P,P) U {1}; (

the constant 1 corresponding to tue derivative 0 of the cons-.
tant path ?t=P, t20. Furthermore let )

D i=lde L°(P); ja ap = g(p), Y pe p} ¢

be the set of all unbiased estimators of g which are sguare

integrable w.r.t. P and Do = Do(P) the corresponding class ofr
estimators of zero ’ ‘

Theorem 1.
L
a) boe {1 2'(p,p)
PE P
1 4 2 - 1
where T (P,P) = {h€L (P); /hf @P = 0, ¥Y£&€T (p,P)}.

4 }
b) Let Hp:=cl<T (P,P)> - the closure of the linear space
1
generated by T (P,P) in L3(P); if a*¢ Dgﬂ H_, then g%
is MVUE for g in P. i

Proof. a) Let h€ Do and £&€ T(P,P), then there éxists a
path (Pt)C:P with Po=P and Lz—derivative f. The function
F(t):=ftht, t20 is differentiable in 0 with F’(0)=fhf dp
(cf. Pukelsheim (1981), Pfanzagl (1982), Prop. 5.1.5 and
Witting (1985), sSatz 1.179, 1.190). Since F(t)=0, we obtain
0=F'(0) i.e. h is orthogonal to f. Since by assumption h is
orthogonal to 1 we cobtain DoC:T1(P,Pf .



1
b) Since by a) Do<& T (P,P)'L we get

1 1 i 4 L
Hp = ¢cl<T (P,P)> = (T (P,P) ) C Do .

Therefore, by the covariance method any a*e Dg(\HP is MVUE for
g in P. [}

Corollary 1. If for all P€ P holds
Hy = 17(P), then Do(P) = {0} (5)

2 .
i.e. the class P is L -complete. ({0} denotes the set of all

functions which are equal to 0LPI.)

~ Remark 1. a) A model with the property (5) is called a
full model. Typical examples of full models are robust models
(e.g. variation neighbourhood models or e.g. absolutely con-
tinuous distributions on (Bﬂc, B w.r.t. Ak). k
b) By Theorem 1 the following method is proposed: For de.Dg
determine the projection d4d.on Hp. If de Dg, then d is MVUE for

g. If ae (0 = , then d is UMVUE for g. The chance to find
PEP .
such an element is especially good, if T (P,P) is independent

of PE€ P. This projection method turns out to be especially
effective when projectioning an optimal estimator from a larger
model down to the actual model, in this way obtaining a finite
version of the projection method known from asymptotic statis-

tics.

3. EXAMPLES

a) Linear restrictions

4
Let fi:(X,B) - (R', B ), 1<isk,

k

kl 2
P, = {PeM (X,B); £,€ L (P), [£,dP = 0}, 1<izk, and P = N P, .
i=1

Then for PE€ P

T(P.P.Y = <Ff > fan

Proocf. For héZT(P,Pi) let (?t)C:Pi be a path with Po=P and
tangent vector h, then with F(t) = ffi dPt we obtain as in the:
proof of Theocrem 1, 0 = F7(0) = Ifih dP i.e. h € <f,>* .

i

i
If, conversely, h€<f;> , let h € <f,¥ satify, t|[h-hl] = 0
and tht > =1 and define P = (1+tht)P. Then (Pt) is a path in
P, with tangent vector h by (2), i.e. h€ T(P,Pi). ]

As in Pfanzagl (1982), pg. 118, one now obtains

k k n
T(P,P) = f} TP,P ) = ) <£;> . (73

i=1 i=1
Define for c& ]Rk and d€ Dg

T
a, =a+ s, f:=(f1,...,fk)T

and Gp = (ffif. dap) = the ‘information’ matrix of P'in P,

J 151, 9k

Proposition 2.

a) Do = <f1,.-.,f > .

k

b) If c=g€ rE solves the equation

T
(c*) Gp + Epdf =0, (83

then d , is MVUE for g in P.
c .

g B
c) d*(X1,...,xn):= 5 I 4a *(xi) is MVUE for g(Q) in P" w.r.t.

PP={p"; pe p}. i=1 ¢
Proof. a) From Theorem 1 and (7)

1 £ '
Do CPQP (T (P,P)) = <f1,...,fk> the converse inclusion

is obvious.
b) By a) we obtain

k
Dg = {d.7 c€R }. so by the covariance method d , is
c

MVUE in P if and onliv if



cT_E af + (¢*)T G.c = 0 for all ce:mk, or, equivalentl
P P _ 4

T
¥ -
c) The tangent space of P® in P" is

n
(", P%) = { 1 h(x,); h€T(P,P)} .
i=1

n ,
) ® _ .
Since d (x) = E dc*(xi)E Dgn H

1
n P

i=1
Theorem 1 implies its optimality in ph.

[}

We remark that Do(P™) has been characterized by Hoeffding (1977)
B k n
as the set of all functions of the form { £ I f£,.(x.)h,.(x, ..)
i=1 j=1 I 3] ;J (J)
where x(j):=(x1,...,xj_1, xj+1,...,xn). The formulation in terms
of tangent cones allows many modifications. To give a concrete
example: Let X = ]R1, Po:={PEM(R", B')}; P symmetric around 0,
2
£, L (P), J£,dP = 0, 1<i<k} then for P"€ PD we get

(P, PY) = {
i

e s

h(xi)e T(Pn,Pn); h symmetric around 0}.
1

Therefore, defining

~ 1
d(X1,...,Xn):? EH

I~

(@ ,(x) +d ,(=x,)) (9)

i=1 C C

~ . 14 ~
we obtain 4d€ DgfIT (Pn,Pg) and, therefore, by Theorem 1 d is
MVUE for g in P w.r.t. Y.

b) G invariant distributions

Let G be a finite group of measurable transformations of
(X,B) and let P be a large subset of all distributions which
are invariant w.r.t. G, large meaning, that P has the same
tangent cone as the full model has, i.e. for PE P

T(P,P) = {h€ L (P); heg = hLP1 for g€G, fh AP = 0}  (10)

2
Let for £€L (P), g(P) = [fdP. Without anv ‘eccantial’! ractrim-

tions on P the UMVUE of g(P)} after n independent observations

would be
LI (1)
= = = ' 11
dn(x) ffdpn,x 5 121 f(xi), where
; B .
P (B) == I 1, (x,) 1is the empirical measure. According to
n,x n, 4B i

our general idea we consider

n

D = 12

the projection of P on P.
n,x

2
Proposition 3. For f€ L (P) is

n

p = 1 -

= = R B i3

d(x) ffdPn,x aTel _E b feg(xl) the UMVUE for (13D

i=1 g€ G
g(P™) = fgap.
1 n n n 2
Proof. Since T (P,P) = { & h(x;); heL (P), heg = hiP1, g€ G}

1
de Dgﬂ 7' (p®,P"). Therefore, by Theorem 1, d is UMVUE.

i
O

Special case. 1) If (X,B) = (R, B"), 6 = {id,s}, where
s(x) = =-x, xEZR1, then P is a large subclass of the distribu-
tions which are symmetric around 0. If f = 1(—w,xol’ then the
UMVUE for g(Pn) = FP(xo) is '

~ _1 _ _ _ -
Fn,x(x°) = 2[Fn,x(xo) + 1 Fn,x(( Xo)=)1
; 0 . (143
= 5 . .1
55 i21111(_00'}{03(}{1) + Tt—xo,m)(xl)

the symmetrized d4df.

2) If (X,B) = (Eﬁﬂ.Bk) + G = 5 denotes the group of coordinate
changes, then P is a large subclass of the set of symmetric



measures on (E&ﬂ_mk). If £ =1

]

n
(—”:Xo3xﬁmk—1' then g(P™)

Py(-=,%X01 = Fp (X0) is the df of the marginal of P. The UMVUE
. 1 ,
is

k

z

1
1 (x, .
1 §=1 (== ,x01" 7173

Fn,X(XO) T -k

) (15)

i

vl

where x = (x1,...,xn), X, = (xi1,...;xik). We remark, that for
the case that P denotes the set of all continuous symmetric
probability measures one could also apply a completeness result
of Smith (1969), pg. 35.

4. UNBIASED ESTIMATORS AND ASYMPTOTICALLY EFFICIENT ESTIMATORS

Consider an asymptotic estimation problem (Pn)ne N with
iid observations and let g: P - R’ be a differentiable func-
tional which is to be estimated; differentiability of g means
that for all P€ P there exists g9p€ LZ(P) such that ngdP = Q

and for all {Pt}t>OC:P with Po=P and tangent vector h holds:

g(Pt) - g((p)

lim = = fgphdP . (16)

t-0

9p = g(+,P) is called gradient of g in P.

As is clear from the definition (16) a gradient is not uniquely
determined. Call éP(-,P) = §_ a canonical gradient if @P is a
gradient and if §,€ cl<T(P,P)>; i.e.'qP is the (unigue) pro-

jection of any gp on cI<T(P,P)>.

An estimator sequence is called asymptotically efficient (of
first order) if it is as.median-unbiased and as. N(O,cz(P))
distributed, with o (P) = EP(§(-,P))2- The typical as. eff.

estimator sequences have a stochastic expansion of the form

-
Jﬁ(dn—g(P)) = 5% 121 g(x,,P) + oPn(T). 17

*®
If (dn) is a UMVUE sequence for g constructed according to
Theorem 1, then (d:) is as. efficient.

b i

s £ n .
Proposition 4. Let dne:Dg(P ) satisfy

h(xi), h€ ﬂ Hy, n€ W ,

n
z
=1 pep

a‘(x) =
n(x) =

o

i
then (d:) is asymptotically efficient.

Proof. Since d:érD (Pn), n>=1 we have for PE€P, d:(x)=g(P)+
+fP(x) = h(x), i.e. fPE cl<T(P,P)> = Hy. Therefore, g(Q) =
=fd’de = g(P) + /f,d0 for all Q€ P, implying, that f, = §
the canonical gradient of g. By the CLT

P1S

Jaah - g(e))—=2

N(O,I(QPJZdP)

i.e. (d:) is as. efficient.
)

Proposition4 shows that the phenomenon detected by Sharma
(1977) holds true in very general situations (at least for
linear estimable functionals g). Loosely speaking one can say

that for large nonparametric models UMVUE are typically as.

efficient.
[dg) v . A
Let 8(Q,P) = ilkaﬁj - 1|| denote the Hellinger distance
2 2 . N
(1 1] in L (P)) - gp€ L (P) is called a strong gradient of g in

Pw.r.t. § if ngdP = 0 and

g(Q) - g(P) = ngdQ + 0(8(Q,P)) for Q with
' (18)
022 - ) = o(sCa,m )

As in Pfanzagl (1982), pg. 66, if Ip is a strong gradient, then
9p is.a gradient.

Since for nonlinear functionals there are no unbiased estimators
(in our context) we consider for strongly differentiable g a

linearization

g(Q) = g(P) + fg,do (19)



of g whiqh approximates g(Q) for P near to Q w.r.t. §. For
linear functionals g(Q) = [£fdQ as considered in section 2 we

have g(Q) = g(Q). By Theorem 1 the MVUE of g in P" is

d* _ _‘3(- B 1
,n(X) = an(x,P) = g{(P) + 5

[ =]

ép(xi) . (20)
1

i
We can now try to make the MVUE d; to a global estimator by an
adaption-step namely by replacing the unknown P by a ‘goodf
estimator P = Pn(',x), good means according to (18), that P
should approach P w.r.t Hellinger distance at a certain order.
Define

an(X)

*
4 (x,P (+,3%)) = g(P (+,x)) +

n (21)

Iog(x,,B_(+,%));
i=1 0 iTn

=N

én should be a good estimator for g(P) since by (18)

g(P) ~ g(P ) + f§(-,P )dP~d (x) (21) is identical with the
*improved estimator sequence’ dgeneralizing the improvement
procedure based on the Newton-Raphson approximation to the
solution of the maximum likelihood equation. This procedure
was introduced by Pfanzagl (1982), 11.4.2 and shown in many
examples to lead to asymptotically efficient estimators. In
contrast to the usual motivation for (21) namely to improve
Pn, we come to equation (21) by trying to make a MVUE in p"
(for g) to a global estimator. Extension of this idea to the
construction for higher order approximations of g and to higher
order improvements will be considered a forthcoming paper.

Example. Let Po = {P€M'(R', B') , Sx3dP = m_, fx"dP<=} and
let g(P) = [xdP =!m,:(P). By Proposition 2 the MVUE for
g(@™ = m,(Q) in P" is

[ s

* «
a (xypenex ) = L RN HEE R (22)

s ‘m( i

ma(P)=m2mg (P)
J(x2-m,)2dpP

The adaption step would now yield

with c* = . mi(P) denoting the i-th moment of I

n -~ -
~ - = 1 _ IMa—=moM4 z _ (
dn(n1,‘..,xn) o 121(Xi ——gf——— (xi m,))
R n . n 2
where m, = 1 % x;, cz = % z (X; =~ m,)
0 og=1 i=1

are the corresponding sample moment estimators of the moment
of the distributions.
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