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Abstract

In this paper, we assess the magnitude of model uncertainty of credit risk portfolio
models, i.e., what is the maximum and minimum Value-at-Risk (VaR) that can be
justified given a certain amount of available information. Puccetti and Rüschendorf
(2012b) and Embrechts et al. (2013) propose the rearrangement algorithm (RA) as a
general method to approximate VaR bounds when the default probabilities, exposures
and recovery rates of the different loans are known but not their interdependence. Their
numerical results show that the gap between worst-case and best-case VaR is typically
very high, a feature that can only be explained by lack of dependence information.

Hence, sharpening the VaR bounds by considering the presence of dependence infor-
mation is of great practical relevance. In this paper, we propose an efficient algorithm
to approximate sharp VaR bounds for credit risk portfolios when besides the marginal
distributions also higher order moments of the aggregate portfolio such as variance and
skewness are available as sources of dependence information. We also give explicit sharp
bounds for homogeneous credit risk portfolios. A numerical study shows that in all prac-
tical situations of interest, VaR assessments of credit portfolios that are performed at
high confidence levels (as in Solvency II and Basel III) are subject to significant model
uncertainty and thus not robust even with the additional moment information.

Keywords Rearrangement algorithm, Moment bounds, Value-at-Risk, Credit risk port-
folio.

1



1 Introduction

The financial crisis that emerged in 2008 has shown that management of credit risk is of
utmost importance for the stability of the worldwide financial system. Such stability is
intimately connected to the amount of capital that is available as a cushion against adverse
events and financial institutions and regulatory authorities use models to determine these
capital buffers. In this regard, many industry participants as well as Basel III and Solvency
II regulatory frameworks rely on the so-called “Merton’s model of the firm” to estimate
Value-at-Risk (VaR) of their credit risk portfolios and use this risk number as input to
establish capital requirements. In the industry, this model is also essentially known as
the KMV model (see also Gordy (2000)) and we refer to this name without further ado.
However, like any other credit risk portfolio model, the KMV model requires several ad-hoc
assumptions that are hard to justify and is thus inherently subject to model uncertainty.
The basic reason for this feature is that large losses of a credit portfolio occur when several
loans default together, but lack of default data implies that these joint probabilities are
very hard to specify1 (joint defaults are “rare events”).

To illustrate that model uncertainty is a real concern in the context of credit risk portfolio
modeling, Chernih et al. (2010) describe a portfolio model that is statistically indistinguish-
able of the MKMV model in the sense that it uses exactly the same basic parameters: These
parameters are the probabilities of default (PDs), the exposures at default (EADs) and the
loss given defaults (LGDs) of all individual loans as well as their default (asset) correlations
used to describe the interactions among the loans. Yet, these authors show that, under
their model, the VaR of a portfolio can be more than fifteen times larger than when using
the MKMV model. At first, it may seem surprising that the VaRs of two models can be so
different. However, (asset) credit correlations that are used to specify the dependence, in
reality only reveal information on the likelihood that exactly two loans default together, but
they do not make it possible to determine the likelihood that three or more loans default
together. The MKMV model effectively deals with this issue by imposing that default of
a loan occurs when the assets of the underlying debtor are insufficient to meet the liabil-
ities and assumes also that the asset returns are multivariate normally distributed (with
some asset correlation matrix).2 By contrast, Chernih et al. (2010) make another than
Gaussian dependence assumption (while preserving the same correlations) and this choice
significantly impacts the VaRs.

Regulators are also increasingly concerned with model uncertainty and consistency of
models. In a discussion paper, the Basel Committee 2010) explicitly states that a desired ob-
jective of a solvency framework concerns comparability: “Two banks with portfolios having
identical risk profiles apply the framework’s rules and arrive at the same amount of risk-
weighted assets and two banks with different risk profiles should produce risk numbers that
are different proportionally to the differences in risk”. However, there are a number of other
reasons that explain why model uncertainty is important for business. Indeed, an important
task of an Enterprise Risk Management (ERM) framework concerns capital (risk) alloca-

1Note also that the independence assumption cannot be invoked here as the credit quality of different
credit loans depend on common factors such as the state of the global economic environment, industry,
geography, monetary policy and so on.

2We remark that the use of multivariate normal models is often based on the (wrong) intuition that
correlations are enough to model dependence. It is however clear that correlations only are not enough
to model dependence, as a number (i.e., the correlation) can never be sufficient to describe the complex
interaction between variables unless additional assumptions are made. (see e.g. Embrechts et al. (2013)).
This fallacy may then also partially explain why the MKMV model has gained so much support in industry.
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tion, i.e., the allocation of total capital held by the insurer across its various constituents
(subgroups) such as business lines, risk types, geographical areas, among others. Doing so
makes it possible to redistribute the cost of holding capital across the various constituents
so that it can be transferred back to the clients in the form of charges (premiums). Risk
allocation makes it also possible to assess the performance of the different business lines
by determining the return on allocated capital for each line. Finally, the exercise of risk
allocation may help to identify areas of risk consumption within a given organization and
thus to support the decision making process concerning business expansions an reductions.

In this paper, we aim at assessing the magnitude of model uncertainty of credit risk
portfolio models, i.e., what is the maximum (or minimum) value for a certain risk mea-
sure (typically the VaR) that can be justified given a certain set of information? In the
unconstrained case (i.e., when all PDs, LGDs and EADs are assumed to be known but
not the dependence), some explicit bounds were found by Rüschendorf (1982) for the two-
dimensional case and by Puccetti and Rüschendorf (2012b) for homogeneous portfolios in
higher dimensions. However, the problem is fairly more complicated when the portfolio
is heterogeneous. In this regard, Puccetti and Rüschendorf (2012a) and Embrechts et al.
(2013) propose the Rearrangement Algorithm (RA) to approximate the unconstrained VaR
bounds of a heterogeneous portfolio. While their numerical examples provide evidence that
the RA is indeed able to approximate the sharp bounds accurately, they also show that
the gap between the minimum and the maximum possible VaR is typically very high. In
particular, the upper bound on VaR is always larger than the VaR one would obtain in the
case that all risks are assumed to be maximally correlated (comonotonic), a situation that
is hard to accept by practitioners.

Hence, sharpening the VaR bounds by considering the presence of dependence infor-
mation (constrained case) is of great practical relevance but also hard to do because, as
pointed out before, knowledge of the joint default probabilities is not in reach practically.
By contrast, the variance and perhaps also the skewness and the kurtosis of the aggregate
portfolio can be estimated statistically and can potentially be used as a source of dependence
information allowing to get improvements of the VaR bounds. This idea is actually inher-
ent in Bernard, Rüschendorf and Vanduffel (2013) who propose a version of the RA that
incorporates a variance constraint and who show that such constraint can have significant
impact on the VaR bounds.

Our paper is a further development of theirs. We focus on credit risk and study portfolio
of risky loans. In this context, marginal distributions are Bernoulli distribution that are
characterized by a risk exposure (effective loss in case of default) and a default probability.
We provide several contributions. We propose an efficient modification of the original RA
to approximate sharp VaR bounds. When there are no dependence constraints our modified
algorithm does not perform better than the original one. However, our algorithm is also
directly applicable when there is dependence information available through knowledge of
some higher order moment constraints (variance, skewness, kurtosis, etc.). An important
feature of our approach is that it incorporates the statistical uncertainty on these additional
moment constraints. Indeed, in practice the available information on the moments appears
through statistical point estimates and the moments are never known with certainty. Hence,
rather than imposing equality constraints for the moment information we work with inequal-
ity constraints as a robust (prudent) approach3 to estimate VaR. Furthermore, we provide

3In presence of inequality constraints, the bounds on VaR will become wider as compared to a situation
in which all moments are assumed to be known with certainty.
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sharp VaR bounds for homogeneous portfolios. Finally, we provide a detailed numerical
study showing that VaR assessments of credit risk portfolios that focus on “deep in the
tail events” are not stable and prone to significant model uncertainty that we are able to
quantify. We suggest that regulation should be based on VaR at lower confidence levels.

2 Problem description

We consider loan portfolios under the so-called default mode paradigm. Hence, a credit loss
occurs if the loan (i.e., the underlying obligor) defaults during the considered time horizon
and other value changes (e.g., due to a downgrade) are not recognized. Hence, let Ii be the
indicator variable, which is equal to one if the i-th loan defaults and to zero otherwise. The
default probability is denoted by pi:

pi := P [Ii = 1] .

Further, let EADi denote the “Exposure-At-Default” and LGDi the “Loss-Given-Default”
of risk i. The “Exposure-At-Default” is the maximum amount of loss on the i-th loan, pro-
vided that there is a default. The “Loss-Given-Default” is the percentage of the maximum
amount that is effectively lost in the event of a default. We assume that all EADi and
LGDi are deterministic and known. The portfolio loss S during the reference period is then
given by

S =
n∑
i=1

Xi,

in which Xi = viIi and vi = EADiLGDi. Hence, the credit losses Xi follow a scaled
Bernoulli distribution (with known scaling factor vi), i.e., Xi ∼ vjB(pj). We denote its
distribution by Fi. Without loss of generality, we assume that v1 > v2 > . . . > vn > 0. We
aim at computing the worst-case outcome, i.e., the Value-at-risk (VaR), of the portfolio loss
S at a given confidence level q (0 < q < 1). Hence, we are interested in VaR+

q [S] that is
defined as

VaR+
q [S] = sup{x ∈ R | FS(x) 6 q},

in which FS(x) is the distribution function of S.

It is then clear that a precise computation of VaRs of the portfolio loss S can only be
obtained if and only if one knows the joint distribution of the default vector (I1, I2, . . . , In).
However, this joint distribution is hard to get. In this regard, we point out that financial
institutions typically use models that allow specification of default probabilities and default
correlations. However, whilst default probabilities and correlations together reveal the level
of all pairwise default probabilities (i.e., the specification of the distributions of the pairs
(Ii, Ij)), they do not make it possible to completely specify the probability that three or
more loans default together. In fact, lack of sufficient default statistics (joint defaults are
rarely observed) make it hard, if not impossible, to specify the probabilities that several
loans default together so that the joint distribution of (I1, I2, . . . , In) cannot readily be
specified. In other words, all models that assess VaRs of credit risk portfolios strictly
require additional ad-hoc (hard to justify) assumptions to describe the full dependence
and all provide different VaR numbers. In this paper we aim at quantifying this inherent
uncertainty on VaR estimates.

We first assume that (besides the information on the net exposures vi) the only informa-
tion that is available concerns the probabilites of default of each loan, i.e., the distributions
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of the different default events Ii (i = 1, 2, . . . , n) are known (but not their joint distribu-
tion). In this context, we solve for the maximum and minimum VaR of the portfolio of loans
(Section 3). The bounds that we obtain are very wide confirming that using dependence
information is crucial in improving the bounds.

However, it appears realistic to have a reasonable estimate for the variance and perhaps
even the skewness of the portfolio loss S, providing indirect information on the dependence
among credit loans. Hence, in this paper we are interested in the maximum possible VaR
of a portfolio of loans in which the loss distributions Fi (i = 1, 2, . . . , n) of the constituent
risky loans are known as well as some higher order moments of the portfolio loss (revealing
information on dependence). Of course, these moments are typically not precisely known
but have to estimated from available data. In order to capture the statistical uncertainty on
these estimates, we propose a robust approach in the sense that we only assume a maximum
value ck for each unknown higher-order moments of S for (k = 2, 3, . . . ,K).4 Typically, ck
is the point estimate of the k-th moment but it can also be a higher value. In summary, we
consider the following problem,

M = sup VaR+
q [S]

subject to Xj ∼ Fj and E(Sk) 6 ck (k = 2, 3, . . . ,K).
(1)

As for the lower bound for VaR, we consider the problem

m = inf VaRq[S]
subject to Xj ∼ Fj and E(Sk) 6 ck (k = 2, 3, . . . ,K),

(2)

in which VaRq[S] is defined as

VaRq[S] = F−1S (q) = inf{x ∈ R | FS(x) > q}.

In what follows, we always tacitly assume that the problems (1) and (2) are welll posed in
the sense that there exist portfolios that satisfy the constraints. In particular, by denoting
E(S) := µ and observing that (since S > 0),

µk 6 E[Sk], (3)

it follows that ck > µk (k = 2, 3, . . . ,K) will hold.

In our analysis, we make extensively use of two other risk measures, namely Tail
Value-at-Risk (TVaR) and Left Tail Value-at-Risk (LTVaR), denoted by TVaRq[S] and
LTVaRq[S], and defined as

TVaRq[S] =
1

1− q

∫ 1

q
VaR+

u [S]du

and

LTVaRq[S] =
1

q

∫ q

0
VaR+

u [S]du,

respectively. Loosely speaking, TVaRq is the average of all upper VaRs and LTVaRq is the
average of all lower VaRs.

4Note that using inequality constraints is prudent in the sense that the VaR bounds will be wider as
compared to a situation in which the moments are assumed to be known (and equal to ck).
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3 VaR Bounds when only the default probabilities are known

In this section, we first recall VaR bounds that were established in prior literature in the
case that no dependence information is used at all. In other words, we consider the problems
(1) and (2).in which all ck = ∞ (k = 2, 3, . . . ,K). In general, these bounds are not sharp.
Therefore, we provide a rearrangement algorithm (RA) that makes it possible to determine
(approximate) sharp VaR bounds when there is no information on the dependence available.
The algorithm that we propose is inspired by the original RA of Puccetti and Rüschendorf
(2012a) and Embrechts et al. (2013). It is as good as the original RA in the unconstrained
case (only default probabilities are assumed to be known), but it is also directly applicable
when the correlations among the risks are known or in the presence of higher order moment
information on the portfolio (Sections 4 and 5). In the special case of credit risk portfolio
with the same loss exposure (∀i, vi = v), we are able to derive explicit sharp bounds. We
refer to this situation as an homogeneous portfolio of loans.

3.1 Analytical VaR Bounds

In what follows, we represent (without any loss of generality) the n credit risks Xi (i =
1, 2, . . . , n) as Xi = fi(U) for some random variable U that has a uniform distribution over
(0, 1), U ∼ U(0, 1). Each outcome u of U can be effectively interpreted as “a scenario”
and translates into a particular loss fi(u) (that is either 0 or vi). It follows that fi(U) and
F−1i (U) have the same distribution, namely Fi, and we say that fi is a “rearrangement” of
F−1i on [0, 1]. In fact, the rearrangements make it possible to describe dependence among
the risks and one can show that that (X1, X2, . . . , Xn) =d (f1(U), f2(U), . . . , fn(U)) in
which the fi (i.e., the rearrangements) are suitably chosen and “=d” reflects equality in
distribution; (see Rüschendorf (Lemma 1, 1983) and Puccetti and Rüschendorf (2012)).5

Example 3.1 (perfectly dependent risks). Let n = 2 and take f1(U) = F−11 (U) and f2(U) =
F−12 (U), then the risks X1 and X2 are both increasing in the same variable U . They
are perfectly positively dependent (also called comonotonic). By contrast, taking f1(U) =
F−11 (U) and f2(U) = F−12 (1 − U) results in risks X1 and X2 that are perfectly negatively
dependent (also called antimonotonic).

When the individual risks Xi are comonotonic (i.e., when fi = F−1i ) we denote them
by Xc

i and in this instance the portfolio loss is denoted by Sc. It seems intuitive that the
highest possible VaR for the portfolio loss occurs when the risks are comonotonic. While
this intuition turns out to be incorrect (as we show below), the comonotonic situation is
still of great interest for finding VaR bounds. We explain this further as follows.

First, let us observe that for every dependence among the risks (thus also for the comono-
tonic dependence), the portfolio sum S = X1 +X2+ · · ·+ Xn satisfies the following inequal-
ities

A := LTVaRq[S
c] 6 VaRq[S] 6 VaR+

q [S] 6 B := TVaRq[S
c]. (4)

A proof for these inequalities can be found in Bernard, Rüschendorf and Vanduffel (2013)
for instance. Note that A and B can be expressed as A =

∑n
i=1LTVARq[Xi] and B =

5The traditional way to describe dependence is by copulas. Indeed, Sklar’s theorem states that for a
multivariate vector (X1, X2, . . . , Xn) it holds that (X1, X2, . . . , Xn) =d (F−1

X1
(U1), F−1

X2
(U2), . . . , F−1

Xn
(Un)) for

some suitable chosen vector (U1, U2, . . . , Un) in which the Ui are uniformly distributed. The joint distribution
of (U1, U2, . . . , Un) is called a copula.
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∑n
i=1TVARq[Xi], respectively. The inequalities (4) show that it is not possible to construct

rearrangements fi of F−1i with the property that VaRq(S) is larger than B.

q
+

VaR  (S  )
c

q
c

B:=TVaR  (S  )

VaR  (S  )

c
A:= LTVaR  (S  )q

c
q
+

q 1

u

Figure 1: Representation of VaR+
q as a function of the level q ∈ (0, 1) for the comonotonic

portfolio sum Sc.

In Figure 1, we depict the VaRs of the portfolio loss Sc constructed from comonotonic
losses. For a given probability level q, B is the average of the upper VaRs (from level q
onwards) in the comonotonic case. It is an upper bound for VaR+

q of the comonotonic sum.
As the graph in Figure 1 indicates, in order to obtain the best case and worst case VaR
one has to choose rearrangements fi such that the quantile function of S assumes the value
A on [0, q] and the value B on [q, 1]. Thus, we look for rearrangements f∗i such that the
portfolio sum S∗ =

∑n
i=1 f

∗
i (U) takes two values only. Specifically, we aim for

S∗ =
n∑
i=1

f∗i (U) =

{
A if U ∈ [0, q[
B if U ∈ [q, 1]

(5)

In general, the lower bound A and the upper bound B are not sharp (attainable), as it is
often not possible to change the dependence among the risks such that the quantile function
of the portfolio sum S becomes flat on [0, q] and ]q, 1], respectively.

3.2 Approximate sharp VaR bounds

As mentioned, an explicit dependence structure among the loss variables X1,. . . ,Xn that
makes it possible to achieve the bounds A and B generally does not exist. We thus propose
an algorithm that approximates sharp bounds by optimizing over all possible dependence
among the X1,. . . ,Xn. In this regard, it is useful to define the auxiliary (extra) variable
Xn+1,

Xn+1 =

{
−B with probability 1− q
−A with probability q

(6)

and note that Xn+1 can be represented as Xn+1 = fn+1(U) in which fn+1 is denoting a
rearrangement of F−1Xn+1

. Hence, we can conclude that the bounds A and B are sharp if and

only if we find rearrangements f∗i (i = 1, 2, . . . , n+ 1) such that

n+1∑
i=1

f∗i (U) = 0 (7)
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or equivalently,

var

(
n+1∑
i=1

f∗i (U)

)
= 0 (8)

Without much loss of (practical) generality, we assume that the confidence level q and
the default probabilities pj are rational numbers so that we we can choose integer numbers
d, dj (j = 1, 2, . . . , n) and k such that

∀j ∈ {1, 2, . . . , n}, pj =
dj
d

(9)

and

1− q =
k

d
(10)

We sample each risk Xj (j = 1, 2, . . . , n) into d equiprobable values. Hence, every Xj takes
d values xij (i = 1, 2, . . . , d) all occurring with probability 1/d. We use these values to create
a d×n matrix (xij). Specifically, in the j-th column (j = 1, 2, . . . , n) the last dj observations
take the value vj and the first d−dj observations take the value 0. Hence, the d×n matrix
(xij) can be seen as a representation of a comonotonic loss vector (X1, X2, . . . , Xn) and the
j-th column is a representation of a variable Xj with loss distribution Fj .

To construct an approximation of the sharp bounds for the VaR, we make use of the
following trick that consists in adding an extra column to the matrix. This added column
reflects the possible outcomes of a variableXn+1 that can take the value−B with probability
1− q and the value −A with probability q, where A and B have been defined in (4). Hence,
we obtain the d× (n+ 1) matrix M,

M :=



x1,1 x1,2 · · · x1,n x1,n+1

x2,1 x2,2 · · · x2,n x2,n+1
...

...
...

...
xk,1 xk,2 · · · xk,n xk,n+1

xk+1,1 xk+2,2 · · · xk+1,n xk+1,n+1
...

...
...

...
xd,1 xd,2 · · · xd,n xd,n+1


,

in which

x1,n+1 = x2,n+1 = · · · = xk,n+1 = −B and xk+1,n+1 = xk+2,n+1 = · · · = xd,n+1 = −A.
(11)

Note that if there exists a dependence structure between the risks Xi such that the
bounds A and B are both sharp, then there exists a rearrangement of the matrix M such
that the sum of each row i,

∑n+1
j=1 xij = 0 exactly. The algorithm that we describe below

attempts to obtain this situation as much as possible.

The basic observation to be made is that rearranging values within each column of the
matrix M has no impact on the marginal distributions involved, but rather only affects the
allocation of the outcomes of the different risks to the different economic scenarios. Hence,
consistent with (8), the algorithm effectively consists in rearranging the values within each
column such that the rearranged matrix, denoted by M∗, satisfies the condition that all
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columns are antimonotonic with the sum of all other columns; for this observation, see
Puccetti and Rüschendorf (2012a, Theorem 2.1)).6 Specifically,

Algorithm Consider M = (mij).

1. Rearrange the values in each column such that the column becomes antimonotonic to
the sum of all other columns and denote the matrix after rearrangement by M∗.

2. for i = 1, 2, . . . , d, consider the values si :=
∑j=n

j=1 mij and rank them in increasing
order, s[1] 6 s[2] 6 . . . 6 s[d].

3. The approximation for the lower bound m is then given by s[d−k−1] and the approxi-
mation for the upper bound M is given by s[d−k].

The output of the algorithm gives approximate values for m and M that correspond
to a dependence between the loans that may happen and that is consistent with the only
information available on the individual default probabilities.

Remark 3.2. As suggested by Bernard et al. (2013), it is possible to improve the algorithm
by rearranging “blocks of columns” instead of one column at a time. The idea is simple.
Split the number of columns into two disjoint sets. Then, sort the rows of each set according
to their sums (in the first set, one arranges the rows in increasing order with their sum; in
the other set, they are arranged in decreasing order with their sum).

3.3 Explicit VaR bounds for homogeneous portfolios

In this subsection, we assume that all exposures are equal, that is for all i, vi = EADiLGDi =
v. In this case, we are able to give explicit sharp bounds. As each loss Xi takes value zero
or v, it is clear that the portfolio sum S can only take values that are multiples of v and
between zero (no loss) and nv (all loans default). Therefore the bounds A and B established
in (4) cannot be sharp (attainable by a potential dependence between the loans) as soon as
they are not a multiple of v.

For homogeneous credit risk portfolios the problem of finding a dependence structure
that makes it possible to attain the lower and upper VaR of the portfolio of loans can
be done without using the algorithm presented above. It is closely related to solving the
problem of finding the dependence structure that minimizes the variance. First, we show
that the problem

(P)
min var(Y1 + Y2 + · · ·+ Yn)
subject to Yj ∼ vjB(pj).

(12)

can be solved exactly and an algorithm7 is not needed. Armed with this result we provide
sharp VaR bounds (Proposition 3.3). In this regard, it is convenient to introduce the
notation dxe (resp. bxc) to reflect the smallest (resp. largest) integer number that is larger
(resp. smaller) than x.

6Note indeed that minimizing the variance of a sum requires that each component has minimum corre-
lation with the sum of all other components.

7The algorithm that we just described above can essentially be applied too (i.e., after removing the last
column of M) but doing so is unnecessary and does not yield the sharp bounds in general. By contrast, when
the portfolio is inhomogeneous it makes sense to apply this algorithm to obtain the approximate minimum
variance portfolio.
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Lemma 3.1 (Minimum variance portfolio). Consider the problem (P) in (12). Assume
that the exposues are identical, i.e. v := vj (j = 1, 2, . . . , n). Define for j = 1, . . . , n,

aj =

(
j∑
i=1

pi

)
mod 1,

and the sets

Ij =

{
[aj−1, aj ] if aj > aj−1
[0, aj ] ∪ [aj−1, 1] if aj < aj−1

,

where we define a0 = 0. Then, the solution to (P) in (12) is obtained for Y ∗j given as

Y ∗j = v1U∈Ij , (13)

where U is a standard uniformly distributed random variable. Furthermore,

var(Y ∗1 + Y ∗2 + · · ·+ Y ∗n ) = v2p∗(1− p∗),

where p∗ = µ
v − b

µ
v c.

Proof. See Appendix A.1.

We make the following three observations.

(i) The minimum variance portfolio (Y ∗1 , Y
∗
2 , . . . , Y

∗
n ) has the property that it sum is

concentrated on two values around the mean. Precisely,

Y ∗1 + Y ∗2 + · · ·+ Y ∗n =

{
vbµv c with probability 1− p∗
vdµv e with probability p∗

(14)

(ii) The variance is a traditional measure for comparing variability (“degree of riskiness”)
among risks. A more general concept to discuss and compare variability of risks is the so-
called convex order. One says that a risk X is smaller than a risk Y in the sense of convex
order if and only if E(v(X)) 6 E(v(Y )) for all convex functions v such that the expectations
exist. Convex order is consistent with the preferences of all risk averse decision makers (who
maximize the expected utility of wealth with a concave utility function). Consequently, it
is often argued in the literature that when measuring risk one should use risk measures that
are consistent with convex order such as the variance or the TVaR (but unlike VaR). From
the proof of Lemma 3.1, one can see that the minimum variance portfolio (Y ∗1 , Y

∗
1 , . . . , Y

∗
n )

is also a convex minimum (among all portfolios with fixed marginal distributions). In other
words, let ρ be a risk measure that is consistent with convex order, then the problem

min ρ(Y1 + Y2 + · · ·+ Yn)
subject to Yj ∼ vjB(pj).

, (15)

has the same solution as problem (P).

(iii) A more specific algorithm to find the minimum variance portfolio (or more generally,
the convex minimum) in the context of heterogeneous credit risk portfolios is available in
Appendix A.5. An interesting feature of this specific algorithm is that it converges after
n− 1 steps (n is the number of loans in the portfolio) to a (local) minimum, a feature that
the original algorithm of Puccetti and Rüschendorf (2012a) nor our modification is having.

The next proposition gives exact sharp bounds for the VaR of the portfolio sum in (1)
and (2) without moment constraints. It shows that there exists a dependence structure
among the risks X1, X2,. . .Xn such that these bounds are attainable.
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Proposition 3.3 (Unconstrained VaR bounds). Consider the problems (1) and (2) in
which ck = ∞ (k = 2, 3, . . . ,K). Assuming that all exposures are identical vi = v for all
i = 1, . . . , n, then

v

⌈
A

v

⌉
6 VaRq[S] 6 VaR+

q [S] 6 v

⌊
B

v

⌋
, (16)

where A := LTVaRq[S
c] and B := TVaRq[S

c] (from (4)). Furthermore, these bounds are
sharp.

Proof. See appendix A.2.

The analytical bounds A and B, the approximate sharp bounds obtained by the RA
or the exact bounds from Proposition 3.3 can be very wide. This feature will also be con-
firmed later in the examples and the distance between the largest possible value for VaR
and its lowest value can only be reduced by considering possible available information on
the dependence among the loans. Therefore, in order to reduce the uncertainty on the esti-
mate of the VaR of a portfolio of loans, we consider different possibilities for incorporating
dependence information.

4 VaR bounds when default probabilities and pairwise cor-
relations are known

It is possible to improve the approximations for the VaR bounds when the correlations
between the credit losses Xi (i = 1, 2, . . . , n) are available. In this regard, we can assume
that n is even (possibly by adding a risk with zero exposure, i.e., by taking vn = 0).
When the correlations are known, the distribution of each partial sum Si,j = Xi + Xj

(i 6= j = 1, 2, . . . , n) is also known.

4.1 Optimal reduction bounds

One way to use this information is to split all data into disjoint pairs. This split then leads
to improved bounds. For every permutation π of {1, 2, . . . , n} , using a similar reasoning as
in (4), we find that for every portfolio sum S = X1 +X2 + · · ·+ Xn,

VaR+
q [S] 6

n/2∑
i=1

TVaRq[Sπ(i),π(i+1)]. (17)

Any permutation π leads to a reduction bound as in (17) using pairwise distributions.

Proposition 4.1 (Optimal reduction bounds). Consider the permutation π∗ of {1, 2, . . . , n}
such that

n/2∑
i=1

TVaRq

(
Sπ∗(i),π∗(i+1)

)
is minimized. Hence, for every portfolio sum S = X1 +X2 + · · ·+Xn holds:

C :=

n/2∑
i=1

LTVaRq[Sπ∗(i),π∗(i+1)] 6 VaRq[S] 6 VaR+
q [S] 6 D :=

n/2∑
i=1

TVaRq[Sπ∗(i),π∗(i+1)].

(18)

11



This proposition gives explicit bounds but it can be very hard to compute these bounds
exactly because of the too large number of possible permutations. However, it is possible
to obtain some approximative bounds by using specific permutations. The idea of using
information on pairwise distributions and some related examples on the magnitude of re-
duction can be also found in Puccetti and Rüschendorf (2012b) and Embrechts and Puccetti
((2009)).

4.2 Numerical evaluation of reduction bounds

As before, the bounds C and D from Proposition 4.1 are not sharp (attainable) as it is
typically not possible to change the dependence among the risks such that the quantile
function of the portfolio sum S becomes flat on [0, q] and [q, 1], respectively. However, we
can apply the algorithm that we described above to approximate sharp bounds. In this
regard, we make use of the auxiliary (extra) variable Sn+1,

Sn+1 =

{
−D with probability 1− q
−C with probability q

(19)

It is convenient to use the shorthand notation Si to denote Sπ∗(i),π∗(i+1). Note that the dif-
ferent Si can takes four values namely, 0, vπ∗(i), vπ∗(i+1) and vπ∗(i) +vπ∗(i+1), occurring with
the appropriate probabilities that are derived from the marginal PDs and the correlations.
With no loss of practical generality we can assume that all probabilities are rational num-
bers. As before, we are going to sample each risk Sj (j = 1, 2, . . . , n/2) into d equiprobable
values that are ordered from low to high (i.e., we start again with a portfolio that exhibits
comonotonic dependence). Hence, every Sj takes d values sij (i = 1, 2, . . . , d), all occurring
with probability 1/d. The d × n matrix (sij) can then be seen as a representation of the
multivariate vector (S1, S2, . . . , Sn). Next we add a column, reflecting the variable Sn+1, to
this matrix to obtain the d× (n/2 + 1) matrix S

S :=



s1,1 s1,2 · · · s1,n/2 s1,n/2+1

s2,1 s2,2 · · · s2,n/2 s2,n/2+1
...

...
...

...
sk,1 sk,2 · · · sk,n/2 sk,n/2+1

sk+1,1 sk+2,2 · · · sk+1,n/2 sk+1,n/2+1
...

...
...

...
sd,1 sd,2 · · · sd,n/2 sd,n/2+1


,

in which

s1,n/2+1 = s2,n/2+1 = · · · = sk,n/2+1 = −D and sk+1,n+1 = sk+2,n+1 = · · · = sd,n+1 = −C
(20)

Hence, as before we rearrange the values in the columns of S such that the rearranged
matrix S∗ has the property that all columns are antimonotonic with the sum of all other
columns; see algorithm in Section 3.2.
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5 VaR bounds when default probabilities and bounds on
higher order moments are known

Next, we consider the general constrained VaR maximization and minimization problems
(1) and (2) in which ck <∞ for some k = 2, 3, . . . ,K.

5.1 Constrained Bounds

It is clear that the unconstrained bounds A and B are also bounds of the general problem
if S∗ (as in (5)) satisfies the moment constraints. Otherwise, it means that the two-point
variable S∗ exhibits too much spread. In this case, in order to obtain VaR bounds, the idea
is to construct another two-point variable that is less dispersed (satisfies the constraints)
and is “as close as possible” to S∗. To this end, let us define A(α) and B(α) (0 6 α 6 q) as

B(α) :=
1

1− q

∫ 1−α

q−α
VaR+

u [Sc]du, A(α) :=
E(S)−B(α)(1− q)

q
, (21)

and note that B(0) = B and A(0) = A. Consider variables Xn+1(α) (0 6 α 6 q),

Xn+1(α) =

{
A(α) with probability 1− q
B(α) with probability q

(22)

and note that Xn+1(0) = Xn+1. For ease of exposition, we further denote Xn+1(α) by X(α).
The moments of X(α) are given by

E[(X(α))k] = Ak(α)q +Bk(α)(1− q) (23)

and note that E[X(α)] = E[S] = µ. For each k, α → E[(X(α))k] is continuous on [0, q].
Precisely, the function first decreases, next increases and has minimum value µk (occurring
when A(α) = B(α)). Note that µk 6 ck (see (3)). Hence, there exists α∗ given by

α∗ := min
{
α | E

[
(X(α))k

]
6 ck, k = 2, 3, . . . ,K

}
. (24)

The following theorem shows that the variable X(α∗) yields upper and lower VaR bounds,
B(α∗) and A(α∗). Specifically, we obtain,

Proposition 5.1 (moment-constrained bounds). Consider the problems (1) and (2) and
let α∗ be defined by (24). We have that

A(α∗) 6 VaRq[S] 6 VaR+
q [S] 6 B(α∗).

Proof. See Appendix A.3.

This proposition can be seen as a generalization of Theorem 3.3 in Bernard, Rüschendorf
and Vanduffel (2013) who considered the case K = 2. The two-point distribution provides
the best bounds as possible in all cases, which at first may seem counterintuitive. The
reason is that we have inequality on moments and therefore all moment constraints are not
binding. Note that Proposition 5.1 also covers the unconstrained case (in this case α∗ = 0
so that A(α∗) = A and B(α∗) = B.
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Proposition 5.1 shows that best-possible sharp upper and lower VaR bounds are obtained
if one can construct a dependence among the risks Xi (i = 1, 2, . . . , n) such that S =
X1 +X2 + · · ·+Xn takes values A(α∗) and B(α∗). Hence, one can use the same algorithm
as described in Section 3.2 (in the context of the unconstrained problem) for approximating
VaR bounds in the constrained situation. The only difference is that the last column in the
d × (n + 1) matrix M =(xij) contains the realizations of the random variable −Xn+1(α

∗)
instead of −Xn+1, i.e.,

x1,n+1 = x2,n+1 = · · · = xk,n+1 = −B(α∗) and

xk+1,n+1 = xk+2,n+1 = · · · = xd,n+1 = −A(α∗).
(25)

Similarly, as in Section 3.3, the algorithm is not needed in the case of a homogeneous
portfolio of risks since explicit sharp bounds can be computed (Proposition 5.2 below).

5.2 Homogeneous portfolios

In this section we assume that v := vj (j = 1, 2, . . . , n). To discuss sharp bounds it is
convenient to consider the following auxiliary variable Y taking three values and explicitly
given as

Y =


kv with probability qz,
(k + 1)v with probability q(1− z),⌊B(α∗)

v v
⌋

with probability 1− q,
(26)

in which 0 6 z 6 1 and k ∈ N are the (unique) values such that E(Y ) = E(S). The
following proposition provides a sharp upper VaR bound for a homogeneous portfolio. The
proof is completely similar to the proof in the unconstrained case (Proposition 3.3) and
therefore omitted.

Proposition 5.2 (Sharp moment-constrained bounds for a homogeneous portfolio). Con-
sider the problems (1) and (2) and define α∗ by (24). Assume that the variable Y as defined
in(26) satisfies the moment constraints (i.e., E(Y k) 6 ck), then,

VaR+
q [S] 6 v

⌊
B(α∗)

v

⌋
. (27)

Furthermore, these bounds are sharp.

Similarly, one gets the lower bound

VaRq(S) > v
⌈A(α∗)

v

⌉
, (28)

which is attained by a corresponding three point distribution assuming that the moment
constraints are satisfied.

The variable Y satisfies the moment constraints in particular in the case where A(α∗)
v

and B(α∗)
v ∈ N (see also the analysis in Section 5.1). In general the moment constraints

are satisfied approximatively and (27) gives approximative best bounds. In the case when
K = 2, it is possible to prove the sharpness of the bounds in (27).

The maximum portfolio VaR is typically strictly larger than the VaR that is obtained
when assuming the risks are fully dependent (comonotonic). It has a VaR larger than the
sum of the individual VaRs.
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In practice, however, it is often believed that comonotonic dependence among the risks
should yield the maximum possible VaR in the sense that portfolios that give rise to higher
than comonotonic VaRs are then considered as being unrealistic. However, it is not so clear
whether comonotonic scenarios are more realistic (i.e., occur more often) than other extreme
scenarios. In addition, this feature of having risk bounds that go beyond the comonotonic
bounds does not occur when using a measure that is consistent with the convex order (unlike
VaR). Nevertheless, if one goes “deep enough in the tail”, we still have that the worst case
VaR occurs in the case of full dependence.

Proposition 5.3 (Maximum VaR = comonotonic VaR). Consider the problem (1) and
assume there exists a portfolio (X1, X2, . . . Xn) that strictly satisfies the moment constraints.
Then, there exists 1 > q∗ > 0 and a portfolio (X∗1 , X

∗
2 , . . . X

∗
n) satisfying the constraints such

that for q ∈ [q∗, 1], VaR+
q (X∗1 +X∗2 + · · ·+X∗n) =

∑n
i=1 vi.

Proof. For the proof see Appendix A.4.

6 Model risk of industry models for credit risk

In this section, we discuss two main models that are used in the financial industry to assess
VaRs of credit risk portfolios, namely the KMV model and CrediRisk+ (see Gordy (2000),
Vanderdorpe et al. (2008)). Next, we will analyze to which extent these industry standards
are robust with respect to model misspecification.

6.1 KMV model (Merton’s model of the firm).

Description

Many financial institutions as well as Basel III and Solvency II regulation rely on “Merton’s
model of the firm” when computing the VaR of a portfolio of loans (see also the survey of
McKinsey (2009)). The basic idea is very simple: a default is an event in which the asset
value drops below a threshold value (a liability that is due). Formally, after normalization,
default of the i-th risk occurs when {Ni < ci} where Ni is the normalized asset return and ci
is the threshold value such that pi = P (Ni < ci). Merton’s model further assumes that the
joint asset (log-)returns are multivariate normally distributed. Hence, for a loan portfolio
we find that the loss S writes as

S =

n∑
i=1

vi1Ni<ci , (29)

in which (N1, N2, . . . , Nn) is a multivariate normally distributed with correlation matrix ρ.
Each Ni can be expressed as a linear combination of independent factors that are standard
normally distributed. Specifically,

Ni =
k∑
j=1

√
ρijMj + εi

√√√√1−
k∑
j=1

ρij , (30)

in which Mj is the explaining factor of the asset return Nj , and in which εi represents
the idiosyncratic (individual) risk. The weights

√
ρij can be interpreted as the correlation
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between the i-th return Ni and the factor Mj . It is natural to assume that there is always a

portion of idiosyncratic risk that remains inherent in Ni, i.e., 1−
∑k

j=1 ρij > 0 and k < n.
Hence, we can also write the portfolio loss S as

S =

n∑
i=1

viIi, (31)

in which Ii is a Bernoulli random variable with (stochastic) probability pi(M1,M2, . . . ,Mk)
given as

pi(M1,M2, . . . ,Mk) = Φ


Φ−1(pi)−

k∑
j=1

√
ρijMj√

1−
k∑
j=1

ρij

 (32)

and where Φ is the distribution of the standard normal random variable. It is then clear
that VaRq [S] can be obtained for instance using Monte Carlo simulations.

In summary, KMV merely chooses one particular multivariate structure for the default
events, while, in fact, there are many models that are consistent with the available informa-
tion and the different models will differ even when using the same marginal distributions
and the same set of default correlations. In other words, for a given set of marginals and
correlations, several copulas that preserve the correlations will exist and each of these cop-
ulas will give rise to one particular probability distribution function for the total credit
portfolio loss; Then, as shown by Frey et al. (2001) and Frey and McNeil ((2003)) it is
not difficult to build credit risk models that are consistent with this maximum available
information while providing very different results.

Single factor model

Assuming a homogeneous portfolio (vi = v, ρij = ρ) and asset returns that are driven by
one single factor M only, then when the number of loans n→∞, we find that

lim
n→∞

VaRq

[
S

nv

]
= Φ

(
Φ−1(p) +

√
ρ · Φ−1(q)

√
1− ρ

)
, (33)

see also Vasicek (2002). This model is then an example of a one-factor mixture model in
which the default event of the obligor is assumed to be driven by a common economic factor
M. It can also be seen as the one-factor version of the KMV model that is highly used in the
industry and also appears in regulatory frameworks. For example, the Basel III standard
framework relies on formula (33) to determine the required capital that banks need to hold
for their credit portfolios; see the Basel Committee on Banking Supervision 2010). The
Solvency II framework also uses this formula to decide the amount of capital that insurers
need to hold as a buffer if reinsurance or derivative counterparts fail.

Assessing model risk in KMV Model

We consider a corporate portfolio of a major European Bank. The portfolio contains 4495
loans mainly to large corporate clients but there are also some loans that were granted to
(semi-)public entities. The total exposure (EAD) is 18642.7 and the top 10% of the portfolio
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(in terms of EAD) accounts for 70.1% of it. In Table 1 we provide some further summary
statistics for the portfolio, which confirm that the portfolio exhibits some heterogeneity.
The bank also has models in place for getting estimates for the PDs, LGDs, EADS and
these will be used for the further analysis. We are first going to compute 99.5%-VaRs
assuming the single factor KMV model. Specifically, we make various assumptions on the
degree of asset correlation (which we assume constant among the loans) and we report the
results of our calculations in Table 1. As the KMV model is fully parameterized once the
asset correlation ρA and all PDS, LGDs and EADs are fixed, we are also able to compute
the moments of the portfolio.

Summary statistics of a corporate portfolio

Minimum Maximum. Average

Default probability 0.0001 0.15 0.0119
EAD 0 750.2 116.7
LGD 0 0.90 0.41

Table 1: Some summary statistics of a corporate portfolio containing 4495 loans of a major
European bank. EADS are reported in mio Euros.

VaR assessment of a corporate portfolio

KMV Comon. No constraints K = 2 K = 3 K = 4

q = 0.95 297.0 393.5 2153.6 509.7 457.7 439.2
ρA = 0.05 q = 0.99 430.4 2429.3 7278.4 1001.9 757.9 651.8

q = 0.995 487.9 5170.4 10648.0 1366.7 946.9 772.3
q = 0.999 625.5 13558.3 15769.3 2843.3 1548.9 1152.0

q = 0.95 355.6 393.5 2153.6 641.5 589.6 589.6
ρA = 0.10 q = 0.99 568.1 2429.3 7278.4 1303.2 987.6 878.9

q = 0.995 667.1. 5170.4 10647.9 1791.0 1237.6 1042.4
q = 0.999 916.0 13558.3 15769.3 3813.8 2067.8 1548.9

q = 0.95 404.7 393.5 2153.6 769.2 733.0 733.0
ρA = 0.15 q = 0.99 708.8 2429.3 7278.4 1590.5 1233.8 1146.1

q = 0.995 858.3 5170.4 10648.0 2198.2 1547.7 1360.8
q = 0.999 1251.7 13558.3 15769.3 4767.1 2623.8 1970.9

Table 2: We report the maximum VaRs of a corporate portfolio under the KMV framework
for various levels of the asset correlation ρA. The VaRs computed under KMV assumptions
can be compared with comonotonic VaRs and the VaR upper bounds in the unconstrained
and the constrained case (K reflects the number of moments of the portfolio sum that are
known). All numbers are in mio Euros.

We make the following observations. First, if we only trust the marginal distributions
(no constraints), then the VaR upper bound is very large and very different from the KMV
VaR. By adding dependence information, the VaR upper bound sharpens considerably.
Furthermore, the higher the probability level the more information one needs to obtain
reductions. Finally, from the table, we observe that even if one completely trusts all PDs,
LGDs, EADs as well as the first four moments of the portfolio there is still significant model
risk left.
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6.2 Credit Risk+

Description

Starting from the expression of the loss of a portfolio of loans in (31), it is clear that
other assumptions for the default probabilities can be made (reflecting other choices for
dependence among the risks), and (32) merely reflects only one such possibility. Note that
we can rewrite the portfolio loss (31) as

S =

n∑
i=1

Ii∑
j=1

vi (34)

in which Ii is a Bernoulli random variable with (stochastic) probability pi(M1,M2, . . . ,Mk)
given by (32). Since the dependent Bernoulli r.v’s Ii are too difficult to work with, one
substitutes them by other dependent r.v’s Ni that are “close” to the Ii but that are more
tractable. Hence, we consider

S∗ =

n∑
i=1

Ni∑
j=1

vi (35)

in which Ni is a Poisson random variable with (stochastic) intensity pi(Γ1,Γ2, . . . ,Γk) given
as

pi(Γ1,Γ2, . . . ,Γk) = pi

wi +

K∑
j=1

wijΓj

 (36)

The coefficient wi > 0 reflects the portion of idiosyncratic risk that can be attributed to
the i-th risk whereas wij > 0 reflects its affiliation to the j-th common factor. The random
variables Γi are assumed to be independent Gamma distributed variables with respective
variances σ2i . Since for any k and a > 0, the r.v. aΓk will be distributed like a Gamma
r.v. we can assume without loss of generality that E[Γi] = 1. Assuming that conditionally
on (Γ1 = γ1,Γ2 = γ2, . . . ,Γk = γk), the random variables Ni are mutually independent, we
find after some computations for the moment generating function S∗,

mS∗(t) = exp

(
n∑
i=1

wipi(exp(tvi)− 1)−
K∑
k=1

1

σ2k
ln

[
1− σ2k

n∑
i=1

wikpi(exp(tvi)− 1)

])
(37)

Using the Fast Fourier Transform, one can easily derive an algorithm that can be used to
find the probability distribution function of S∗; see e.g. Haaf et al. (2003).

Single factor model

Similarly as for the KMV model, let us consider the single factor model and assume that
there exists a single random variable Γ = γ representing the “global state of the economy”
with variance σ2 (= 1/β) such that, conditionally given Λ = λ, the random variables Ni are
Poisson distributed with parameters pi λ. Then, the expression of the moment generating
function in (37) can be simplified to

mS∗ (t) =

[
β

β −
∑n

i=1 pi(exp(tvi)− 1)

]β
, (38)
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which is the moment generating function of a Compound Negative Binomially distributed
variable, i.e.,

S∗ =

N∑
i=1

Yi

with

N ∼ NB
(
β,

β

β +
∑n

i=1 pi

)
and where the Yi

d
= Y are i.i.d. and independent of N , with moment generating function

given as

mY (t) =

∑n
i=1 pi exp(tvi)∑n

i=1 pi
.

The Compound Negative Binomial distribution can be computed using (37) or by using
the recursion of Panjer (1981). Observe that this model formally allows that a credit loan
defaults more than once. However, a realistic model calibration based on the given default
probabilities and the default correlations generally ensures that the probability that this
occurs is very small. For more details; see also Credit Suisse (1997).

Assessing model risk in Credit Risk+

We analyze a small concentrated portfolio of 25 exposures as described in Appendix B of
Credit Suisse (1997). The exposures range from 0.4 to 20.4 and the total exposure is 130.5
(all numbers mentioned are in mio Euros). As for the default rates, they range between
1.5% and 30% (Credit Suisse (1997), Page 61, Table 9). The portfolio expected loss is then
equal to 14.2. Also the portfolio standard deviation is assumed to be known (it is derived
from default statistics) and is equal to 12.7; see Credit Suisse (1997, Page 62). Assuming
the single factor version of the CreditRisk+ model, it is then straightforward to compute
the value of the remaining parameter β in (38) (by simple moment matching). Next, the
VaRs can be computed using Panjer’s recursion for instance. The results of the CreditRisk+

model are given in the second column of Table 3; see also page 63 in Credit Suisse (1997).
For example, the 99.5%-VaR is equal to 62 mio Euros.

VaR assessment of a small portfolio (Appendix B of Credit Suisse (1997))
CreditRisk+ Comon. No constraints K = 2 K = 3 K = 4

q = 0.750 20.5 21.9 (1.4; 52.5) (15.4; 31.6) (15.4; 31.6) (15.4; 31.6)
q = 0.950 38.9 85.2 (8.8; 117.4) (20.2; 64.6) (20.2; 55.1) (20.2; 51.6)
q = 0.990 55.3 130.5 (13.0; 130.5) (20.2; 130.5) (20.2; 94.9) (20.2; 80.7)
q = 0.995 62.0 130.5 (13.6; 130.5) (20.2; 130.5) (20.2; 115.1) (20.2; 94.8)
q = 0.999 77.1 130.5 (14.1; 130.5) (20.2; 130.5) (20.2; 130.5) (20.2; 130.5)

Table 3: Column 2 contains VaRs under the Credit Risk+. They can be compared with
comonotonic VaRs and the VaR bounds (displayed in brackets) in the unconstrained and
the constrained case (K reflects the number of moments of the portfolio sum that are
known). All numbers are in mio Euros.

However, other modeling assumptions could be made. For instance, if we only trust
the marginal distributions and the portfolio variance (moments up to K = 2), we observe
from Table 3 that the true 99.5%-VaR can actually be any value between 13.6 and 130.5
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showing that the 99.5%-VaR can easily be underestimated by a factor 2. In Table 3, we
also provide VaR bounds assuming that more information on the higher order moments8

is available. This table makes clear that adding higher order information reduces the gap
between the upper and lower bound for VaR significantly, thus reduces model uncertainty
on VaR assessment. When the probability level q that is used to assess the VaR is not too
big (e.g., q = 0.95) then this has a positive impact on model uncertainty in the sense that
the range of possible VaRs becomes “reasonable” as soon as second and/or third moment
information is added. At high probability levels (e.g., q = 0.999), significant model risk is
always present.

6.3 Assessing model risk when using a Beta distribution

The Beta distribution has always been a benchmark model for credit portfolio risk calcula-
tions. To discuss the model uncertainty let us consider the portfolio presented on page 365
in McNeil et al. (2005). Using the same parameters as in Table 8.6 page 365 from McNeil
et al. (2005), we set the default probability of all loans equal to p = 0.049 and for the cor-
relation we take ρD = 0.0157. The variance of the portfolio sum of n correlated loans (all
with exposure that is equal to 1/n) can thus be easily calculated. Next, the two parameters
of the beta distribution can be inferred (by moment matching) and one can then compute
higher order moments. We use the associated higher moments as the moment constraints.
Specifically, we consider the Beta distribution for the sum of n = 10, 000 loans. We are
interested in the VaR of the portfolio of loans at confidence levels 95%, 99% and 99.5%.
The discretization parameter is set to d = 10, 000.

n = 10, 000

VaR95% VaR99% VaR99.5% VaR99.9%

Beta 10% 13.1% 14.4% 17.1%

Comon. 0% 100% 100% 100%

K=2 16.72% 31.89% 43.17% 90.65%

K=3 14.95% 24.29% 30.24% 50.95%

K=4 14.00% 20.55% 24.34% 36.23%

K=5 13.52% 18.53% 21.26% 29.28%

Table 4: We report VaRs for a homogeneous portfolio assuming the portfolio loss follows a
Beta distribution. We provide then exact upper and lower VaR bounds.

According to the numerical results, we observe that taking additional moments con-
straints into account can improve the VaR bounds significantly, especially at the high per-
centage (e.g. 99.5% in Table 4). We observe that including information on the skewness
and kurtosis (the 3rd and 4th moment) reduces the model risk on the VaR assessment. But
bounds on VaR are still very wide even when we include information on the first 5 moments
of the portfolio sum.

8They have been computed under the specification of the Credit Risk+ model.
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7 Conclusions

In order to assess credit portfolio risk one needs to model the marginal risks as well as
the way they interact, i.e. the dependencies. Dependence modeling in a credit context
usually focuses on finding the economic dimensions that influence the default behavior for
the different loans. Apart from factors describing the global state of the economy such
as, for example, interest rates the default drivers that are typically considered are asset
size, industry sector and geographical situation; see Lopez (2002), Duellmann and Scheule
(2003), Duellmann et al. (2008) or Dietsch and Petey (2004). As a result companies of
similar size, industry activity and geographical situation will be grouped together meaning
that they behave similarly, which is akin to saying that they are positively dependent.
However, all these dimensions together still do not fully capture all sources of dependence
and in this paper we assess the potential impact for some of these sources of uncaptured
dependence across portfolios. Specifically, we study model risk on the estimation of VaR
of a portfolio of loans when one knows the individual default probabilities and possibly the
pairwise correlation or bounds on some moments of the portfolio. We provide some explicit
results for homogeneous portfolios and also develop an efficient algorithm to deal with the
general case.

We show that the VaR computed in typical credit models that the financial institutions
report do not necessarily reflect the true risk and are hard to confirm. In this regard we note
that under the internal model approach of Basel III and Solvency II, the financial institutions
are allowed to use their own model for setting their capital requirements. However, it is
hard, if not impossible, to show which model is better than the others, as they are all
prone to model error, in particular when high confidence levels are used. In practice, one
typically has information on the variance, the skewness and may be on further moments of
the portfolio and it seems that in this case VaR assessments at lower confidence levels (e.g.,
q = 0.95) are more “stable” and in reasonable range while for higher levels as q > 0.99 the
range of values typically remains wide. In summary, we do not recommend as currently
used in Basel III or Solvency II to compute the VaR of portfolios at high confidence levels
with specialized models when no further information is available to support the use of these
models.

21



A Appendix

A.1 Proof of Lemma 3.1

Proof. Let us first observe that Y ∗j ∼ vB(pj). Furthermore, one can easily verify that
S∗n = Y ∗1 + Y ∗2 + · · · + Y ∗n only takes values `v with probability (1 − p∗) or (` + 1)v with
probability 9 p∗. It is straightforward to show that

var(S∗n) = v2p∗(1− p∗),

and we only need to show that any other sum Sn = Y1 +Y2 + · · ·+Yn with Yj ∼ vB(pj) has
a larger variance. Consider any sum Sn. In particular, Sn takes values in {0, v, 2v, . . . ., nv}
with respective probabilities q0, q1, . . . , qn.

It is clear that ∀x ∈]0, `v[, FSn(x) > FS∗n(x) = 0 and ∀x ∈ [(` + 1)v,+∞[, FSn(x) 6
FS∗n(x) = 1. Since FSn(x) and FS∗n(x) are constant on the interval [`v, (`+ 1)v[ one has,

∃c > 0,

{
∀x ∈ (0, c), FSn(x) > FS∗n(x)
∀x ∈ (c,+∞), FSn(x) 6 FS∗n(x)

(39)

namely, c = (`+ 1)v if FSn(`v) > FS∗n(x) and c = `v if FSn(`) 6 FS∗n(x). In other words, the
distribution function FSn crosses FS∗n exactly once from above. Since E(Sn) = E(S∗n) this
implies the well-known fact that E(h(S∗n)) 6 E(h(Sn)) for all convex functions h(x) (see,
for example, Müller and Stoyan (2002)). Taking h(x) = x2 ends the proof.

A.2 Proof of Proposition 3.3

Proof. The proof follows from Lemma 3.1 essentially. Consider variables Yi given as Yi =
v1U6qVi+v1U>qWi in which Vi and Wi are Bernoulli distributed random variables that are
independent of the uniform random variable U and such that Yi ∼ vB(pi) (i = 1, 2, . . . , n),
E(
∑n

i=1 Vi) = A
v , E(

∑n
i=1Wi) = B

v . Applying Lemma 3.1, they can be chosen and such that
the portfolio sum

∑n
i=1 Yi takes four values, namely v

⌊
A
v

⌋
, v
⌈
A
v

⌉
, v
⌊
B
v

⌋
and v

⌈
B
v

⌉
. One

observes that for this dependence among Vi and Wi, VaR q+[Y1 + Y2 + · · · + Yn] = v
⌊
B
v

⌋
and VaRq[Y1 + Y2 + · · ·+ Yn] = v

⌈
A
v

⌉
, which ends the proof.

A.3 Proof of Proposition 5.1

Proof. We show that B(α∗) is an upper bound of M . To this end, assume that there exists
T =

∑n
i=1Xi such that satisfies all moment constraints, i.e. E[T k] 6 ck, k = 2, 3, . . . ,K and

that VaR+
q [T ] > B(α∗). Denote the distribution function of X(α∗) as G. Then ∀a 6 x < b,

FT (x) 6 G(x) = q. When b 6 x, FT (x) 6 G(x) = 1. Since G(x) = 0 for x < a, this implies
that, {

∀x < a, FT (x) > G(x)
∀x > a, FT (x) 6 G(x)

(40)

In other words, the distribution function FT crosses G once from above. Since E[T ] =
E(X[α∗)], this implies that X∗α∗ 6cx T (cut criterion of Karlin and Novikoff (1963)).
Moreover, since T and Xk(α∗) are positive, it holds that E[Xk(α∗)] 6 E[T k] for all k =

9Note that p = 0 may hold.
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2, 3, . . . ,K. On the other hand, there exists k̂ > 2 such that E[X k̂(α∗)] = c
k̂

(by definition

of α∗). This implies that E[T k̂] = E[X k̂(α∗)] (because E[T k̂] 6 c(k̂) because of the moment

constraint). As φ(x) = xk̂ (k̂ > 2) is strictly convex, it follows that T
d
= X(α∗) must hold

(Shaked and Shanthikumar (2007, Theorem 3.A.43)). This ends the proof. The proof that
A(α∗) is an absolute lower bound can be done in a similar way.

A.4 Proof of Proposition 5.3

Proof. Without loss of generality we can express the Xi as Xi = F−1i (Vi) for uniformly dis-
tributed Vi.(i = 1, 2, . . . , n). Next, we consider variables X∗i = 1U6uF

−1
i (uVi)+1U>uF

−1
i (U)

in which 0 < u < 1 is chosen such that (X∗1 , X
∗
2 , . . . , X

∗
n) also satisfies the moment con-

straints. One observes then that for q > q∗ := max(1−min(p1, p2, . . . , pn), u), VaR+
q (X∗1 +

X∗2 + · · ·+X∗n) =
∑n

i=1 vi.

A.5 Specific Algorithm for getting minimum variance portfolio of risky
loans

Algorithm

Recall that v1 > v2 > . . . > vd > 0.

1. Put in the first column of the matrix M∗ the vector [0, . . . , 0, v1, . . . , v1]
T where v1

appears d1 times.

2. For j = 2, 3, . . . , n, add in the j-th column, the vector [0, . . . , 0, v1, . . . , v1]
T where vj

appears dj times, such that it is antimonotonic to the sum of the j− 1 first vectors of
the matrix.

The matrix M∗ that we obtain as an output of this algorithm is a representation of
a random vector (X∗1 , X

∗
2 , . . . , X

∗
n) satisfying X∗i ∼ Fi and we only need to show it is a

possible solution to the minimum variance problem P given by (12).

Proposition A.1 (convergence of algorithm). The random vector (X1, X2, . . . , Xn)T as
constructed above gives rise to a a candidate solution for Problem (P) in (12). That is, for
all l = 1, 2, . . . , n, Xl is antimonotonic with

∑n
k=1,k 6=lXk.

Proof. Fix some elements lkj and l`j . By construction,

(lkj − l`j)
j−1∑
r=1

(lkr − l`r) 6 0.

We first want to prove that

(lkj − l`j)
n∑

r=1,r 6=j
(lkr − l`r) 6 0. (41)
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Clearly, the difference |lkr − l`r| is either equal to 0 or vr (r = 1, 2, . . . , n). If lkj − l`j = 0,
then property (41) is obvious. Without loss of generality, assume then that lkj − l`j > 0,
i.e. lkj − l`j = vj . We want to prove that

n∑
r=1,r 6=j

(lkr − l`r) 6 0. (42)

We know already that
∑j−1

r=1(lkr−l`r) 6 0 because by construction the j-th vector [vj , . . . , vj ,
. . . , 0]T is antimonotonic with the sum of j−1 first vectors. Hence, if for all s > j, lks−l`s 6 0
then it is clear that (42) holds true. Let thus s > j be the smallest element such that
lks − l`s > 0 and observe that lks − l`s = vs. We then have that

s−1∑
r=1

(lkr − l`r) =

j−1∑
r=1

(lkr − l`r) + vj +
s−1∑
r=j+1

(lkr − l`r) 6 0.

Since vs 6 vj , we obtain,

s∑
r=1,r 6=j

(lkr − l`r) =
s−1∑
r=1

(lkr − l`r)− vj + vs 6 0.

Next, we consider the first element s′ > s such that (lks′ − l`s′) = vs′ > 0. Then,

s′−1∑
r=1

(lkr − l`r) 6 0.

Therefore,
s′−1∑
r=1

(l`j − l`i) =

j−1∑
r=1

(lkr − l`r) + vs′ +
s
′−1∑

r=s+1

(lkr − l`r) 6 0,

and thus, as vs′ 6 vj ,
s′∑

r=1,r 6=j
(lkr − l`r) 6 0.

We repeat this until we reach the last element with the property that (lkh − l`h) > 0. We
obtain,

h∑
r=1,r 6=j

(lkr − l`r) 6 0.

All remaining elements are non-positive, therefore

n∑
r=1,r 6=j

(lkr − l`r) 6 0.

We thus have proven that (42) holds and since this holds for all j, k and ` thus also that
every X ′j is antimonotonic with

∑n
r=1,r 6=j X

′
r. This ends the proof.

24



References

Basel Committee on Banking Supervision. (2006). Basel II: International Convergence of
Capital Measurement and Capital Standards: A Revised Framework – Comprehensive Version.

Basel Committee on Banking Supervision. (2010). Basel III: A global regulatory framework
for more resilient banks and banking systems.
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