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Abstract

We consider the problem of identifying the worst case dependence struc-

ture of a portfolio X1, . . . ,Xn of d-dimensional risks, which yields the largest

risk of the joint portfolio. Based on a recent characterization result of law

invariant convex risk measures the worst case portfolio structure is identified

as a µ-comonotone risk vector for some worst case scenario measure µ. It

turns out that typically there will be a diversification effect even in worst

case situations. The only exeptions arise when risks are measured by trans-

lated max correlation risk measures. We determine the worst case portfolio

structure and the worst case diversification effect in several classes of exam-

ples as for example in elliptical, in Euclidean spherical and in Archimedian

type distribution classes.
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1 Introduction

In this paper we consider the problem to determine sharp risk bounds for a port-
folio X = (X1, . . . , Xn) of n risk vectors Xi ∈ IRd. In particular we describe in a
general way the dependence structure yielding the highest risk (worst case portfo-
lio structure) and we determine corresponding diversification effects. Here the risk
distributions Pi of Xi are fixed and the risk of the joint portfolio X is measured by
some risk measure ̺ = ̺(X). In this paper we concentrate essentially on risks de-
pending on the joint portfolio ̺ = ̺(

∑n
i=1 Xi). Our developments can be extended

in principle to some further aggregation risk functionals like to the maximal risk
̺ = ̺(maxi≤n Xi). Some general class of multivariate risk functions of this type
have been introduced in [BRü06] and [Rü06].
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In the one dimensional case d = 1 there has been a lot of work on the problem
of getting bounds for the risk of X induced by dependence between the components
Xi. Here the notion of comonotonicity describes in a general way the worst case
dependence structure. Let X+ = (F−1

1 (U), . . . , F−1
n (U)) denote a comonotone vec-

tor, where Fi are the distribution functions of Pi, F−1
i are the generalized inverses

of Fi and U is uniformly distributed on (0, 1), U ∼ U(0, 1). Then by a classical
result of Meilijson and Nadas (1979) for Xi ∈ L1

n∑

i=1

Xi ≤cx

n∑

i=1

F−1
i (U), (1.1)

where ≤cx denotes the convex order. As consequence one obtains that

̺
( n∑

i=1

Xi

)
≤ ̺

( n∑

i=1

F−1
i (U)

)
, (1.2)

for all law invariant convex risk measures ̺ on L1. In this sense the comonotone
dependence structure is the worst case dependence structure in the one dimensional
case for the joint portfolio

∑n
i=1 Xi uniformly over all law invariant convex risk

measures. In other words,

sup
X̃i∼Pi

̺
( n∑

i=1

X̃i

)
= ̺

( n∑

i=1

F−1
i (U)

)
, (1.3)

where the sup in the left-hand side of (1.3) is over all random variables X̃i with
distribution Pi. If we consider the maximal risk maxi≤n Xi however, the comonotone
vector is not maximal but even is of minimal risk

̺(max
i≤n

F−1
i (U)) = inf

X̃i∼Pi

̺(max
i≤n

X̃i). (1.4)

Even in dimension 1 there are however several unsolved extremal problems
of similar type of interest. For example the problem of determining sharp upper
bounds for the value at risk at level α, Varα, i.e. to determine

sup
X̃i∼Pi

Varα

( n∑

i=1

X̃i

)
(1.5)

has been solved only for n = 2 and for some examples for n ≥ 3 (see the survey
[Rü05]). The comonotone dependence structure is not the worst case dependence
for this risk functional. In some recent work Embrechts and Puccetti (2006a,b) have
established good approximations for (1.5) in some generality.

In this paper we consider the problem of worst case dependence corresponding
to (1.3) for d ≥ 1. There is no general notion of comonotonicity available in d ≥ 1
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as in d = 1 and even the identical pair (X1, X1), for X1 ∈ Rd may be not a worst
case dependence structure due to negative dependence between the components
(see [Rü04] and [PS10] for a discussion). But a suitable notion of µ-comonotonicity
has been introduced in a recent paper by Ekeland, Galichon, and Henry (2009).
Based on a recent representation result for convex law invariant risk measures we
will show that a worst case dependence structure of a portfolio (X1, . . . , Xn) can
be characterized by µ-comonotonicity of X1, . . . , Xn with respect to a worst case
scenario measure µ. Section two deals with some basic representation properties of
convex law invariant risk measures on Lp

d = Lp
d(P ). In Section three we then discuss

the worst case dependence structure and consider several examples in Section 4. In
particular we determine worst case portfolios for ellipical distributions, for discrete
distributions, for distributions of spherical type and for Archimedian type distri-
butions. It turns out that even under worst case conditions there typically arise
diversification effects.

Our results are related to some recent developments in Ekeland, Galichon, and
Henry (2009). In their paper the notion of a strongly coherent risk measure is
introduced. A law invariant coherent lsc risk measure is called strongly coherent if
for all risk vectors Xi holds

sup
X̃i∼Xi

̺
( n∑

i=1

X̃i

)
=

n∑

i=1

̺(Xi). (1.6)

This notion is motivated by the wish to prevent giving an unnecessary premium
to conglomerates and to avoid imposing an overconservative rule to the banks. In
general, the left-hand side in (1.6) is smaller than or equal to the right-hand side.
Thus on the first view the notion of strong coherence of a risk measure seems
to be quite intuitive and well motivated. The authors establish as a main result
that strong coherence of a coherent risk measure is equivalent to ̺ being a max
correlation risk measure. Thus only max correlation coherent risk measures avoid
extra premiums. This result is considered as a particular indication for the relevance
of max correlation risk measures. It can be viewed upon as a multivariate version
of Kusuoka’s (second) Theorem on coherent risk measures in d = 1 which states
that max correlation risk measures for d = 1 (equivalently spectral risk measures)
are the only comonotone additive risk measures. The proof given in [EGH09] of
this result is direct and quite involved.

Max-correlation risk measures were introduced in [Rü06]. In that paper an
extension of the (first) Kusuoka Theorem was established giving a representation
of law invariant convex risk measures in d ≥ 1 which is based on max correlation
risk measures. This representation result allows us in this paper to describe in
explicit form not only the worst case risk but also to characterize the worst case
dependence structure. In particular based on this representation result we obtain
a simple proof of the characterization result of strongly coherent risk measures of
[EGH09], even extended to convex (not necessarily coherent) risk measures under
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some additional continuity assumption. As consequence typically – even under
worst case dependence – a diversification effect takes place and we obtain a means
to describe this effect.

The point of view towards max correlation risk measures in this paper is dif-
ferent from that in [EGH09]. [EGH09] point out – based on their characterization
result of strongly coherent risk measure – the particular relevance of max correla-
tion risk measures. Clearly the above mentioned aspect of strong coherence is one
interesting property of risk measures. It is however not the only relevant property
of measuring risk and should not prevent a risk manager to measure further impor-
tant aspects of risks which are not realised when restricting to strongly coherent
risk measures. We consider the main importance of max correlation risk measures
coming essentially from the Kusuoka type representation result of law invariant
risk measures – so mainly consider them as an important tool. Max correlation
risk measures are intuitively well motivated but there are an abundance of well
motivated further risk measures. If e.g. based on historical observations it is known
that there are typically two different scenario directions µ1, µ2 of relevance then
it seems natural to consider both of them and report the maximum of risks in
both directions which is a genuine convex risk measure. There are a lot of further
portfolio risk measures besides max correlation risk measures with relevance and
of importance for the description of risks. The main focus in this paper is to de-
scribe that even under worst case dependence there will arise a diversification effect
for general convex risk measures, to identify this diversification effect and also to
identify the corresponding worst case portfolio structure.

2 Law invariant risk measures for portfolio vec-

tors

There is a large and detailed literature on convex risk measures for risks in L∞

and dimension d = 1. We refer in particular to the presentations in [D02], [FöS02,
FöS04], [FrR02], and [JST06]. To describe the contribution of dependence in a
portfolio on the risk of the portfolio it is of interest to extend risk measures to the
multivariate case.

In this section we present and extend some recent representation results for risk
measures to the multivariate case d ≥ 1 and to unbounded risks. Let (Ω,A, P )
be a nonatomic probability space and let Lp

d = Lp
d(P ) be the set of all random

vectors X = (X1, . . . , Xd) with p-fold integrable components, Xi ∈ Lp(P ), 1 ≤ p ≤
∞. ̺ : Lp

d → (−∞,∞] is called a convex risk measure on Lp
d if ̺ is monotone,

convex, and cash invariant. Here monotonicity is with respect to the inverse order,
X1 ≤ X2 implies that ̺(X1) ≥ ̺(X2). We also assume the normalization condition
that ̺(−mei) = m, 1 ≤ i ≤ d. To avoid problems with the sign we typically
will switch to the insurance version Ψ of a risk measure Ψ(X) = ̺(−X) which
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is monotone in the usual order. Alternatively one could also consider the utility
version u(X) = −̺(X).

Based on the Fenchel–Moreau Theorem the following representation result
extends the case p = 1 and L∞ to unbounded risks in Lp and d ≥ 1 (see
[BRü06, RS06, FiS07, CL09] and [KaRü09]). Let Md be the set of Q = (Q1, . . . , Qd)
where Qi are probability measures on (R1,B1).

Theorem 2.1 (Representation result) ̺ is a proper convex, lower semicontin-
uous risk measure on Lp

d, if and only if

̺(X) = sup
Q∈Qd,p(P )

(EQ(−X) − α(Q)), (2.1)

where the penalty α can be chosen as Legendre–Fenchel conjugate

α(Q) = sup
X∈Lp

d

(EQ(−X) − ̺(X)),

Qd,p = Mq
d = {Q = (Q1, . . . , Qd) ∈ Md : dQi

dP
∈ Lq}, 1 ≤ p < ∞ is the set of d

tuples of probability measures with q-integrable P -density, where 1
q

+ 1
p

= 1, while

for p = ∞ Qd,∞ = bad(P ) is the set of d tuples of P -continuous normed finitely
additive measures.

There are several continuity results and results on the attainment of the sup
in the representation theorem (2.1) in the literature (see [FiS07, CL09, KaRü09,
FiS09]). We state a version of these results for finite risk measures on Lp

d.

Theorem 2.2 ̺ is a finite convex risk measure on Lp
d, 1 ≤ p ≤ ∞, if and only if

̺(X) = max
Q∈Q

{EQ(−X) − ̺∗(Q)} (2.2)

for some representation set Q ⊂ Qd,p such that D = {dQi

dP
, 1 ≤ i ≤ d, Q ∈ Q} is

weakly closed in Lq.

We call a convex risk measure strongly continuous, when the representation set
Q in (2.2) can be chosen weakly compact in Lq.

Remark 2.3 a) Any finite coherent risk measure is strongly continuous (see [I03],
[KaRü09]). For finite convex risk measures one obtains (by the arguments in
Proposition 2.10 in [KaRü09]) strong continuity of ̺ if the convex conjugate ̺∗

of ̺ is bounded above on its support. Strong continuity of general finite convex
risk measures ̺ on Lp

d, as stated in Theorem 2.11 of [KaRü09], does however
not seem to hold true.

b) [RS06] resp. [CL09, Theorem 4.3] establish that nonemptyness of the algebraic
interior, core (dom ̺) 6= Ø implies finiteness of ̺.
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A convex risk measure ̺ on Lp
d is called law invariant if X

d
= Y (equality in

distribution) implies that ̺(X) = ̺(Y ), i.e. ̺(X) = ̺(P X) depends only on the
distribution P X of X with respect to P . Let

Y ∈ D = {(Y1, . . . , Yd) : Yi ≥ 0 P -a.s., Yi ∈ Lq, EPYi = 1, 1 ≤ i ≤ d} ⊂ Lq
d (2.3)

be the set of d-tuples of P -densities and let

ΨY (X) := EX · Y (2.4)

denote the correlation coefficient of X and Y (up to normalization). Then with
µ = P Y the distribution of Y , we define the maximal correlation risk measure in
direction Y (resp. µ) by

Ψ̂Y (X) = sup
X̃∼X

EX̃ · Y

= sup
Ỹ ∼µ

EX · Ỹ = Ψµ(X) (2.5)

(see [Rü06]). Ψµ = Ψ̂Y is in fact a law invariant coherent risk measure.

Remark 2.4 In dimension d = 1 it holds by the classical Hoeffding-Fréchet bounds
(see e.g. [FöS04, Rü05])

Ψ̂Y (X) = Ψµ(X) =

∫ 1

0

F−1
X (u)F−1

Y (u)du. (2.6)

By partial integration Ψµ can be written as a weighted average value at risk. In
dimension d ≥ 1

Ψµ(X) = Ψ̂(X, Y ) = sup
{∫

x · y dτ(x, y) : τ ∈ M(P X , P Y )
}

(2.7)

can be seen as an instance of the classical optimal mass transportation problem (see
[RaRü98]).

The following is an extension of the Kusuoka representation result for convex
law invariant risk measures as given for d = 1 and L∞ in [FrR05] and for d ≥ 1
and L∞ in [Rü06].

Theorem 2.5 (Law invariant convex risk measures) Let Ψ be a finite convex
law invariant risk measure on Lp

d, 1 ≤ p ≤ ∞. Then

Ψ(X) = max
µ∈A

(Ψµ(X) − α(µ)), (2.8)

where Ψµ is the maximal correlation risk measure in direction µ, α(µ) is some law
invariant penalty function, and A ⊂ Qd,p is weakly closed (i.e. Dq

d = {dQi

dP
: 1 ≤ i ≤

d, Q ∈ A} is weakly closed in Lq).
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Proof: The representation result follows for p < ∞ as in [Rü06] where it is stated in
the case d = 1, p = ∞. The attainment of the sup follows from [CL09, Theorem 4.3].
In the case p = ∞ the analogous representation result holds true as follows from
[Rü06] and the Fatou continuity result due to [JST06]. 2

As consequence of Theorem 2.5 and Remark 2.3 finite law invariant coherent
risk measures on Lp

d have a representation of the form

Ψ(X) = max
µ∈A

Ψµ(X) (2.9)

for some weakly compact set A ⊂ Qd,p. Thus the maximal correlation risk measures
are the building blocks of the class of all law invariant risk measures. The statement
of Theorem 2.5 implies in particular that the max in the representation of Ψ is
attained. A scenario measure µ ∈ Q is called worst case scenario measure (for the
risk X), if the max is attained in µ, i.e.

Ψ(X) = Ψµ(X) − α(µ).

Remark 2.6 A convex risk measure Ψ on Lp
d, 1 ≤ p ≤ ∞, is law invariant if and

only if it is consistent w.r.t. the increasing convex order (≤icx) resp. the convex
order ≤cx on Lp

d, i.e.

X ≤cx Y (resp. X ≤icx Y ) implies Ψ(X) ≤ Ψ(Y ) (2.10)

(see [BRü06] for the case p = ∞). Thus an increase in convex order implies an
increase in risk for all law invariant convex risk measures Ψ. This property however
is not useful in order to identify worst case dependence structures. If X, Y have
identical marginal distributions, i.e. Xi ∼ Yi (where Xi ∼ Yi means equality in
distribution) and if X ≤cx Y then by a well-known result in stochastic ordering
already X ∼ Y holds. As consequence of this observation we obtain that there
is no worst case dependence structure uniformly for all convex law invariant risk
measures. A worst case dependence structure however can be given and described
(even uniformly) for certain aggregation functionals as in (1.2).

3 Worst case joint portfolios and diversification

Let M1(Rd,Bd) denote the class of probability measures on (Rd,Bd). Let Xi ∼ Pi ∈
M1(Rd,Bd), 1 ≤ i ≤ n, Xi ∈ Lp

d be a portfolio of risks with finite p-th moments
and let Ψ be a risk measure on the set of joint portfolios. Then X = (X1, . . . , Xn)
is a worst case portfolio w.r.t. Ψ if it maximizes the risk

Ψ(X1, . . . , Xn) = sup
X̃i∼Xi

Ψ(X̃1, . . . , X̃n). (3.1)
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In dimension d = 1 the comonotone dependence structure represents in some
general sense a worst case dependence structure independent of the convex law
invariant risk measure Ψ. See the survey on results of this type in [Rü05]. In di-
mension d ≥ 1 there does not exist an analogous notion of comonotonicity. For
some types of risk measures it is however possible to construct explicitly worst case
dependence structures. Consider for example a risk measure Ψ of the series form

Ψ(X) = Ψ1(X1, X2) + Ψ2(X2, X3) + · · ·+ Ψn−1(Xn−1, Xn). (3.2)

By an iterative coupling argument we obtain

sup
X̃i∼Xi

Ψ(X̃1, . . . , X̃n) =
n−1∑

i=1

sup
X̃i∼Xi

X̃i+1∼Xi+1

Ψi(X̃i, X̃i+1), (3.3)

i.e. the worst case pair-wise dependence structures can be combined iteratively
to yield a worst case joint dependence structure. But this possibility of recursive
constructions is not typical.

We restrict in the following to risk measures of the joint portfolio of the form
Ψ(

∑n
i=1 Xi), where Ψ is a finite, convex, law invariant risk measure on Lp

d. A port-
folio X = (X1, . . . , Xn), Xi ∈ Lp

d, is called a worst case portfolio with respect to Ψ
if

Ψ
(1

n

n∑

i=1

Xi

)
= sup

X̃i∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
. (3.4)

For convex risk measures Ψ we consider (in some contrast with (3.1)) the worst
case risk of the average portfolio. In the case of coherent risk measures Ψ we can
equivalently consider the risk Ψ(

∑n
i=1 Xi) of the joint portfolio (as in (3.1)).

In the first case we assume that Ψ = Ψµ is a max correlation risk measure and
thus a coherent risk measure, for some scenario measure (measure of direction)
µ ∈ Mq

d.

A portfolio X = (X1, . . . , Xn), Xi ∼ Pi ∈ Mp
d is called µ-comonotone (see

[EGH09]) if for some density vector Y ∼ µ, Y ∈ Dq
d, holds that all Xi are optimally

coupled to Y ,
Xi ∼oc Y, 1 ≤ i ≤ n. (3.5)

Here optimally coupled is defined in the sense of optimal transportation, i.e.

Ψµ(Xi) = sup
Ỹ ∼Y

EXi · Ỹ = EXi · Y, 1 ≤ i ≤ n. (3.6)

From results on optimal transportation there exist optimal couplings Xi ∼oc Y
of Pi, µ where Y ∈ Dq

d, Y ∼ µ can be chosen independent of i (see [RüRa90,
RaRü98]). By the characterization of optimal couplings in [RüRa90]

Xi ∈ ∂fi(Y ) a.s. for some fi convex, lsc,
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it follows, that

n∑

i=1

Xi ∈ ∂
∑n

i=1fi (Y ) and
∑n

i=1fi is convex and lsc.

Thus
n∑

i=1

Xi ∼oc Y, (3.7)

the sum of Xi is optimally coupled to Y . This also follows from a simple direct
argument. For this observation see e.g. [RüU97] or [EGH09, Theorem 1]. As con-
sequence one obtains the following characterization of worst case dependence for
max correlation risk measures (see [EGH09, Theorem 1] in case p = q = 2).

Proposition 3.1 Let Ψ = Ψµ be a max correlation risk measure on Lp
d with sce-

nario measure µ ∈ Mq
d. Then for Xi ∈ Lp

d with distributions Pi, Xi ∼ Pi, 1 ≤ i ≤ n
holds: (X1, . . . , Xn) is a worst case dependence structure for Ψµ if and only if
X1, . . . , Xn are µ-comonotone.

Further in this case there is no worst case diversification effect:

sup
eXi∼Xi

Ψµ

( n∑

i=1

X̃i

)
= Ψµ

( n∑

i=1

Xi

)
=

n∑

i=1

Ψµ(Xi). (3.8)

As mentioned in the introduction there are many relevant convex risk measures
besides max correlation risk measures. We will see in the following that a diversi-
fication effect is present for all of them even under worst case portfolios. Let Ψ be
now a finite, convex, law invariant risk measure on Lp

d. By Theorem 2.5 Ψ has a
representation of the form

Ψ(X) = max
µ∈A

(Ψµ(X) − α(µ)), (3.9)

where A ⊂ Mq
d is a weakly closed set of scenario measures. For a portfolio Xi ∼ Pi,

1 ≤ i ≤ n and a risk measure Ψ as in (3.9) we define the average risk functional

F (µ) :=
1

n

∑

i=1

Ψµ(Xi) − α(µ). (3.10)

A scenario measure µ0 ∈ A is called a worst case scenario measure if it maximizes
the average risk functional F , i.e.

F (µ0) = sup
µ∈A

F (µ). (3.11)

The following theorem determines the worst case risk and identifies the worst
case joint portfolio as comonotone portfolio with respect to a worst case scenario
measure. It also allows to determine the worst case diversification effect.
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Theorem 3.2 (Worst case joint portfolio) Let Xi ∼ Pi, 1 ≤ i ≤ n be a port-
folio and consider a finite, convex, law invariant risk measure Ψ as in (3.9).

a) The worst case risk is given by

sup
X̃i∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
= sup

µ∈A
F (µ) (3.12)

b) If µ0 is a worst case scenario measure and if X∗
i ∼ Pi are µ0 comonotone, then

X∗
1 , . . . , X

∗
n is a worst case portfolio.

c) If Ψ is strongly continuous then there exists a worst case scenario measure
µ0 ∈ A

F (µ0) = sup
µ∈A

F (µ). (3.13)

Proof:

a) Generally for law invariant convex risk measures Ψ holds the inequality

Ψ
(1

n

n∑

i=1

X̃i

)
≤

1

n

n∑

i=1

Ψ(X̃i) =
1

n

n∑

i=1

Ψ(Xi). (3.14)

Furthermore, by Proposition 3.1, formula (3.8), and by the representation in
(3.9) holds

sup
eXi∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
= sup

eXi∼Xi

sup
µ∈A

(
Ψµ

( 1

n

n∑

i=1

X̃i

)
− α(µ)

)

= sup
µ∈A

(
sup

eXi∼Xi

Ψµ

(1

n

n∑

i=1

X̃i

)
− α(µ)

)

= sup
µ∈A

(1

n

n∑

i=1

Ψµ(Xi) − α(µ)
)

= sup
µ∈A

F (µ). (3.15)

b) If µ0 is a worst case scenario measure and if X∗
i ∼ Xi are µ0-comonotone, i.e.

X∗
i ∼oc Y , 1 ≤ i ≤ n, for some Y ∼ µ0, then 1

n

∑n
i=1 X∗

i ∼oc Y and

Ψ
(1

n

n∑

i=1

X∗
i

)
= F (µ0).

Therefore, (X∗
i ) is a worst case portfolio.



Worst case portfolio vectors 11

c) If Ψ is strongly continuous, then the scenario set A is weakly compact in Mq
d.

Since the function µ → Ψµ(X) = sup{EX · Ỹ ; Ỹ ∼ µ} is usc in the weak
topology on Lq

d it follows that the sup in a) is attained at some µ0 ∈ A. Thus a
worst case scenario measure µ0 ∈ A exists. 2

In the coherent case the result can also be formulated in terms of the risk of
the joint portfolio.

Corollary 3.3 (Coherent case) Any finite coherent law invariant risk measure
Ψ on Lp

d has a representation of the form

Ψ(X) = max
µ∈A

Ψµ(X) (3.16)

with some weakly compact subset A ⊂ Mq
d. Furthermore,

sup
X̃i∼Xi

Ψ
( n∑

i=1

X̃i

)
= sup

µ∈A
Fc(µ) = Fc(µ0) (3.17)

for some worst case scenario measure µ0 ∈ A, with respect to total risk Fc(µ) :=∑n
i=1 Ψµ(Xi). If X∗

i ∼ Pi are µ0-comonotone, then (X∗
i ) is a worst case portfolio,

i.e.

sup
X̃i∼Xi

Ψ
( n∑

i=1

X̃i

)
= Ψ

( n∑

i=1

X∗
i

)
.

Remark 3.4 a) By definition the average risk functional

F (µ) =
1

n

n∑

i=1

Ψµ(Xi) − α(µ)

involves only the marginal distributions Pi of Xi but does not involve the joint
distribution of X1, . . . , Xn. To apply Theorem 3.2 we have to analyse the convex
average risk functional F and have to determine a worst case scenario measure
µ0 ∈ A. Then the worst case dependence structure is given by the comonotone
vector (X∗

1 , . . . , X
∗
n) w.r.t. the worst case scenario measure µ0.

b) Also the converse of Theorem 3.2 and Corollary 3.3 holds true. If X∗
1 , . . . , X

∗
n

is a worst case portfolio, then (X∗
i ) are µ-comonotone w.r.t. any worst case

scenario µ ∈ A.

c) Theorem 3.2 also implies a description of the worst case portfolio and the diver-
sification effect for the joint portfolio in the case of general convex risk measures
Ψ. This follows from the rewriting Ψ(

∑n
i=1 Xi) = Ψ( 1

n

∑n
i=1 nXi) and thus

sup
X̃i∼Xi

Ψ
( n∑

i=1

X̃i

)
= sup

µ∈A
Fn(µ) (3.18)

with Fn(µ) = 1
n

∑n
i=1 Ψµ(nXi) − α(µ) =

∑n
i=1 Ψµ(Xi) − α(µ).
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For general convex risk measures Ψ on Lp
d we have the inequality

sup
X̃i∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
≤

1

n

n∑

i=1

Ψ(Xi). (3.19)

The difference

1

n

n∑

i=1

Ψ(Xi) − Ψ
(1

n

n∑

i=1

Xi

)
resp.

n∑

i=1

Ψ(Xi) − Ψ
( n∑

i=1

Xi

)

is called the diversification effect of portfolio (Xi). Equality holds in (3.19) by
Proposition 3.1 for max correlation risk measures. We interpret this result by saying
that for max correlation risk measures there is no diversification effect in the worst
case dependence situation. A diversification effect however arises quite generally
for convex risk measures even under worst case dependence.

Let Ψ(X) = maxµ∈A(Ψµ(X)−α(µ)) be a finite convex, law invariant risk mea-
sure on Lp

d. The key comparison argument describing the worst case diversification
effect can be demonstrated most clearly in the case n = 2.

Proposition 3.5 Assume that for some X, Y ∈ Lp
d, µ1, µ2 ∈ A, µ1 6= µ2 are two

different unique worst case scenarios, i.e.

Ψµ1
(X) − α(µ1) > Ψµ(X) − α(µ), ∀µ ∈ A, µ 6= µ1

and
Ψµ2

(Y ) − α(µ2) > Ψµ(Y ) − α(µ), ∀µ ∈ A, µ 6= µ2.
(3.20)

Then

sup
X̃∼X,Ỹ ∼Y

Ψ
(1

2
(X̃ + Ỹ )

)
<

1

2

(
Ψ(X) + Ψ(Y )

)
. (3.21)

Proof: By Theorem 3.2 and assumption (3.20) it follows with the worst case sce-
nario measure µ0 ∈ A for the portfolio (X, Y )

sup
X̃∼X,Ỹ ∼Y

Ψ
(1

2
(X̃ + Ỹ )

)
= sup

µ∈A

(1

2
(Ψµ(X) + Ψµ(Y )) − α(µ)

)

=
1

2

(
Ψµ0

(X) − α(µ0) + Ψµ0
(Y ) − α(µ0)

)

<
1

2
(Ψµ1

(X) − α(µ1) + Ψµ2
(Y ) − α(µ2))

=
1

2

(
Ψ(X) + Ψ(Y )

)
. 2
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Remark 3.6 Proposition 3.5 shows clearly when a diversification effect can be
expected. A similar result holds obviously also for a portfolio with n ≥ 2 components.
The exposure condition (3.20) implies a diversification effect. No diversification
effect arises only in case that all risks Xi admit the same worst case scenario
measure µ0 ∈ A. If |A| ≥ 2, then by the classical Bishop–Phelps theorem it follows
that there exist some (strongly) exposed points µ1, µ2 ∈ A satisfying the exposure
condition (3.20). This type of argument has also been used essentially in the recent
paper of [EGH09] who consider the coherent case.

[EGH09] have characterized the max correlation risk measures in the class of
coherent risk measures as those which do not allow worst case diversification ef-
fects, in their language as the only structural neutral coherent risk measures. Their
argument is given in a direct way and is quite involved. In particular, it uses the
Bishop–Phelps theorem (compare also Remark 3.6). In the following we extend this
result to the case of strongly continuous convex risk measures and give a simplified
proof. Our proof is based essentially on the representation result for law invariant
convex risk measures (Theorem 2.5) and uses an idea from the classical Kusuoka
proof in the one dimensional case d = 1.

Let Ψ be a strongly continuous, law invariant convex risk measure on Lp
d. By

Theorem 2.5 Ψ has a representation of the form

Ψ(X) = max
µ∈A

(Ψµ(X) − α(µ)),

with weakly compact scenario set A ⊂ Mq
d and penalty α(µ). If Ψ is a translated

max correlation risk measure then Ψ does not allow a worst case diversification
effect for any portfolio. The following theorem states the converse, that the trans-
lated max correlation risk measures are the only strongly continuous convex, law
invariant risk measures with no worst case diversification effect.

Theorem 3.7 (Worst case diversification effect) Let Ψ be a strongly contin-
uous, convex law invariant risk measure on Lp

d. Then it holds:
Ψ has no worst case diversification effect, i.e., for all portfolios (Xi) holds

sup
X̃i∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
=

1

n

n∑

i=1

Ψ(Xi) (3.22)

if and only if Ψ is a translated max correlation risk measure,

Ψ = Ψµ − α(µ)

for some scenario measure µ ∈ Mq
d and α(µ) ∈ R1.

Proof: By Proposition 3.1 any translated max correlation risk measure has no
worst case diversification effect.
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For the converse direction assume that Ψ has no worst case diversification effect.
Define

M(Ψ, X) =
{
µ ∈ A : Ψµ(X)−α(µ) = Ψ(X) = sup

µ̃∈A
(Ψµ̃(X)−α(µ̃))

}
= M(Ψ, P X).

(3.23)
Since for any X ∈ Lp

d the mapping µ̃ → Ψµ̃(X) − α(µ̃) is usc with respect to
the weak topology on Mq

d and since A ⊂ Mq
d is weakly compact it follows that

M(Ψ, X) 6= ∅ is a nonempty closed subset of A.

For X1, . . . , Xn ∈ Lp
d with distributions P1, . . . , Pn ∈ Mp

d let µ0 ∈ A be a worst
case scenario measure for the portfolio (Xi). Thus from our assumption (3.22) we
obtain

sup
X̃i∼Xi

Ψ
(1

n

n∑

i=1

X̃i

)
= F (µ0) =

1

n

n∑

i=1

(Ψµ0
(Xi) − α(µ0))

=
1

n

n∑

i=1

Ψ(Xi). (3.24)

This implies that Ψ(Xi) = Ψµ0
(Xi) − α(µ0) for 1 ≤ i ≤ n and thus

µ0 ∈
n⋂

i=1

M(Ψ, Xi) =
n⋂

i=1

M(Ψ, Pi),

i.e. finite intersections of M(Ψ, Pi), Pi ∈ Mp
d, 1 ≤ i ≤ n are nonempty. By weak

compactness of A this implies

⋂

P∈Mp

d

M(Ψ, P ) 6= ∅.

Thus there exists some µ ∈ A such that

Ψµ(X) − α(µ) = sup
µ̃∈A

(Ψµ̃(X) − α(µ̃)) = Ψ(X)

i.e., Ψ is a translated max correlation risk measure. 2

4 Remarks on optimal couplings and some

classes of examples

By Theorem 3.2 the worst case portfolio (dependence) structure for portfolio dis-
tributions P1, . . . , Pn and a risk measure Ψ is given by comonotone random vectors
X1, . . . , Xn, Xi ∼ Pi with respect to a worst case scenario measure µ0 ∈ A. By the



Worst case portfolio vectors 15

basic characterization of optimal couplings w.r.t. L2-distance in [RüRa90] holds:
Xi ∼ Pi, Y ∼ µ0 is an optimal coupling, Xi ∼oc Y if and only if Xi lies a.s. in the
subgradient

Xi ∈ ∂fi(Y ) a.s. (4.1)

of some lsc convex function fi. Criterion (4.1) holds without any continuity as-
sumptions on the scenario measure µ0 and Y can be chosen independent from the
index i. If µ0 is absolutely continuous the subgradient reduces to the gradient a.s.
and then (4.1) is equivalent to

Xi = ∇fi(Y ) a.s., (4.2)

Xi is given by the gradient of fi applied to Y . Thus determination of the worst
case portfolio structure is reduced by Theorem 3.2 to an optimal coupling problem
w.r.t. the worst case scenario measure µ0 as in (4.1), (4.2).

a) Discrete distributions and approximation
For the numerical analysis it is important that the optimal coupling problem can
be approximated by optimal couplings between discrete distributions. For the case
that Q = Σiαiε{yi} is discrete, where Q stands for some portfolio measure Pi, one
can restrict in (4.1), (4.2) to convex functions f of the form

f(x) = max
i

(〈x, yi〉 + ai) = f(ai)(x) (4.3)

Then with Ai := {x : f(x) = 〈x, yi〉 + ai} holds

yi ∈ ∂f(x) if and only if x ∈ Ai, (4.4)

see [RüU00]. The optimal shifts ai can be determined by the condition

P (Ai) = αi. (4.5)

Numerically this can be done most efficiently by a gradient approach to the mini-
mization of the convex function of the shifts (ai).

f(ai)(x) −
∑

i

αiai = inf
(ai)

, (4.6)

as was observed in a related problem on combinatorial Voronoi type partitioning
in [AHA98], see also [RüU00] and [EGH09]. The solutions (ai) of the optimization
problem (4.6) determine the optimal shifts (ai) and thus by (4.1) resp. (4.2) they
determine the optimal couplings X ∼ Q, Y ∼ µ by the rule

X = yi implies Y ∈ Ai. (4.7)
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If µ is absolutely continuous, then (4.7) determines X uniquely as a function of Y :
a.s. holds

X = yi if and only if Y ∈ Ai. (4.8)

If µ is not continuous, then X has to be chosen on the boundaries of Ai such that
additionally (4.5) holds (which is typically an easy task).

The procedure above allows a numerical solution of the optimal coupling prob-
lem and has been applied successfully in a series of examples (see [RüU00, EGH09]).
Iteratively applying this procedure to all pairs (Pi, µ) we obtain as a result approx-
imatively a worst case portfolio X∗

1 , . . . , X∗
n.

b) Location – scale families, elliptical distributions.
For a random vector X ∈ IRd with distribution Q, X ∼ Q consider the generated
location scale family

Q := {Qa,B : B ∈ A, a ∈ IRd} (4.9)

where Qa,B ∼ Xa,B := BX + a and where A is some set of d × d scaling matrices.
Consider the scenario measure µ = Q ≡ Q0,I , X ∼ Q and assume that the portfolio
distributions Pi = Qai,Bi

∈ Q, 1 ≤ i ≤ n are in the generated scale family Q.

b1) If A ⊂ NN(d) lies in the class of positive semidefinite matrices then by the
optimal coupling criterion (1.1) holds

Xi := Xai,Bi
∼oc X, 1 ≤ i ≤ n (4.10)

and
X1, . . . , Xn are µ-comonotone. (4.11)

Further in this case the worst case risk of the portfolio P1, . . . , Pn w.r.t. Ψµ is given
by

sup
X̃i∼Xi

Ψµ

( n∑

i=1

X̃i

)
= Ψµ

( n∑

i=1

Xi

)
= tr

(( n∑

i=1

Bi

)
Σ

)
(4.12)

with Σ = Cov X the covariance matrix of X ∼ Q and tr the trace operator.

b2) Assume that the basic measure Q in b1) is invariant under orthogonal trans-
formations like e.g. the normal distribution N(0, I) or the uniform distribution on
a ball around 0. Then we can extend in b1) to general affine linear transformations
Qa,B ∼ a + BX, X ∼ Q, B ∈ A = M(d, IR). By the polar factorization theorem
holds

B = PO (4.13)

where P is positive semidefinite and O is orthogonal. Therefore,

BX ∼ POX ∼ PY, (4.14)

where Y := OX, X ∼ Y . Thus the optimal coupling problem in this case is reduced
to the optimal coupling in the positive semidefinite case.
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Interesting examples of b1), b2) are multivariate normal distributions N(µ, Σ),
uniform distributions on ellipses and general elliptical distributions. The opti-
mal coupling results available for multivariate normal distributions (see [RüRa90,
RaRü98]) extend in the same form to these scale families. Thus for a scenario mea-
sure µ ∼ Q and Pi ∈ Q we explicitly obtain the worst case dependence structure.
In terms of the covariances Σi of Pi, Σ0 of Q and a scenario vector T ∼ Q the worst
case portfolio for location scale families is given by

Xi = SiT (4.15)

where Si = Σ
1/2
i (Σ

1/2
i Σ0Σ

1/2
i )

−1/2
Σ

1/2
i (see [RüRa90]).

If the class of scenario measures A is a subclass of Q, then the determination
of the worst case scenario measure reduces to a standard optimization problem of
the form

tr
[( n∑

i=1

S⊤
i

)
BΣ0

]
= sup

B∈A
(4.16)

where Σ0 = Cov(T ) is the covariance matrix of Q.

c) Coupling to the sum
In some cases even if the explicit representation of the convex risk measures is not
known explicitly it is possible to determine the worst case dependence structure
and the worst case scenario measure. We consider e.g. the variation risk measure

Ψ(X) = (E‖X‖2)1/2 (4.17)

where ‖X‖ is the usual Euclidean norm of X. Then it has been shown in [RüU02]
that the property of worst case dependence of a portfolio Xi ∼ Pi, 1 ≤ i ≤ n,
is closely related to the fact, that all Xi are optimally coupled to their sum T =∑n

i=1 Xi. More precisely, optimal coupling to the sum is a necessary condition and
together with a regularity condition on the support of T also a sufficient condition
(see [RüU02]) for a worst case portfolio. In our context this means that the worst
case scenario measure µ0 is given by the distribution of the (worst case) sum T .
The worst case dependence structure is given by µ0-comonotone vectors Xi. Since
the variation risk measure is not monotone we leave in this example formally the
framework of the previous sections and have to allow also non positive directions
as scenarios.

In the case of normal distributions Xi ∼ Pi, Pi = N(0, Σi), 1 ≤ i ≤ n, Σi

positive definite covariance matrices, the worst case scenario measure µ0 is given
by

µ0 = N(0, Σ0), (4.18)

where Σ0 is a (unique) positive definite solution of the matrix equation

n∑

i=1

(Σ
1/2
0 ΣiΣ

1/2
0 )

1/2
= Σ0. (4.19)
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The worst case dependence structure is given by

X1 ∼ N(0, Σ1), Xi = SiS
−1
1 X1, i = 2, . . . , n, (4.20)

where Si = Σ
1/2
i (Σ

1/2
i Σ0Σ

1/2
i )

1/2
Σ

1/2
i . (For details see [RüU02].) Since the optimal

coupling property is a property of the couplings (mappings) and not of the under-
lying distributions it follows that this determination of the worst case dependence
structure extends in the same way to location scale families, in particular to ellip-
tical distributions as in b1), b2).

d) Distributions of spherical type
Let U be a random vector on the unit sphere in IRd w.r.t. Euclidean distance and
let X = RU with some scaling real random variable R > 0 independent of U . Then
we call X of Euclidean spherical type. Special cases of distributions of Euclidean
spherical type are spherical invariant distributions which are invariant under or-
thogonal transformations. In this case U is uniformly distributed on the Euclidean
unit sphere. Examples are uniform distributions on spheres or on balls and normal
distributions N(0, σ2Id) which have exponential tails. But also interesting unsym-
metric distributions are of Euclidean spherical type. If R has polynomial tails like
for positive stable distributions then also X = RU has polynomial tails and forms
a class of distributions of interest in extreme value theory.

Assume that a portfolio is given by Xi = Ri · Ui, 1 ≤ i ≤ n where U1
d
= U2

d
=

. . .
d
= Un

d
= U , Ri ≥ 0 are independent of Ui with distribution functions Fi. Denote

by Pi the portfolio distribution of Xi.

Proposition 4.1 (Euclidean spherical type portfolio) Let Xi = Ri · Ui, 1 ≤
i ≤ n be a portfolio of Euclidean spherical type with

Ui
d
= U, 1 ≤ i ≤ n.

Define X∗
i = F−1

i (V ) · U , 1 ≤ i ≤ n, for some uniformly on (0, 1) distributed
random variable V independent from U . Then X∗

1 , . . . , X
∗
n is a worst case portfolio

structure with respect to the variation risk measure Ψ2(X) = (E‖X‖2
2)

1/2 – ‖ ‖2

the Euclidean norm – and the worst case risk is given by

sup
eXi∼Xi

Ψ2

( n∑

i=1

X̃i

)
= Ψ2

( n∑

i=1

X∗
i

)
=

(
E

( n∑

i=1

F−1
i (V )

)2)1/2
. (4.21)

Proof: By definition ‖Xi‖ = Ri, i ≤ i ≤ n, and with R∗
i := F−1

i (V ) it holds
‖X∗

i ‖ = R∗
i . Thus we obtain for i 6= j,

‖Xi − Xj‖2 ≥
∣∣‖Xi‖2 − ‖Xj‖2

∣∣ = |Ri − Rj | .
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This implies by a well known one dimensional coupling result

E‖Xi − Xj‖
2
2 ≥ E|Ri − Rj|

2 ≥ E|R∗
i − R∗

j |
2 = E‖X∗

i − X∗
j ‖

2
2. (4.22)

In consequence all pairs X∗
i , X∗

j are optimally coupled, X∗
i ∼oc X∗

j . This implies
directly that X∗

1 , . . . , X
∗
n is a worst case portfolio with respect to Ψ2 and (4.21)

follows from (4.22). 2

Remark 4.2 Obviously in the Euclidean spherical portfolio above all X∗
i are opti-

mal coupled to the spherical part U of the distribution and also are optimally couped

to the sum
n∑

i=1

X∗
i . Thus µ the distribution of U is a worst case scenario measure in

this situation. From (4.21) we see that typically a worst case diversification effect
arises in this class of distributions. We remark that a similar coupling result has
also been discussed in [CRT93].

The argument for the Euclidean spherical type portfolio also extends to dis-
tributions of spherical type with respect to other norms on IRd. Consider for ex-

ample the one norm ‖x‖1 =
n∑

i=1

|xi|. Let U be distributed on the unit one-sphere

and let Xi = RiUi, 1 ≤ i ≤ n be a portfolio of spherical type (w.r.t. the one-
sphere) with Ui ∼ U . In case that Ui are uniformly distributed on the one-sphere
{x ∈ IRd : ‖x‖1 = 1} we obtain exactly the class of Archimedian distributions, i.e.
those distributions which have Archimedian copulas. Therefore, we call this class
of spherical type distributions distributions od Archimedian type. Archimedian type
distributions have been used a lot in recent dependence modelling. Consider the
risk measure

Ψ1(X) := E‖X‖1 (4.23)

defined by the L1-norm.

Proposition 4.3 (Archimedian type portfolio) Let Xi = RiUi, 1 ≤ i ≤ n, be

an Archimedian type portfolio, with Ri independent of Ui and Ui
d
= U , 1 ≤ i ≤ n,

are distributed as U . Let (Ri) be independent of U . Then X∗
i := RiU , 1 ≤ i ≤ n,

is a worst case portfolio w.r.t. Ψ1 and the worst case risk is given by

sup
eXi∼Xi

Ψ1

( n∑

i=1

X̃i

)
= Ψ1

( n∑

i=1

X∗
i

)
= E

n∑

i=1

Ri =

n∑

i=1

Ψ1(Xi). (4.24)

There is no worst case diversification effect.

Proof: For the proof note that X∗
i = RiU have the correct portfolio distribu-

tion, X∗
i ∼ Pi. Furthermore, we obtain for any portfolio Xi ∼ Pi by Minkowski’s
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inequality

Ψ1

( n∑

i=1

Xi

)
= E

∥∥∥
n∑

i=12

Xi

∥∥∥
1

(4.25)

≤ E

n∑

i=1

Ri = E
∥∥∥

n∑

i=1

RiU
∥∥∥

1
= Ψ1

( n∑

i=1

X∗
i

)
.

Thus (X∗
i ) is a worst case portfolio. Since X∗

i = RiU we obtain further

Ψ1

( n∑

i=1

X∗
i

)
=

n∑

i=1

ERi =

n∑

i=1

Ψ1(Xi),

i.e. there is no worst case diversification effect. 2

For the L1-norm risk we obtain by a classical result, that Ψ1(X) is identical to
a max-correlation risk measure with worst case scenario given by the sign of X.
This explains the disappearance of the worst case diversification effect in (4.24).
Note that in this case again we have to allow negative scenarios.

In fact the arguments of Propositon 4.3 can be generalized to the following
general spherical equivalent models. Let ‖ ‖ be any norm on IRd and let X = R ·U
be the polar representation of X with radial part R = ‖X‖ and spherical part U =
X/‖X‖. We assume that the radial part R is independent of the spherical part U .
A random vector Y is called spherically equivalent to X if the spherical part of Y is

identically distributed, Y/‖Y ‖
d
= X/‖X‖ and the radial part of Y is independent

of the spherical part.

Let f be a convex nondecreasing function f : [0,∞) → [0,∞) and g be a
nondecreasing function g : [0,∞) → [0,∞) and consider a risk measure Ψ of the
form

Ψ(X) = g(Ef(‖X‖)). (4.26)

Examples are the p-norms, p ≥ 1, i.e. Ψ(X) = ‖X‖p and with norms of the form
‖x‖ = x⊤Ax, we get as examples in particular models of elliptical type distributions
as in 4.b).

Theorem 4.4 (Spherically equivalent portfolios) Let Xi = RiUi be a portfo-
lio of spherical type X = RU and let Ψ be a risk measure as in (4.26). Let V be
independent of U uniformly distributed on (0, 1) and define

R∗
i := F−1

i (V ), X∗
i := R∗

i U, 1 ≤ i ≤ n. (4.27)

Then X∗
1 , . . . , X

∗
n is a worst case portfolio structure with respect to Ψ and the worst
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case risk is given by

sup
X̃i∼Xi

Ψ
( n∑

i=1

X̃i) = Ψ
( n∑

i=1

X∗
i

)
(4.28)

= g
(
Ef

( n∑

i=1

R∗
i

))
.

Proof: All elements X∗
i have the same spherical part U and by construction X∗

i

have the correct marginal distributions, X∗
i ∼ Pi. Furthermore, by Minkowski’s

inequalitiy we have for any portfolio (Xi) with marginals (Pi)

∥∥∥
n∑

i=1

Xi

∥∥∥ ≤
n∑

i=1

‖Xi‖ =

n∑

i=1

Ri,

while for the portfolio (X∗
i ) holds ‖

∑n
i=1 X∗

i ‖ =
∑n

i=1 R∗
i . By our construction

R∗
i

d
≃ Ri. Thus we can apply a classical optimal coupling result for real random

variables (see (1.1)) which implies

Ef
(∥∥∥

n∑

i=1

Xi

∥∥∥
)
≤ Ef

( n∑

i=1

Ri

)

≤ Ef
( n∑

i=1

R∗
i

)
= Ef

(∥∥∥
n∑

i=1

X∗
i

∥∥∥
)
.

As consequence we obtain that (X∗
i ) is a worst case dependence structure

sup
X̃i∼Xi

Ψ
( n∑

i=1

X̃i

)
= Ψ

( n∑

i=1

X∗
i

)
. 2

Remark 4.5 a) In typical cases Theorem 4.4 implies a worst case diversification
effect. An exception is the situation of an Archimedian type portfolio with one-
norm as in Proposition 4.3. Theorem 4.4 gives a tool to calculate worst case
portfolios in many examples and to determine the corresponding worst case di-
versification effect.

b) As proposed by a reviewer it will be of interest to develop more examples of worst
case portfolios for further multivariate risk measures with a natural appeal to
financial and insurance risks.

Acknowledgement. The author is grateful for very helpful remarks of the re-
viewers. In particular a remark of a reviewer helped to clarify the role of compact
scenario sets.
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