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UNBIASED ESTIMATION IN NONPARAMETRIC CLASSES OF DISTRIBUTIONS
L. Ruschendorf
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Abstract. We characterize the sel of unbiased estimators of zero and
MVUEs in nonparametric classes of distributions determined by general-
ized moment type conditions. We discuss especially estimation in the
class of distributions with given marginals, in invariant models and for
generalized translation families. In the case of a dominated family of
distributions we determine the general structure of the zero estimators
éfter}n independent observations. The convexity of -the underlying class
of distributions turns out to be an important property.

1} Introduction

Let (X,B) be a measurable space and let F be a set of real, measur-
ble functions on X. Many interesting honparametric families of distri-
utions can be described as “large” subsets of

oo

(1) M. = M.(F) = {Qen(x,p); Fel™(Q),ffdo=o0, v feF},
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where 1sr<e, Ml(X;B) denotes the set of all distributions on (X,B).
Examples for Mr are distributions with given moments, symmetric distribu-
tions or, more generally, distributions invariant w.r.t. a group of
transformations, distributions with given marginals, distributions of
stationary processés or of martingales.

For the case that F is finite, Hoeffding (1977a,b) has considered
the problem of determining the symmetric unbiased estimators of zero,
while Fisher (1982) in a subsequent paper considered certain nonlinear
restrictions.

2. One Observation

At first we consider the case of one observation. For l1<rse let

D0 v denote the set of all unbiased estimators of zero with existing

r-th moment, i.e.

- - r - —_ =
(2) Do.r = Do p(M) = thel" ()5 fhdP =0, vPen ] .
Let Y+ 121 and define for PeM
YTl r
(3) FL(P) = (hel®(P); S fh dP = 0, VFeFU{1}} .

An important property of F turns out to be the following: F has property

LB (lowerbounded) w.r.t. P if for LB(P) = {h : Xa—Rl; esspinf h> -}
holds:
(4) FL(P)NLB(P) is dense in Fo(P) worat. L3(P) .

This property prevents Ft from being too small in some sense. For r=1,
(4) is fulfilled generally by definition for all PEEMl. For r>1 it is
typically not satisfied if Fr(P) =-<f1,...,fk> , where fi are not bounded
from beiow.

For a set B-of real functions let <B> denote the Tinear space gener—
ated by B; for BeL' (P) let L’ (B,P) denote the closure of <B> in Lr(P)
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THEQREM 1.

r
a) PgM L (F’P)CDo,r
r .
b) Dy . = n  LT(F.P)
0.1 Pem.
Fis LB w.r.t. P

1
c})D .= n LYF,pP)
0.1 pey

Proof.

a) For hel (F P) there exists a sequence (f )C:<F> such that f,>hin
L"(P). Therefore, 0 = ff dP>fhdP, i.e. n L"(F, P)C:D
PeM
r
b) If hlen ~and if F is LB w.r.t. PEM »» then choose for ke Fi( P)N LB(
CER", > 0, such that ¢ k2 -1 [P] and define P = (I+c k)P. Then
PEM and, therefore, 0 = [h dP = [h dP + ¢ fhk dP = ¢ [hk dP, i.e.
h is orfhogonai to k. Since Fl(P)ﬂ LB{P) 1is dense in FL(P) h is

even orthogona] to Ft (P) From [h dP = 0 we infer that

he (FL(P)u {11)*

(5)
= L"(Fu{13,p) n (13t = L(F,p),

where (5) follows from the Hahn Banach theorem.
c¢) follows from a), b). o

While c) gives a complete description of D = D0 lﬂ L" (M ), a)
and b) are concerned with stronger forms of representat1on of D r by
means of F. If F is a vectorlattice, then c) implies that >
D =n L' (F,P).

%F  pem

r

From the covariance method we have for g: M %-Rl and D the set of

- unbiased estimators of g with existing r-th moment w.r.t, M

COROLLARY 2 Let P QEEM , d€ Dg rn L (P) and Tet F be LB w.r.t. Q.

If dez(L (F,Q)n L (P)) » then d is MVUE for g in P w.r.t. Dg r (LP de-
notes the orthogonal complement in L2(P)). ’
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More generally in Corollary 2 it is sufficient to find d in
4
(n L) nL5e))T
0eM
r
FLBw.r.t. Q.
3. Examples
a) Finite Case

IfF = <f1, . fk> rz1, then F is LB for any PEEM For the proof

1eb ge FL(P) and let g1 be bounded elements of L® (P) w1th <g f >=0 and

i

k
g —g, 1< i<k, convergence w.r.t. LS (P). Define h I cs +cC
Moo :

where the coefficients c1 n are choosen such that <hn,f1 =0,
k

izl ci,n = 1; then Co.n -+ 0 and hn»-g.
Therefore, D = F for each r. If d€ Dg r then the MVUE for g in

0,1
PEM w.r.t. Dgr

(6) ¢ =d+ (cMTF

where f = (fl,...,fk)T and ¢ is a solution of
T . - -

(7) Epdf + ¢'G = 05 G = Gp = (J'fifj dpP),

denoting the information matrix in P (cf. Hoeffding (1977a), Ruschen-
dorf (1984a)).

b} Invariance

Let F = {f - fog; g€G, fEB(X,B)}, where G is a group of measur-
able transformations of (X,B) and B(X,B) is the set of bounded real
measurable functions on (X,B). Then Mr is for rz21 the set of all
G-invariant distributions on (X,B). We assume that M = Mr # 0. From

1
Theorem 1 we get that D0 1° 0N L7(F,P).
’ peM,

PROPOSITION43. Let §: M->Rl be unbiased estimable.

a) If de Da and d is aimost G-invariant w.r.t. M (i.e. dog =4d [P]%
VPEM. a€ 6) then d is UMVUE for @ w.r.t. D~ ..

11ngn (O]
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b) If G is finite, then
b D = <F> = f -7 s T_€B(X,B)} .
1) 0,1 F {géﬁ ( g gog) g ( )

b2) If de D0 1 and d is G-invariant, then d = 0.

1
b3) If dED , then d* = I dog is UMVUE for § w.r.t. D~
,1 ol geq g g,1°

b4) If each gEEG is bijective, then the o-algebra U(G) of G-invariant
sets is sufficient and complete.

Proof.
a) If f-fog€eF, then EP d(f-fog) = EP d f - Epd fog =20 for all
PEM since d = dog [P]. Therefore, Ep dh =0 for‘ all he<F> .

Since d 15 bounded, this relation extends to L (F,P). Using that
0 1<t (F P}, the covariance method 1mp11es that d is UMVUE w.r.t.

bl) It is easy to see that
LHFLP) = <{f-fog; FELY(P), g€G> = [ = (fg-Fgo9)i f e Li(p)3.
=
Since 0 LY(P) = B(X.B), bl) follows.
peM

b2) If h = & (f -fgog)ED 1 is G-invariant, then for PEM
) get

1
h = hog' = L L (fjog' ~f,ogog") =0.
T8 gieq = s :
b3) Follows from bl).

bd) Sufficiency of #(G) is wellknown while completeness follows from b2).o

From general ergodic theory is is known {cf. Theorem 5.1 of

Tempel man (1972)) that L (P) has a unique decomposition in

L*{F,P) ® L(G P), where L(G P) denotes the set of all almost G-invariant
1ntegrab1e functions w.r.t. P. Therefore, we can interpret D 138 the
orthogonaT complement of the bounded almost invariant funct1ons w.r.t, M.

Under topological assumptions on G we can extend Propositon 3. Let G

~be a Tocally compact topological group act1ng measurably on (X, B) and

Tet “(F\ dennte the ~—alaohwa Aannnatad ko fha M adee s A =
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functions. Let u be the Haar-measure on G. A strong form of an amena- . As consequence of Proposition 3 U-statistics reﬁain UMVUE if one en

larges the model of iid random variables to the Jarger model of
symmetric distributions

bility condition is the Emerson-Tempel‘man condition (cf. Tempel'man
(1972), Th. 6.1, Bondar, Milnes (1981), pg. 120). There exists a summing

. From 2 b) the c-algebra of symmetric sets
sequence (6,) of compact sets such that v(G, Gn )/v(G )= B < = for all is symmetrically complete w.r.t. the class of all symmetric distribu-

ne N, v being the r1ght invariant Haar-measure on G. tions.

PROPOSITION 4. If G satisfies the Emerson-Tempel'man condition, then

c) Measures With Given Marginals
u(G) = ﬁ(G) M1 and 1(G) is sufficient and Lz—complete.

=

Let (X,B) = ., B. 1
(K:8) = @ (XpBy), PyeN (X;.3,),

| 1<isk,
Proof. Let PEM and d €B(X,B) and define d, = _le Gj dog du(q), '

(10) F = <{f1. - Ifi dP_i; f.EB(X,,B;), 1siszk}>
where (G ) is a summing sequence. Then (d ) is bounded and the individual ! o :

ergodic theorem of Tempel'man (1972), Th. 6.1 (cf. also Bondar, Milnes
(1981), pg. 120) implies that lim d exists P a.s. Define d* = Tim d
then d¥ is G-invariant and d* = E (alu(G)) VP EM (cf. Theorem 6.1,

part 3 of Tempel'man (1972)). This implies that 1(G) is sufficient for M.

where fi is considered as function on X, f X+—R
= f, (x ). In this case for r>'1 M. = M(P
d1str1but1ons with given marg1na]s P on X

defined as f. (x) =
ces k) is the class of all

| For general PEEM(Pl,...,Pk)
a closed expression is unknown for Lr(F P) but the general idea seems to

be right, that the spaces are getting bigger if P is tending to come

close" to the extreme points; for extreme points P it is known (at
least for r = 1) that Ll(F,P) = Ll(P)

Furthermore, by Proposition 3 a) d* is a bounded UMVUE for
g(P) = E d, PEM. Now Theorem 3 of Padmanabhan (1974) implies that there
exists a suff1c1ent Lz—comp1ete o-algebra 4, namely, as follows from
the proof of that theorem, the o-algebra generated by the UMVUEs which
are bounded, i.e. 1(G). Since for each d€1(6) we can construct d* as in
the first part of this proof w1th d* = E (dlu(G)), both are UMVUE for

. In view of Theorem 1 this leads

| E? to concentrate on the opposite extreme, namely the product measure
, P = Ple"‘QPk' The following Proposition answers a question put by
rHoeffding (1977b), 2c.

g(P) = Epd and, therefore, d = d* M1, i.e. 1(G) = 1(G) [MI. PROPOSITION 5.
o K
a) LY(F,P) = - . r .
Remarks. f) (F.P) {121 i 7 dPl)s fLeL (X,58)), Isrse
1. For PcM, g€ G let Ti{g) denote the P- completion of the g-invariant —5) ;J(ﬁ) = {he S P); fhd o P. = [h &P [p.]
; . <ig
sets (assuming that all g are one to one) and L{G) = n u(q). : J#i J it lsiskl

C) F’ISLBwrt PfOY‘aTS re 1.
j) DO,!" =L (F,F) for all r=1.

Several authors have contributed to the question whether _T_jk:u(G)
is sufficient for P. The most general results concern different
kinds of amenable groups. In contrast to the sufficiency problem
there are only few results for the question of comp]efeness. Basu
(1970) has shown that if a bounded complete and sufficient o-algebra
exists, then it is a subset of U{G). Proposition 3 a) and the result
of Padmanabhan (1974) imply that sufficiency of ﬁ(G) for M implies
that ﬁ(G) is Ly-complete w.r.t. M.

Proof.

1) Consider at first the case r=1. Clearly,
k
- . 1 B
CE(fy - [7 0P fel (X,,B.) LM ().

k
Let on the other hand % f

o1l
i n>hin L7(P) for n+« (assuming w.1.q.
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Jf. ,dP; = 0)5 then by Fubini and writing f. instead of f, .

k k
D - . > . - P.|dP.,
j| z fo-hidP = [if] 21 fgo-hld : P.]dP z[If.-Jh d g;i Ji ;

1mp1y1ng, that f +~fhd o P in Ll(P ) and therefore,

i Y
k k k B
r fi> 2 fhde P wor.t. LE (P), i.e. h= L nde P [P].
i=1 i=1 j#i 3 i=1 3419

The case r21 follows from the case r=1.

b) If hel®(P) and [ h dP = O for all fEF, then

Sfh dF = [f.0fn d gp ] dP; = 0 for all f; €B(X;,B;) with
j#i
0, and, therefore, Ifihidpi = 0, for all fiGELr(Pi),

Jeidp.
f£;dP, = 0, where hy = Jh dj?in. Since [f.hdP. = [f.(h;- [hydP,)dP;,
) r !
s - = . €L (P.), and, therefore,
we obtain Ifi(hi IhidP) dPi 0, for all f, ( ?)

= fhydPy = fh dP = c[P,].
c) can be seen easily from b), while d) follows from Theorem 1. o

To consider a concrete example forkProposition 5 let
(X;,B;) = (Rl,Bl), 1<isk, g(P) =/ T x; dP(x) and assume that
i=1

f1x;1"?dP, <=, 1sisk. To determine the MVUE for g in P define

k k k

d¥(x) = T x, - Z x; (f 1 Y5 deP. ) +k T [x, dP..
i=l ' 4=l MAREEE i=1

).

(11) d* is MVUE for g in P (w.r.t. Dg,r

Proof. By definition d*EED i and for 1<i<k holds
, k
fd*deP.= T jx dP = ¢, i.e. d¥e PL(P) and, therefore, by
it Y et
Corollary 2 d¥ is MVUE in P. o
k 3
The additional terms to I Xj reflect our-knowledge of the margi-

nale d* 9¢ no UMVIIF. Tf v.eL™(P.). fv.dP = 0 and T v.2-1. then
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k

= (1+ 1_11 v;) PeM = M (P ,...

Gumbe]—Morgensbern) distribution. The MVUE for g in p {w.r.t. Dg r) is
given by

,Pk). P s a generalized FGM (Farlie-

k
X; = L x. [T y.dePpr,
) U TS I A T R BV I

12 - I X f H yivily;) d o P,
(12) M0 1L vt ae
k.

k
+kinm fy P, + H fy vilys) dp.
=1

d(x) =
J

L=
iy

k

The correction term is the projection of T X; on D =L (F P) W.r. t
i=1 0>

P For the determ1nat1on of the proaect1on on Lf (F,P} for general under-
lying PEEM(P k) cf. Riischendorf {1983).

H) Measure Extensions, Generalized Translation Families

Let BOC:B be a sub o-algebra of B, let PEEM (X,B) and P PiBo. For
= {f€B(X,B o) If dP =0} M= E(P,) = {gemt (X,3); Q|B Py} is the
set of all measure extens1ons of P IB to the larger o- a}gebra B. M# 8
by assumptlon, since P€ E!PO)

Example. Let G be a group of one to one transformat1ons of (X,B),
= W(G) the 0—a1gebra of G 1nvar1ant sets and PEEM (X,B) with P PIB
then E(P ) = {QEEM (X,B); Q =P } where T is a maximal 1nvar1ant w.r.t.
G such that 1) = Bo. Especially, E\P }°P = {r9; g€ G}. If, especially,
X =R"and G is a permutation group, then we get all distributions § such

that S(Q) = ar 2 Q" equals a given symmetric distribution P (assuming

) TEG,,

P to be nonatomic). If G = R is the translation group on Rn

gx = (xlé-g,. ca X +g), ge G, then E(P ) is a generalized translation-
modé]; E(PO):>P {Pg, ge G} the usual (parametr1c) translation-model,

PROPOSITION 6. For PEE(P,), §i E(Pg)+RY, it hods:

a) LY(F.P) = (FeLh(®,P); JF P = 0, £ = E(F]3.) [P])

2 .
b) Let d€Dz | NLY(P), then d* = d-E,(d|B ) + E,de Dy . and d* is MVUE
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for g in P w.r.t. Dasl.

dEELZ(E(PO)) is UMVUE<==EP(d|Bo) - EPd is independent of P(EE(PO).

Proof. :

If fEELl(F P), ‘then there exists a sequence (f ) =F such that fn—+f
in Ll(P), implying the existence.of a subsequence (f V) = (f ) which
is a.s. convergent. Therefore, f = Tim fn' f¥[P1, f* = (f}BO) =

= f [P] and [f dP = 1im IfndP = 0. The converse inclusion is obvious.
For all REE(P) it holds Epd™ = Epd - E EP(dlB ) + Epd = Epd = g(R),

i.e. we have d" €D~ 1 Moreover, for feL (F P)nL (P) we obtain
Epd*f = E pdf - E EP(dIB )f = 0 which by Corollary 2 implies the
assertion.

follows from b).

'Remarks.

. In part b) of Proposition 6 we construct an improvement of an estima-

tor d. In the case of a generalized translation-model this improve-

ment is equivalent to that discussed by Rao for the translation-model
= {r9; ge G}C:E(PO). If d is an equivariant estimator, i.e.

d(gx) = d(x) +g for geg = R and Epd = 0, then E g(dlB - E, gd =

= EP(di-g|Bo)- g=E dIB ) - E pd. Th1s implies that with g(Q) = EQd

the Pitman- estimator (in the. representat1on of Rao) d* = d - Ep(dlB

is MVUE for g for the whole translation class P. Note that g(P9) =

for all ge€G. So in contrast to the situation of unbiased est1mat1on

in the Tocation model P where Bondesson (1975) showed that UMVUE is

very rare, we obtain in the generalized translation model that the

Pitman estimator is always MVUE for the subclass P.

The fo]]oWing simple argument communicated to the author by H. Luschgy

explains this behaviour of d*. If dl’d are unbiased for g in E(P ),

then d - d is by part a) of Proposition 6 almost surely G-invar ant.

Therefore, the optimality of d* w.r.t. unbiased estimators is equiva-

lent to the wellknown optimality of d* w.r.t. all equivariant estima-
tors.

~b) P is complete w.r.t. Lz(u) if and only if <H> is dense in L° (u). Let

d) If deD 2(w?) = thel? (u); fhdQ =

L. Riischendorf

20

2. It was shown to the author by D. Plachky that d* is a UMVUE for E(P }

if and only if d d is P a.s. B o-Measurable for all d € D n LZ(P) and

for all Pe E(P ). Therefore, 1f d is not B =»measurab]e P a.s. and Py

is not trivial (i.e. P (A)e (0,1) for some AEEB ) then d* is not
UMVUE. :

4. Dominated Case

Cons1der now the foliowing variant of Theorem 1 concern1ng dominated

; subsets of M2 Let u be-a o-finite measure on (X,B), let Fc:L (u) and

let H be a subset of

(13) thel?(u);

hz0, jhdu= fhfdu'= 0, VfEF}.

Then g = = {hu; hEEH}c:'VI2 = MZ(F) is a subset of MZ dominated by y.
We denote by B the closure of a subset Bc:L (p) int (u) Let D (P)

{hESL (u); fhdP =0, VPEEP}, we have the following obvious re]at1ons:

LEMMA 7.

a) DO(P) = Do(con P) = Hl,'(l the orthogonal compiement in-LZ(u))

2

especially, H <L"(u) be a subset of all probability densities w.r.t.
H and H = H r}F » then we have for g: Pa»Rl

PROPOSITION 8.

a) P = HueMy(F), P u

o
R

(=]

(o]

e
o
—

1]

H = w12

o
Nt
-CJ

(@]
.

0
—

1

(F,u) if and on]y if< H Sofd

g(Q) for all Q€ P} and if

de<H>NL™(Q)  (closure in LZ(Q)), then d is MVUE for g in Qerp, o

Several Observations

Cons1der the situation from section 4, i.e. P = Hy, HC:L {u) and

~assume that in order to estimate g: P-*R1 we make n independent obser-
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vations, i.e. our model is " {P - Pe?P}. In contrast to the case of
one observation we do not have the important relation

(14) D, (") = D ((con ),

B

but generally there is strict 1nequa11ty Caused by this fact comp]eteness
of P w.r.t. Lz(u) does not imply symmetric completeness of " w.r.t.
Lz(un), the opposite direction being obvious.

Example. Let (X,B) = (Rl,Bl), U being a o-finite measure on (Rl,Bl),
different from a one or twe point measure. Let P denote the set of all
P(EMI(Rl,Bl) with V(P) = fx4dP < » which have a square integrable
density w.r.t. u . With H being the set of all square integrable u-den-
sities h satisfying fxzh du - ([xh du)2 =1 and. [th du < = we have

= Hu and it holds:
1. P is Lz(u)-comp1ete
' 1 2 2
2. ulx.y) = 5 (x-¥)° - 16D, (%)
3. 2% is not symmetrically complete w.r.t. Lz(u).

4, (con P)Z is symmetrically complete w.r.t. Lz(u).

Proof.

1. By Lemma 7 we have to prove that <H> is dense in L (1) or, equ1va1ent—
1y, that H' = {0} Define H_ = {h€H; fxhdu= a} then Hl {ke L2 ()3
Ikt1du = 0, Vh€ 12 (p) with {(x a)hdpy = 0, I(x - (1+—a ))h dy = 0}

=({x —(1+a2L X - ayHl-<x~-(1+a ) x,a>. 7
Since u is not a two point measure, we have that H. nH_ = {0} for
1 2
a; # a, and, therefore, HE = ( U 1 Ha>‘L =0y Hé = {0].
aeR aeR

2., 3. are obvious while 4. follows from Theorem 8 of Riischendorf (1984a){

The following lemma is probably well known. We include a proof of it
since we are not aware of a reference.

LEMMA 9. Let H,cH, 1515 k, be subsets of a Hilbertspace H and let
k
® H, be the topological tensorproduct of H,, 1< i<k, (i.e. the closure

L. Rischendorf
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K i k k K
of { ®..60., 3 h..€H.}in g W Then(@i—l)=
kj=1°531, A il
= I He @H%@..@F
i=1

~ Proof. We consider only the case k = 2; the general case following
from induction.

Let (f, ). seq be anON-basis of H such that for I,I, =l (f1)1el is an
ON-basis of Hk’ k =1,2 and (f1)1EIC is an ON-basis of <H > k = 1 25
Kk

the existence following from the projection theorem. Then

(f. 81’)(1 j)er XI is an ON-basis of H@‘i(cf Neveu (1968), Lemma 6. 5)
and for ge(HlaHz) there exists a countable subset D<IxI such that

c.. f.ef.

= Z P

(i,j)ep W 1 d

='( T+ X + % ‘) c.. f.ef. .
(1,3)€D (1,3)6D  (i,3)eD o

636, el i¢1,,5€l,

Since gE(H1®H2)l we get for 1'6151:, jelg, 0= <g’fi®fj> = Cij;
ie. g= g, + g, where gleHTGF, g, €H® H%. o

As consequence we now obtain

THEOREM 10. Let H, = ]R+H = {chyce ]R+,h€H} be a,convéx cone, then

n
ny, _ 2 1 2
a) DO(P ) = 1§1 L (u)@...@H ®...8L (),
“n n . _ : 2
b) DO(P. )= I L"(W)e...e<Pe...8L%1),
k «<A>=FL

Proof.

2) Dy(2") = £Fe L’ S 0" = 0, voe) = tre L2 ;f@ hda® =

9

¥Yhe H}. By Corollary 5 of Rischendorf (1984a) (compare a1so the proof

of Theorem 8) and the assumption that H+ is a convex cone we get
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i . .
D, (2" = trel?(W"); ff ® h.du" = 0 for all h €H, 1sisn} =
S i=1

n 1 n )

= ( ® H ) - 1 Lwe...eHte...0L%(u) by Lemma 9.

i=1 i=1 . ,

b) follows from a) since o' = TF> is equivalent to <H> = (wht =
= ()t = FL

Remarks and Examples. 7
a) Theorem 10 generalizes Theorem 1 B of Hoeffding (1977a) (note that

Theorem 1 A can be deduced from 1 B) in two respects. Firstly we
admit more general sets of moment functions F. Therefore, we can
answer some questions of his paper (1977bf. Secondly, we admit more
general classes of hypotheses also in the case of finite F. This is
caused by the fact that Hoeffding's proof is based on some involved
finite approximation results. '

b)'Condition b) of Theorem 10 corresponds to the LB—condition of Theo-
rem 1 {for r=2). We see that in the dominated case the LB-condition
is necessary for a result as in Theorem 1.

c) Let P = Mﬁ(Pl""’Pk) be the set of all distributions in M(Pl""’Pk)
k .
with L2—density w.r.t. p=P = ® Pj‘ From the proof of Proposition

we infer that F (cf. Example 1c)) is LB w.r.t. P and <H> = F. There-
fore, by Theorem 10 noting that H is convex we get

n
(15) 0 (8" = I 2(P)e...eFe...0L5(F),
i=1 : )
_ k 2 a
where F ={ & (fj—j%-d%); L7(P.)}, i.e. typical elements of D (Pn)
j=1 Y | °
are of the form Nk
, h(xl,...,xn) = izl jzl fij(xi,j)hi(xl""’xi-l’xi+1""’xn)’
_ 2,5(n-1) L2 .
X; = (xi’l,...,xi’k), h; €L°(P » iyl (Py)> Ifidej =0
for all i,].
k
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. 1 N k k
A7 (XqseeosX ) == L LT X3 &= I Xy (un y.d(® P)+
1 n n .- R P Bt PN .7 . T
(16) k =l §=1 3=l r#j r# .
. dP.
+ kjlzllfy3 31

is MVUE for g(P™) in P .

Proof. If ff  dP =0, then
— .
Eprld ,fls(xz,s) hz(xl""’xg—l’ Xz+1""’xn) = 0.

This relation follows if one considers at first indices 1# & and uses
that [, dP_ = 0, while for 1= we can argue as in relation (11). o

Similarly, if we want to estimate g(Pn) = P(x1< XZ) in the case k=2,
the MVUE in P is

d*((xg5¥q) -5 (Xyo¥y))
n

1
LS (Xj<.y3')

(17) ,
- PZ(;XJ.,W) - P1("°°s¥j) * ZIPZ(X,w)dpl(X)].
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