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Abstract

Motivated by the problem of variance minimization and the method of an-

tithetic variates we consider the problem of construction of random variables

with given marginals and constant sum. In the case of one dimensional sym-

metric, unimodal distributions we give a simple general construction. An al-

ternative more complicated construction had been given previously by Knott

and Smith (1998). In the multivariate case we consider the corresponding

problem for a�ne transforms of products, elliptically contoured distributions,

�-symmetric distributions and �-Cauchy distributions.

1 Introduction

A well known problem coming from the method of antithetic variates in Monte Carlo

simulation is to construct real random variables X

1

; : : : ;X

n

with given distributions

P

1

; : : : ; P

n

such that the variance of the sum is minimal

var

 

n

X

i=1

X

i

!

= min! (1.1)

w.r.t. all similar constructions. For n = 2 the solution is given by the antithetic

variates X

1

= F

�1

1

(U);X

2

= F

�1

2

(1 � U), where F

i

are the distribution functions

of P

i

and U is uniform on (0; 1). For some cases like P

i

= B(1; #) or P

i

= U(0; 1)

the uniform distribution on (0; 1) or P

i

= U(f1; : : : ;mg) the uniform distribution on

f1; : : : ;mg and some other distributions, solutions have been constructed for general

n (see Rachev and R�uschendorf (1998) for references). The idea of the construc-

tion is to try to concentrate the sum S

n

=

P

n

j=1

X

j

at the expectation as much

as possible. Obviously, for an optimal solution X

1

; : : : ;X

n

any of the variables X

j

has to be optimally coupled to T

i

=

P

j 6=i

X

j

in the sense of antithetic variates but

�
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this necessary condition is not su�cient for optimality in general (see R�uschendorf

and Uckelmann (1997)). For the dual problem of variance maximization it has been

proved in a recent paper in R�uschendorf and Uckelmann (1998) that an idea of

Knott and Smith (1994) to reduce the n-coupling problem to two coupling problems

by optimal monotone coupling to the sum can be justi�ed in general under some

technical condition. This leads to some examples with explicit results.

A general characterization of optimal random variables for variance minimization

has been given in R�uschendorf and Uckelmann (1997, 1998) where the problem is

reduced to several two coupling problems { but for some more complicated coupling

functionals. It is however not easy to solve these two coupling problems in general.

In this note we consider also the multivariate extension of the variance mini-

mization problem

E
















n

X

i=1

X

i
















2

= inf (1.2)

where the inf is on all random variables X

i

with distributions P

i

on IR

d

given. An

obvious solution of (1.2) is obtained if X

i

d

= P

i

are constructed such that

n

X

j=1

X

j

= c: (1.3)

Here X

i

d

= P

i

denotes, that X

i

has distribution P

i

.

Knott and Smith (1998) gave a construction of a solution of (1.3) in dimension

d = 1; n = 3; c = 0 if P

1

= P

2

= P

3

is absolutely continuous, symmetric and

unimodal.

In the �rst part of this note we give a simpli�ed construction of solutions of (1.3) in

d = 1 and then in the second part provide some extensions to the multivariate case.

2 Symmetric unimodal one dimensional distribu-

tions

For the variance minimization problem (1.2) with n = 3; P

1

= P

2

= P

3

= P a prob-

ability with a symmetric, unimodal density f Knott and Smith (1998) constructed

a solution X

d

= Y

d

= Z

d

= P of (1.3) of the following type

X = R cosU; Y = R cos

�

U +

2

3

�

�

; Z = R cos

�

U �

2

3

�

�

(2.1)

where U is uniformly distributed on (0; 2�) independent of R. Then by the addition

theorem for the cosine function

X + Y + Z = 0: (2.2)
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By means of the Mellintransform one gets the density of R in the form

e

f

R

(t) = �t

d

dt

Z

1

1

f(ut)

2

u

p

u

2

� 1

du (2.3)

(see Knott and Smith (1998), formula (10)).

Formula (2.3) is not easy to evaluate in general. A simpli�ed construction for

random variables with constant sum is obtained as follows.

Consider at �rst the case of uniform distributions on (�1; 1). De�ne for n = 3.

U

1

:= U

d

= U(�1; 1) (2.4)

U

2

:=

(

�2U � 1 if �1 � U � 0

1 � 2U if 0 < U � 1

U

3

:=

(

U + 1 if �1 � U � 0

U � 1 if 0 < U � 1

then U

i

d

= U(�1; 1) are uniformly distributed on (�1; 1) and (for n = 3)

3

X

i=1

U

i

= 0: (2.5)

�

�

�

�

�

�

�

�

�

�

�

�

�A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

-1 1

1

U

1

U

2

U

3

Figure 1: Construction of U

i

for n = 3

With the antithetic construction

e

U

1

= U;

e

U

2

= �U one obtains for the case n = 2

e

U

1

+

e

U

2

= 0: (2.6)

By combination of (2.5), (2.6) one obtains for any n

U

i

d

= U(�1; 1) with

n

X

i=1

U

i

= 0: (2.7)
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(see also Ga�ke and R�uschendorf (1981), R�uschendorf and Uckelmann (1997)).

We next give a construction of random variables with constant sum and �xed

symmetric unimodal distribution of the marginals for general n.

Theorem 2.1 (Random variables with constant sum) Let P be a symmetric

unimodal distribution on (IR

1

;B

1

) with a.s. di�erentiable Lebesgue density f . Then

f

R

(x) := �xf

0

(x) is a Lebesgue density. If R is a random variable with density f

R

,

then (X

1

; : : : ;X

n

), where X

i

= RU

i

; 1 � i � n and (U

i

) as in (2.7), is a solution of

the variance minimization problem and

P

n

j=1

X

j

= 0.

Proof: Obviously by (2.7),

P

n

j=1

X

j

= R

P

n

j=1

U

j

= 0 so we have only to prove that

f

R

is a density and that RU

d

= P .

By unimodality and symmetry of f it holds f

R

(x) = �xf

0

(x) � 0 and

Z

1

�1

f

R

(x)dx = 2

Z

1

0

�xf

0

(x)dx

= 2 lim

y!1

�xf(x)

�

�

�

�

y

0

+ 2

Z

1

0

f(x)dx = 1;

so f

R

is a density.

For the characteristic function of the product RU we have

'

RU

(t) =

R

'

U

(xt)f

R

(x)dx

= �

R

sin(tx)

t

f

0

(x)dx:

With h(x) :=

1

t

sin(tx) we obtain using symmetry of P

('

p

� '

RU

)(t) =

R

cos(tx)f(x)dx+

R

sin(tx)

t

f

0

(x)dx

=

R

h

0

(x)f(x)dx+

R

h(x)f

0

(x)dx

= lim

y!1

h(x)f(x)

�

�

�

y

�y

= lim

y!1

1

t

sin(tx)f(x)

�

�

�

y

�y

= 0:

Therefore, RU

d

= P and (X

1

; : : : ;X

n

) is a solution of the variance minimization

problem. 2

Remark 2.2 The factorization in Theorem 2.1 is closely related to the wellknown

factorization of symmetric unimodal distributions by Khinchin. The coupling distri-

bution f

R

in Theorem 2.1 can be calculated easily in examples.
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Example 2.3

a) For P = N(0; �

2

); f

P

(x) =

1

p

2��

e

�

x

2

2�

2

, one obtains f

R

(x) =

1

p

2��

3

x

2

exp

�

�

1

2�

2

x

2

�

the density of a double-Maxwell distribution with parameter � =

1

�

2

b) For P the Cauchy distribution with density

f

C

(x) =

1

�

1

1 + (�x)

2

one obtains

f

R

(x) =

2�

�

 

x

1 + (�x)

2

!

2

c) For P the Laplace-distribution with density

f(x) =

1

2

� exp(��jxj) one obtains

f

R

(x) =

1

2

�

2

jxj exp(��jxj):

In this example the coupling distribution in Knott and Smith's construction (2.3)

cannot be calculated in explicit form.

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3 Cauchy density

coupling density

-4 -2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

double exponential density

coupling density

Cauchy distribution Laplace distribution

Figure 2: Coupling densities

3 Extensions to multivariate distributions

In the multivariate case there is not a general construction principle as in Theorem

2.1. The idea is to transfer solutions in standard cases to more general situations.

We consider some standard situations.
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a) A�ne transforms of products

Let Q =

N

m

i=1

Q

i

, where Q

i

are symmetric, unimodal distributions with a.s.

di�erentiable densities f

Q

i

, then Q

i

d

= R

i

U

j

i

= X

j

i

, where f

R

i

(t) = �tf

0

Q

i

(t) and

(R

1

; U

j

1

); : : : ; (R

m

; U

j

m

) are independent, U

j

i

d

= U(�1; 1) with

P

n

j=1

U

j

i

= 0 as

in (2.7). Let P = Q

A

be the image of Q under a linear mapping A and let

X

j

= (X

j

i

)

1�i�m

; 1 � j � n, then we have

Theorem 3.1 De�ne Y

j

= AX

j

; 1 � j � n; then Y

j

d

= P; (Y

1

; : : : ; Y

n

) solves

the multivariate variance minimization problem and

P

n

j=1

Y

j

= 0.

Proof: Since X

j

= (X

j

i

)

1�i�m

d

=

N

m

i=1

Q

i

we obtain AX

j

d

= P . Also

n

X

j=1

Y

j

= A

n

X

j=1

X

j

= A

0

@

n

X

j=1

R

i

U

j

i

1

A

= A

0

@

R

i

n

X

j=1

U

j

i

1

A

= 0:

Therefore, X

1

; : : : ;X

n

solves the variance minimization problem. 2

b) �-symmetric distributions

A random vector X = (X

1

; : : : ;X

n

) has an �-symmetric distribution on IR

n

,

� > 0, if the characteristic function of X has a representation of the form

'

X

(t) = �

�

(jt

1

j

�

+ � � � + jt

n

j

�

)

1=�

�

(3.1)

for some real function �.

For � = 2 '

X

(t) = � (ktk

2

) if and only if

�(t) =

Z

1

0


(rt) dF (r) (3.2)

for some distribution function F on IR

+

and


(t) = �

�

n

2

��

2

t

�

n�2

2

J
n�2

2

(t);

J a Besselfunction. 
 (kxk) is the characteristic function of the uniform distri-

bution on the unit sphere S

n�1

= fx 2 IR

d

; kxk = 1g. Therefore, (3.1) and (3.2)

(with � = 2) are equivalent to a stochastic representation of the form

X

d

= RU (3.3)
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where U is uniformly distributed on S

n�1

and R � 0 is independent of U .

Similarly, for � = 1 X is 1-symmetric if and only if

X

d

= R

 

U

1

D

1=2

1

; : : : ;

U

n

D

1=2

n

!

T

(3.4)

where D is Dirichlet-distributed with parameter

�

1

2

; : : : ;

1

2

�

and the density of

D

0

= (D

1

; : : : ;D

n�1

) is given by

f

D

0

(x) = �

�

n

2

�

�

�

1

2

�

�n

  

1 �

n�1

X

i=1

x

i

!

n�1

Y

i=1

x

i

!

�1=2

;

x

i

� 0;

P

n�1

i=1

x

i

� 1 (cf. Gneiting (1998), Fang and Zhang (1990)).

Our next aim is to construct X

d

= Y

d

= Z

d

= P for 1- or 2-symmetric distributions

P with constant sum X + Y + Z = 0. To that purpose consider the orthogonal

mapping on IR

2n

S =

0

B

@

S

1

0

.

.

.

0 S

n

1

C

A

where S

i

=

 

�

1

2

1

2

p

3

�

1

2

p

3 �

1

2

!

: (3.5)

As S

2

i

=

 

�

1

2

�

1

2

p

3

1

2

p

3 �

1

2

!

we have

I

2n

+ S + S

2

=

0

B

@

I

2

+ S

1

+ S

2

1

0

.

.

.

0 I

2

+ S

n

+ S

2

n

1

C

A
= 0: (3.6)

Let U be uniformly distributed on the unit sphere S

2n�1

in IR

2n

, then by orthogo-

nality of S U

d

= SU

d

= S

2

U and U + SU + S

2

U = 0:

De�ne

for � = 2 X = RU; Y = RSU;Z = RS

2

U (3.7)

with R as in (3.3) and de�ne

for � = 1 X = R(

U

i

p

D

i

); Y = R

 

(SU)

i

p

D

i

!

; Z =

 

(S

2

U)

i

p

D

i

!

(3.8)

with R as in (3.4).

Theorem 3.2 (X;Y;Z) as de�ned in (3.7) for � = 2 and in (3.8) for � = 1

is a solution to the variance minimization problem for �-symmetric distributions,

� = 1; 2 for the case of even dimension 2n and X + Y + Z = 0.
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Remark:

1) Note that the construction above works in even dimension for three summands.

For two summands we have the trivial construction with X = RU; Y = R(�U)

in any dimension. Therefore, we obtain by combination a construction with

constant sum in even dimension for any number of summands.

2) The coupling distributions of R are given for � = 2 by R = kXk. For � = 1 R

has the density

f

R

(r) = 2�

�2

�

n

2

�

r

n�1

B

m�1

n

(r

2

)

where B

n

(t) = (�1)

n�2

2

t

n�1

2

R

1

0

sin(u

p

t)�(u)du

and '

P

(t) = �(jt

1

j+ � � �+ jt

n

j)

(see Cambanis, Keener and Simons (1983)).

�-symmetric distributions 0 < � � 2

A characterization of the class �

n

(�) of functions � satisfying (3.1) is not known

for � 6= 1; 2. But it is known that � 2 �

1

(�) for 0 < � � 2 if and only if

�(t) =

Z

1

0

e

�rt

�

dF (r) (3.9)

and

�

n

(�) = f1g for n � 3; � 2 (2;1]: (3.10)

(For references see Gneiting (1998).)

So X is a �nite segment of an in�nite dimensional vector whose �nite dimensional

distributions are �-symmetric 0 < � � 2 if and only if

X

d

= RY (3.11)

where R � 0 is independent of Y which has independent and identically distributed

symmetric stable components of index � and F is the distribution function of R.

From the results of section 1 we therefore get for this subclass of �-symmetric

distributions for any n 2 IN a construction of random variables X

j

; 1 � j � n such

that X

j

d

= X and

n

X

j=1

X

j

= 0: (3.12)

As consequence as in section 2 one obtains variance minimization results for

a�ne transformations of �-symmetric distributions by (AX;AY;AZ) where X

d

=

Y

d

= Z

d

= Q is �-symmetric, P = Q

A

and X + Y + Z = 0 as constructed above. 2



Variance minimization and random variables with constant sum 9

Examples 3.3

A) Normal distribution

Let P = N(0;�);� > 0, then � = AA

T

and we can apply both constructions

(that in a) and that in b)) to this example.

1) For Q = N(0; I)) =

N

m

i=1

N(0; 1) the coupling vector R = (R

1

; : : : ; R

m

) has

the density

f

R

(x) = �

m

i=1

1

p

2�

x

2

i

exp

�

�

1

2

x

2

i

�

(3.13)

= (2�)

m=2

exp

�

�

1

2

kxk

2

�

h(x)

with h(x) = �

m

i=1

x

2

i

. So AR has the density

f

AR

(x) = h

�

A

�1

x

�

f

P

(x)

and an optimal n-tuple is given by

(ARU

1

; ARU

2

; : : : ; ARU

n

) with RU

j

= (R

1

U

j

1

; : : : ; R

m

U

j

m

) (3.14)

where U

j

= (U

j

1

; : : : ; U

j

m

) have independent uniform components in [�1; 1]

and as in a)

P

n

j=1

U

j

i

= 0; 1 � i � m. The following �gure shows the

coupling density of AR for m = 2; n = 3;

P

=

 

5 1

1 1

!

-4

-2

 0

2

4

-4

-2

 0

2

4

 0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

-4

-2

 0

2

4

-4

-2

 0

2

4

 0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

normal density f

�

coupling density f

AR

Figure 3: Normal density and coupling distribution

2) N(0; I) is 2-symmetric, so the second construction with U

i

= S

i

U , i = 0; 1; 2

can be applied and we obtain the solution (for n = 3)

(RAU

1

; RAU

2

; RAU

3

): (3.15)
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U

i

is uniformly distributed on the unit sphere S

2

. By calculating the densities

of kXk we obtain

f

R

(t) = �

�

n

2

�

�1

t

n�1

exp

�

�

1

2

t

2

�

; t � 0: (3.16)

The following �gure gives the support of AU (an ellipse) and the coupling

density f

R

for P = N(0;�) with � =

 

5 1

1 1

!

as in 1).

-2 -1 0 1 2

-1
.0

-0
.5

0
.0

0
.5

1
.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 4: density f

AU

and coupling density f

R

B) Elliptically contoured distributions

A random vector X has an elliptically contoured distribution denoted by

EC

m

(0;�;�) if the characteristic function '

X

is of the form '

X

(t) = �(t

T

�t).

A special case are normal distributions N(0;�) where �(u) = exp

�

�

u

2

�

. Then

X

d

= EC

m

(0;�;�) with rg� = k if and only if X

d

= RA

T

U where U is uniformly

distributed on the unit sphere in IR

k

; A is a k�mmatrix with � = A

T

A;R � 0 is

a real random variable independent of U with characteristic function � (see Cam-

banis, Huang and Simons (1981) and Fang and Zhang (pg. 65, 1990)). Therefore,

as in the normal example in A 2) we obtain a construction of X

j

d

= EC

m

(0;�;�)

with �

n

j=1

X

j

= 0 in even dimension.

C) Cauchy-distributions

For X = (X

1

; : : : ;X

n

)

d

= P with stochastically independent Cauchy-distributed

components, X

i

d

= C(1); 1 � i � n, we have

'

P

(t) = �

n

i=1

'

X

i

(t

i

) = exp (�(jt

1

j+ � � �+ jt

n

j)) (3.17)

P is 1-symmetric and the coupling distribution R in Theorem 3.2 has the density

f

R

(t) = 2�(n)�

�

n

2

�

�2

t

n�1

1

(1� t

2

)

n

; t � 0 (3.18)

(see Cambanis, Keener and Simons (1983)).
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D) �-Cauchy distribution

The m-dimensional �-Cauchy distribution C

(�)

m

has the density

c

(�)

m

(x) =

2

J

m+1

(�)

1

�

1 +

P

m

j=1

jx

j

j

�

�

(m+1)=�

(3.19)

for any � > 0. Let X = (X

1

; : : : ;X

m+1

) be uniformly distributed on the unit

sphere S

�;m

in IR

m+1

w.r.t. k k

�

, then

 

X

1

X

m+1

; : : : ;

X

m

X

m+1

!

d

= C

(�)

m

(3.20)

(see Szablowski (1998), Lemma 3.1).

Also it is known that if Y

1

; : : : ; Y

m+1

are independent, each with density

f

�

(x) =

1

2

�

1�1=2

� (1=2)

exp

 

�

jxj

�

�

!

; (3.21)

then X =

Y

kY k

�

is uniformly distributed on the norm � unit sphere in IR

m+1

where Y = (Y

1

; : : : ; Y

m+1

) (see Rachev and R�uschendorf (1991)). Therefore, ac-

cording to our �rst one-dimensional construction method we �nd for any n 2 IN

Y

m+1

;

n

Y

j

i

; 1 � j � n

o

, such that Y

j

1

; : : : ; Y

j

m

; Y

m+1

are independent with density

f

�

and

P

n

j=1

Y

j

i

= 0, 1 � i � m. Then de�ne for 1 � j � n

Y

j

=

1

Y

m+1

�

Y

j

1

; : : : ; Y

j

m

�

: (3.22)

Since with

e

Y

j

=

�

Y

j

1

; : : : ; Y

j

m

; Y

m+1

�

;

e

Y

j

k

e

Y

j

k

�

is uniform on the unit sphere, we

obtain by (3.20) that Y

j

is C

(�)

m

-distributed and

n

X

j=1

Y

j

= 0 (3.23)

So Y

1

; : : : ; Y

n

solve the variance minimization problem for �-Cauchy distribu-

tions.
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