PROPAGATION OF CHAOS AND
CONTRACTION OF STOCHASTIC
MAPPINGS*

S. T. Rachev L. Rischendorf
University of California University of Freiburg
Santa Barbara

Abstract

In this paper we use contraction properties of stochastic mappings with
respect to suitable chosen metrics in order to establish some new examples
of propagation of chaos. In particular systems of SDE’s with mean field type
interactions and the corresponding nonlinear SDE’s of Mc Kean-Vlasov type
for the limiting cases are considered. We also study the rate of convergence
to the limit. Assumptions on the smoothness and growth properties of the
coeflicients of the SDE’s are to be reflected in the choice of the probabiliy
metric in order to obtain contraction properties. This allows us in particular
to investigate some new kinds of interactions as well as to consider systems
with weakened Lipschitz assumptions.

1 Introduction

The idea of propagation of chaos due to Kac was to study the relation between simple
markovian models of interacting particles and nonlinear Boltzmann type equations.
For a detailed introduction to the propagation theory we refer to Sznitman (1989).
A formal definition is the following. Let (uy) be a sequence of symmetric probability
measures on [V, F a separable metric space, and let u be a probability on £, then
(un) is called u-chaotic, if my u, - u(k), 7 the k-marginal distribution, u®) the
k-fold product, and — denotes the weak convergence.

A basic example for chaotic sequences is McKean’s Interacting Diffusion (cf. the
laboratory example in Sznitman (1989), p. 172), cf. for this and related examples
also [16], [2], [13], [14], [15], [5], [6]. Consider a system of interacting diffusions:

N
. : 1 ; j
dXZ’N _ thZ—I_ﬁE :b(XZ’N,Xg’N)dty Z’:17_,_7N (1.1)
j=1

IN G
X0 = x,
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where W' are independent Brownian motions and b satisfies a bounded Lipschitz
condition. Let uy denote the distribution of (X'V ... XV} The nonlinear limi-

ting equation is given by the Mc Kean-Vlasov equation

B; a Brownian motion, u; the distribution of X;,. Then uy is u-chaotic, where u is
the distribution of X on C(IRy,IR%).

An alternative example of chaotic behavior of particles, not described by SDE’s,
are uniform distributions on p-spheres. Let uy denote the uniform distribution on
the p-sphere of radius N in IR]_IY ie. on S,n :={x € IR]_IY; Ya? = N} and let u

denote the probability measure on IRy with density f,(x) = %e‘xp/p, x > 0.

Then for N > k + p, and k£ and N big enough

2(k+p)+1

O ST A i 1.3
fray — ) < ZEEDLL (13)
where || || denotes the total variation distance (cf. [9]). In particular we obtain that

uy is u-chaotic. This example has its origin in Poincare’s theorem on the asym-
ptotic behaviour of particle systems. More general examples of this kind have been
developed in statistical physics in connection with the “equivalence of ensembles”
in many papers but typically without a quantitative estimate as in (1.3).

The main goal of this paper is the study of the propagation of chaos of several
modifications of McKean’s example concerning the form of the interaction and the
regularity assumptions on the coefficients. To this end we introduce suitable proba-
bility metrics allowing to derive contraction properties of the stochastic equations
defined by the corresponding Liouville type equatons. Dobrushin (1979) introduced
the use of the Kantorovich metric for the interacting diffusions in example (1.1),
(1.2). The success of this metric is based on a coupling argument inherent in its
definition. This metric has been applied since then in several other papers (cf. [14],
[15], [5], [6]). For our modifications of this example we shall need some variants of
the Kantorovich metric giving the suitable regularity and ideality properties for the
equations considered. In particular we need metrics which are of higher order ideal
when relaxing the Lipschitz conditions in equations (1.1), (1.2). Our modifications
of the form of interactions allow to treat much more complicated forms of interac-
tions as in McKean’s example. In particular we consider nonlinear interactions via
some general energy function as e.g. the p-norm of the vector of all pair interac-
tions. We also consider interactions with the other particles over the whole past
(history) of the process, describing some non-Markovian systems. We demonstrate
the flexibility of the approach based on suitable probability metrics to cope also with
nonstandard forms of interactions and develop in some examples the tools to analyse
these models indicating the applicability of this method also to more complicated
real physical systems.



2 Equations With p-Norm Interacting Drifts

Consider the system of N interacting diffusions with p-th norm interacting drifts,
i.e. the drift is given by the p-th norm of the vector of all pair interactions, which
can be considered as driving force in the system.

N
dXPN = dwi 4 {% >V XY v (2.1)
7=1

XN = X' 1<i<N,

b>0,p>1. (W), X!) are independent identically distributed for all 7.) We shall
establish that each X" has a natural limit X, where (X?) are independent copies
of the solutions of a nonlinear equation

{ dXy = dBi 4 ([ b( Xy, y)P ut(dy))l/pdt (2.9)
Xt:() — X '
with BZ W!a process on O, u; = PXt. In order to obtain the necessary contrac-
tion properties of these equations we consider the L} resp. the minimal L} -metric /7
defined for processes X, Y (resp. probability measures my,my € M'(Cr), here and
in the following M*(Cr) denotes the class of all probability distributions on Cr, by

L2(X,Y) = (Esup X, — V,P)17 23)
s<t
and ) )
05 (ma,ma) = inf{Ly (X, Y): X =m, Y =ma}. (2.4)

In (2.4) we tacitly assumed that the probability space is rich enough to support all
possible couplings of my,my, which is true, for example, in case of atomless spaces.

Define for m, € M*'(C7)
M,(Cr,m,) :={m1 € M (Cr); U 1(m,,m1) < oo}, (2.5)

X, (Cr,m,) the class of processes on Cr with distribution m € M,(Cp,m,).

For m, = d, the one-point measure in @ € Cr, this is the class of all distributions
on Cp with finite p-th moment of the norm. For m € M,(Cr,m,) consider the
Liouville type equation corresponding to (2.2)

X, =B, + /ot(/c b(Xs,ys)? dm(y))l/pds, (2.6)

where y; is the value of y at time s. Let (B;) be a real valued process on Cr = C[0,T]
with finite p-th absolute moment (F sup,.; |Bs|? < 00) and let b > 0 be a Lipschitz
function in « -

1b(21,y) — b(x2,y)| < c|lzg — 22 (2.7)

A strong solution of the SDE (2.6) means as usual a solution measurable w.r.t. the
augmented filtration of the process (B;); in constrast a weak solution of (2.6) is a
solution on a suitable filtered space in distribution.
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Lemma 2.1 Assume (2.7) and let [([b(0,ys)? dm(y))/Pds < oo, then:
(a) Equation (2.6) has a unique strong solution X.

(b) If ®(m) is the law of X, then ®(m) € M,(Cr,m,), that is,
¢ M,(Cp,m,) = M,(Cr,m,).

Proof: Let X € A, (Cr,m,) and define

(SX): =B+ /Ot(/ b(Xs, ys)? dm(y))l/pds.

Then for Y € X,(Cr,m,)

(5X), — (5Y)] < / s / (X, )" di()) 17 — ( / b(Yar y)? dim(y))
< [ ) = gl )
< c/t | X, — Y;|ds.

This implies
¢
sup [(SX)s — (SY)s] < c/ sup | X, — Y, |ds
0

s<t u<s

and, furthermore,

L3, (SX,8Y) = (Esup|(SX), — (SY),[")"/"

s<t

IA

¢
c(E(/ sup | X, — Yu|ds)p)1/p
0

u<s
t
< c/o Ly (X,Y)ds.
Define inductively, X% := B, X" := SX"~1 then by iteration
* n n—1 nTn * 1 0
Ly p(X*, X" < ¢ HLp,T(X , X7).

Since

T

Lol X0 < ¢ B+ [ 00,0 dnt) s
0

T T
< c’/ (E sup |Bu|p)1/p ds + c’/ (/ b(0,ys)? dm(y))l/p ds
0 0

u<s

IA

T
CT(E sup |B,JP) + ¢ / ( / (0, g7 dmi(y))' ds.
0

s<T



we obtain from the assumptions on B and b that L;T(Xl, X?) < oo. Consequently,
Sy L (X, X7 < e T Lr (X', X°) < oo by the Gronwall Lemma. This re-
sults in )7 sup,cr | X7 — XI7! < oo a.s. and, therefore, X™ converges to some
process X a.s., uniformly on bounded intervals. X is a.s. continuous, has finite
p-th moments (i.e. || X|5, := Esup,; |Xs|? < o0) and is a fixed point of 5. So,

Pt T

®(m) = P* € M,(Cr,m,); this holds as |B|l5 7 < oo and L} (X, B) < oc. O
In addition suppose that b is Lipschitz in both arguments,
b(21,y1) — b2, y2)| < cller — yu] + |22 — y2l] (2.8)
and consider the map ® : M,(Cyp,m,) — M,(Cp,m,).

Lemma 2.2 (Contraction of ® w.r.t. (5 ,)
Under (2.8) and the assumptions of Lemma 2.1, fort < T and my,my € M,(Cr,m,),
it holds:

¢
£ (@(my), ®(my)) < ceCt/O £ (ma,ma)du. (2.9)

Proof: Let for:=1,2and t <T

X9 =B+ / ( / b, )P dimi(y))'/P ds
0 JCp

and let m € M'(my, m2), the class of probability measures on Cr x Cr with margi-
nals mq, mq. Then

t
sup X - X®)| < / ds|| / B, yM)P diny (y )]
0 Cr

s<t

_[/ b(Xf),yf))p dmz(y(z))]l/ﬂ

Cr
t

< / ds| / (X, M) = B(XE) yCOP dim(y D), 2]V
0 OTXOT

t
< c/ d3{|X5(1) . X§2)| 4 [/ |y§1) _ y£2)|p dm(y(l),y@))]l/p}.
0

Minimizing the RHS with respect to the coupling m we obtain

t t
sup [ XV — X2 < c/ dssup | XV — X2| 4 c/ dsly (m1,mg). (2.10)
s<t 0 u<s 0 7
Consequently, by Gronwall’s lemma,

t
sup [ XV — X2 < ceCt/O 0 (my,my)ds, (2.11)

s<t

which proves the lemma, passing to the p-th norm in the LHS of (2.11), and then
to 07 ,. O
p,t



Theorem 2.3 Under (2.8) and fOT(f b(0,y,)P dm,(y))/Pds < oo, equation (2.2)

has a unique weak and strong solution in X,(Cr,m.,).

Proof: From Lemma 2.2 we obtain for m € M,(Cr,m,)

* Tk * c
(O (), 05 m)) < bty (@) ) (er = ceT)

Tk * *
CT k! (gp T((I)(m)7 mo) + gp,T(mv mo)) < Q.

Consequently, (®*(m)) is a Cauchy-sequence in (Cr, 05 7) and converges to a fixed
point of ®. Let X**t' X% denotes the couplings of CI)k‘H( ), ®*(m) corresponding

to the iteration, then by (2.9) we have that L;T(Xk"'l,Xk) < %Tk, £ p(®(m), m)
and, therefore, we get a unique strong solution with finite p-th moment. a

Remark 1.

(a)

(b)

While the Liouville equation in Lemma 2.1 can be handled with the L;-metric,
in Lemma 2.2 we only obtain a contraction w.r.t. the minimal /,-metric (7}
(cf. equation (2.9) in this respect).

The result of Theorem 2.3 can be extended to the case p = oo, using the metric

L p(X,Y) = esssupsup [X, — V] (2.12)
s<T

and the corresponding minimal metric

0 r(my,ma) = inf{ L7 7(X,Y); X Lm,y 2 mg} (2.13)

Again the equation

¢
X; =B+ / esssup b( X, y)ds (2.14)
0

us(dy)

has a unique solution in M..(Cr,m,) if B isa.s. bounded, i.e. esssup,<7 |B,| <
0.

Several extensions of equation (2.2) can be handled in a similar way, as for
example

X; =B+ /Ot(/ b(X,,y)PulP (dy))M/P ds, (2.15)

where ugk)) = ®f:1 PX: stands for the k-fold product of uy and y = (y1,...,yx) €
IRF. More generally b = b(s,x,y) could depend upon s and the past of the
process ¥ = (Yu)u<s. In this case u, has to be replaced by u(, := PXu)uss the
distribution of the past, and we have to assume a functional Lipschitz condi-
tion on b. In a similar way we can handle also the d-dimensional case. a



Based on Theorem 2.3 we next investigate the system of interacting equations
n (2.1). The following theorem asserts that, as N goes to infinity, each X"V has
a natural limit X'. (X?) are independent copies of the solutions of the nonlinear
equation (2.2).

Theorem 2.4 Let b satisfy the Lipschitz condition (2.8) and suppose that
J16(X L, ys)|?P us(dys) < oo, a.s.; then

supv N E'/? sup|X —Xﬂp <oo for p>2 and (2.16)
t<T
NP~ Esup | XN — X/|P=o(l) for 1<p<2.
t<T

Proof: For notational convenience we drop the superscript NV; then
xi-x = [ ﬁz B XY [ DXL ) ) s
= /ds{ Zb Xi Xxiypyle _ Zb Xi, X3y
Zb (X1, XD)Pye — pr (X1, X7))H7]
Zb XL = ([ XL ),

By the Minkowski inequality and the Lipschitz condition on b, the above equality
implies (|X|r := sup <y [ X;])

IXP = X |lgp s = (E]XT = X5/
T 1 X
< / dS{CHXé—XéHerCﬁ;HXZ—X:?Hp
Zb (XY, Xiyyr — / b( XY, y)P uy(dy)) P[Py ey,

Summing up over ¢ and using the symmetry, we find

NIXT = Xy = ZHXZ X'z

T N N
. 1 o
< f (Y I = Xl 3 Bl Y
0 =1 =1 7=1
—( [ b )



This amounts to

T
X = Xy <20 [ ds{ly = X,
0

7 DBl DU K (f Mt

and, consequently, by the Gronwall lemma
T 1N 1w
iy 2T 4 L i i1/
X = X, < 2o [ dory LI Yo X2
[ B ) o)
~ zce2cT/ ds E|(— Zb (X5, X))
[ B )

By Taylor-expansion and with Y; := b(X*, X7)? (conditionally on X!) we obtain

S
Bl(S

where Sy = > (Y; —a), a = EY; > 0. Therefore, from the Marcinkiewicz-Zygmund
inequality (cf. Chow-Teicher, p. 357) we conclude

1 S
+ a)l/p _ al/p|p < _al—PE|WN|p7 (2.17)

pp

SN
NEV(EN Lyt — gl < const, EVP|2Ap = o(1

which yields (2.16) for p > 2. For 1 < p < 2 the claim follows from the moment
bounds of Pyke and Root giving E|-22-|P = 0(1) and, therefore,

Nl/p
NP~ 1E|( N o) — gl = o(1). (2.18)

a

We next interprete Theorem 2.4 as a chaotic property of the diffusions governed
by (2.1). Recall that by Proposition 2.2 in Sznitman (1989) a sequence (uy) of
symmetric probability measures on V) is u-chaotic, u € M'(E), if for (Xi,..., Xn)
distributed as up, it holds

N
1 w
~ D ox, 5w (2.19)
=1
For Xy := ¥ E (SXi,N we obtain from Theorem 2.4

Xy — X, (2.20)

where X is the solution of equation (2.2). Therefore, with m denoting the law of X
and my denoting the law of (X*¥ ... XNV} we obtain from (2.19)

8



Corollary 2.5 Under the assumptions of Theorems 2.3 and 2.4, (my) is m-chaotic.

Remark 2.

(a)

For p = oo (see (2.14)) the propagation of chaos property does not hold. Also
the case 0 < p < 1 does not lead to propagation of chaos and there does not
exist a unique strong solution of

X, =B, + /Ot/b(Xs,ys)p dm(y)ds. (2.21)

An example leading to Burger’s type equation
In our example

N
. . 1 , ,
X} =dWi+ (- > b(XLX{P)rdt, i =1, N, (2.22)

i=1

with b(-,-) Lipschitz, the instantaneous drift term seen by particle ¢, is
= Zb (X7, X)L,

Under the assumptions of Theorem 2.4,

N

i Bl Y (A7 = ([0 =0

N—oo -
=1

as well as
1 & :
i P D2 = [0t <o

Similar to the above limit relation we would like to examine the average beha-
vior of the “pseudo drift” & > " | ZF. Here, Z! := = E#i @%7G(Xf — X7,
and Oy, (z —y) = N*VP®(N*(x — y)), where ®(-) > 0 is smooth, compactly
supported on IR* and [ ®(z)dx =1 (we consider the vector valued case here).
Note that

N

zZy = ﬁjQqﬂJ LX) = X))
(— 4
= v 1 N“®P(N*(X; — X)),

7=1
and consequently,
BZp = NU(EOY(N(X) - X2)))
_ (NadE(I)p(Na(th _X,?)))/q)p
J o

o Nl [ 07 =y (X




Consider

1 ,
an = ﬁ; — (X))
1 - ] 1 2
= By 2y 3 k(X - X1~ D)
= Bl YL = X)) — up (X

j=
Arguing as Sznitman (1989), p. 196, we find that

0 if0<a<?i
2 .
an = ([ ®*dx) \utHLQ fq)Qp if az%
o0 if a>§

Therefore, only in the case of moderate interaction we obtain Burger’s equa-
tion in the limit. O

3 A Random Number of Particles

Let (W%);ew be an iid system of real-valued processes (as in (2.1)) with p-th mo-
ments and let (N,),>1 be an iid integer valued sequence of r.v.’s independent of
(W*). Consider the fo_Howing system of SDE with a random number of particles and
interactions:
. N . ,
Xy =AW/ + (= S b(XPT X At i =1, N, (3.1)
j=1
We assume the asymptotic stability condition

N,
— =Y as. as n — oo. (3.2)
n

As in Section 2 it turns out that XV have a natural limit X, a solution of the
following nonlinear SDE

dX, = dB, + Yl/p(/ b( X1, y)F uildy))'/?, (3.3)

where B £ W1 and Y is assumed to be independent of B.
For m, € M*(Cr) let M,(Cr,m,), L3 7, €5 7 be defined as in Section 2.

Lemma 3.1 Let fot |Bs|ds < oo a.s., then for any m € M,(Crp,m,) there exists a
unique strong solution of the equation

¢
X, =B, + Yl/p/ (/ b( X5, ys)P dm(y))l/p ds. (3.4)
0 Cp

10



Proof: With (SX); := Y!/? fot(fCT b(X,, y,)? dm(y))'/? ds we obtain as in the proof

of Lemma 2.1

¢
sup |(SX)s — (SY)s] < ch/p/ sup | X, — Y. |du.
0

s<t 0<u<s

Defining inductively X% := B, X" := SX"~1, we have

tn
sup [ X7 — X7 < Y P—sup [X] — X

s<t . s<t
TN t 1/
< Y "L IBsds+ | (] [ysl” dm(y)) P ds] < occ.
n- 0 0
This implies the existence of a unique strong solution. a

Let for m € M,(Cyp,m,), ®(m) denote the distribution of the solution of (3.4),
then

Lemma 3.2 Let A, := ||cY/7e||, < oo, then fort < T, my,my € My(Cr,m,):
£ 0m). @ma)) < A, [ 6 (it (3.5)
Proof: Let X() be solutions of
X0 = Byt [ o0, dmi(o)) s,
o Jog

then as in the proof of Lemma 2.2

¢ ¢
sup [ XV — x| < ch/p/ sup | XV — x| 4 c/ dsly, s(my, ma).
0 0

s<t u<s

By Gronwall’s lemma

¢
sup | X} — X2| < ey ecyl/p/ lps(my,my)ds
0

s<t
implying that
£
£ (@0m), 0(m) < [V, [ o).
0

a

From Lemmas 3.1 and 3.2 we conclude that (3.3) has a unique solution. The
proof is similar to that of Theorem 2.3.

Theorem 3.3 Under the assumptions of Lemmas 3.1 and 3.2, equation (3.3) has
a unique solution if

IBI 7 < o0 mz/dwwmwumW@<m
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4 p-th Mean Interaction in Time; A Non-Markov-
ian Case

Let (Xf’N)i:Lm’N describe a system of N particles and let b( XV -) 1=

(b( XN, Xg’N))lgsN denote the interaction vector. While in Section 2 we considered
in equation (2.1) a drift of the form ||b(X"",)||, — the p-th norm of the interaction
vector — in this section we study mean interactions in time.

Let
| N
Fi(s):=]< ) b(XoN, XN 4.1
)5 by 0 ) (4.1
be the average of the interaction vector and consider the equations:
t
XN = Wi ([ R s (42)
0
XN = X' 1<i<N, for 1 <p< oo;
ON i ,
Xp™ = Wit esssup|Fis)] (4.3)

XN = X' 1<i<N, for p=oc;

1

XN = W;’+/ |Fi(s)|P ds (4.4)
0

XN = X'1<i<N, for 0<p<l1,

i.e. we consider a drift, resulting from the p-th mean in time of the average of
the interaction vector. It is clear from the definition that this describes a system
which no longer behaves as a Markovian one but the instantaneous drift |F;(¢)|? is
weighted by the mean interaction ]l)(fot |Fi(s)[P ds)'/P=" over the whole past of the
process. From this point of view the propagation of chaos property seems to be not
so obvious in this case.

First we consider the case 1 < p < co. The nonlinear limiting equation is given

by

X, =B + (/t | /b(Xs,y)us(dyﬂpds)l/p, u, = P, (4.5)
where X;, B;, b are real—valu(ied, B is a process in Cr = C[0,7] and
b(x1,y) — b(xa,y)| < |y — 23| for some ¢ > 0. (4.6)
Define for m, € M*'({r)
M,(Cr,m,) = {my € M(C7) : (; ,(my,m,) < oo}, (4.7)
For m € M,(Cr,m,) consider the Liouville type equation
Xe= Bt (1] oXedmp ds, (18)
T

where y, is the value of y at time s.

12



Lemma 4.1 Assume (4.6) and let

T
/ |/ b(0, ys)ms(dy)|P ds < oo,
0 Cr

m, the distribution at time s under m. Then

(a) Equation (4.8) has a unique strong solution X.

(b) If ®(m) is the law of X, then ®(m) € M,(Cr,m,), that is
¢ M,(Cp,m,) = M,(Cr,m,).

Proof: Let X € A, (Cr,m,) and define

(SX): =B+ (/0 |/b(X5,y)m5(dy)|p ds)l/p. (4.9)
Then

(5X)— (SY)P = |( / | / (X, y)ma(dy) P ds)/?

(1 [orpman asyiey

< / / Xovy) = b(Yayy)Jms(dy) | ds)/?

(by the Minkowski inequality)
t
< / | X5 — Y|P ds (by the Lipschitz condition (4.6)).
0

This implies
t
sup [(SX)s — (SY)s]F < cp/ sup | X, — Y|P ds, (4.10)
0

s<t u<s
and, furthermore,

t
LH(SX,SY) < & / L2 (X, Y)ds.
0

Define, inductively,
X%:=B, X" := 85X
then 7
L;ﬁ(X”,X”_l) < " ’L*p (X1, X9).

n!
By (4.6), the integral fOT b( X5, ys)m(dy) is a Lipschitz function of X, and

L7(XL X0 = ESUP/ / By, y)ms(dy)|" ds

t<T

< B / ([0, + el ds

< ¥ [ 10yt

T
—I—C’E/ | Bs|F ds < oo
0

13



as by the assumptions the integrals on the RHS are finite. Therefore,

Tn
Y Lrp(Xt X < ch(ﬁ)l/p L (X, X0) < co.

n>1 n>1
This implies > o, L} (X", X") < co. Then
Y Lip(X7 X < oo
n>1

In consequence X" converges to some process X a.s. uniformly on bounded inter-
vals. X is a.s. continuous, and Esup,., |Xs|? < oo, since Esup,., |Bs|’ < o0; so

®(m) € M,(Cr,m,). O
In addition, suppose that b is Lipschitz in both arguments,
|b(x1,y1) = b2, y2)| < cflvr — 22| + [y1 — v2]] (4.11)
and consider the map ® : M,(Xp,m,) = M,(Cp,m,).

Lemma 4.2 (Contraction of ® w.r.t. (5 ,)
Under (4.11) and the assumption of Lemma 4.1, fort < T and my,mq € M,(Cr, m,),
it holds:

£ (@(my), ®(m2)) < cpe /0 £F (my, ma)ds, (4.12)

where ¢, = 2P,

Proof: Let for: = 1,2, and t < T,

t
—a [1 [ 0 pdmp dsy
0 Cr

and let m € M*(my,m3), the class of probabilities on Cr x Cp with marginals m;
and my. Then

sup [X) - X = / / X,y 0 dy (y )P ds) Ve
SSL‘ OT
| / | / DX, 4Oy (y )P ds) o}
0o JOp
t
< / ds| / BXD, g0~ p(X @) dm(y D, @)
0 OTXCT

< [ asleX0 = X1t [0 Py

Minimizing the RHS w.r.t. all couplings we get

t t
su X(l)—X(z)p<c-2p_1/ dssu X(l)—X(z)p—l—c-Zp_l/ dslif (my, ms).
s§I7,‘)| s s | — ~ J 0 u§15)| U U | t:_/ o 1,5( 1 2)
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Consequently, for p > 1 by the Gronwall lemma as (7 < (7

t
sup |0 = X < gt [ st msma),
s<t 0

which implies

¢
E;ﬁ(@(ml),@(mg)) <¢, ecpt/ E;i(ml,mg)ds.
0

Theorem 4.3 Under (4.11) and foT(ch b(0,ys)dm,(y))Pds < oo, equation (4.8)

has a unique weak and strong solution in X,(Cr,m.,).

Proof: From Lemma 4.2 we obtain for m € M,(Cr,m,)

Tk

Crr(@H(m), @5 (m)) < Cro (7 (@ (m), m)
1 Tk * *
< 2P CTE[KP?T(CI)(m),mO) —I—EP?T(m,mO)] < 0.
The remaining part of the proof is similar to that of Theorem 2.3. O

In the next step we now turn to the system of interacting particles defined in
(4.2), where ((W}), X!) are independent processes identically distributed for all 3.
The next theorem asserts that as N — oo each XV has a natural limit X*. (X*)
are independent copies of the solution of the nonlinear equation of Mc Kean-Vlasov

type .
Xie= B+ (fo | fOT b(X57 y)us(dy)|p dS)l/pv

4.13
Xt:() — Xo. ( )

Considered in Theorem 4.3 with B = WM. Let b satisfy the Lipschitz condition
(4.6).

Theorem 4.4 Suppose that
/b(Xsl,y)p us(dy) < oo a.s., (4.14)
then for any:1>1, T >0
81]1Vp \/N(Eil}T) XN - XYW <00 for p>2 and (4.15)

NP sup X — XiP)YWr=o(1) for 1<p<2
t<T

15



Proof: Drop the superscript N. Then
Xi—Xi = / |—Zb LX)|Pds)

/ / Ly)us(dy)|P ds)'e

= / |—Zb LXD)P ds)MP
/ |—Zb X1, X9)|P ds)!/7]
/ |—Zb (Xi XT)|P ds)V/?
/ |—Zb (XE X9) [P ds)V/?]
/ |—Zb Xi, X9)|P ds)t/P

/ / Ly)us(dy) [P ds)HP).

By the Minkowski inequality, with || X[z = sup .y | Xs],

X = XI5, = EIIXT — XI5

N
< #E /ds|—2[ (X3, X7) — (X, XD)]P
7=1
T 1 N
FE ds|— (X, X)) — b( X, X)|P
<o | s|N;[< LX)~ XL X))
ds— bXZ X] /bXZ,yusdy
/0 | Z (XL, y)us(dy) ")
T L A
< 4pt ds{c’ F| X' — X'|? P Bl — X — X7|IP
< o [ X - X o OLEREE
ds— b(X:, XY) /bX;,yusdyp.
/0 | Z (X, y)us(dy) 7}

Summing up over ¢ and using the symmetry, we find
N
NIX = X5, = > IX = X7,

16



T N
< 4p—1/0 ds{c" > E||IXI— X|?

=1

+ N E[— Zp@ X7 |p)t/epe

+cpZE| ZW X)) / b, y ) (dy) 7).
Therefore,
. . T . . . .
X - X < 4l / ds{|I X7 — XTIz, + X — Xe,
T ZE| Zb (X1, X)) / By us(dy) 7).

Consequently, by the Gronwall lemma, ), = 2 - 47~ 1¢?

T
R R BB Wk Zw X2 [ Byl
0 1=1

IA

e Zw )= [ WXt
1 P
)

by the Marcinkiewicz-Zygmund inequality (cf. Chow-Teicher, p. 357) for p > 2
respectively the Pyke and Root (1968) inequality for 1 < p < 2. O

= C, e TT - E0

Corollary 4.5 Let m denote the law of X satisfying (4.13), and let my denote the
law of (XVN, ...  XNNY then under the assumptions of Theorems 4.3 and 4.4 mx
is m-chaotic.

We next consider the limiting case p = oo (cf. (4.3)). In contrast to the limiting
case in Section 4 of p-th norm interaction, we obtain the propagation of chaos
property for p-th mean interaction in time under a stronger Lipschitz condition.

Consider for m € M*(Cr)

X; =B+ ess sup | b(Xs,y)m(dy)|, (4.16)
Cr

where X;, B; and b are real-valued, B; is a process on Cr, and with
Eesssup,<r | B,|P < 00 and

1b(21,y) — b2, y)| < eley —az|, with 0<e< 1. (4.17)

17



We use the metric (for p > 1)

z;t(X, Y):=(F ess Sup X, —Y,))Y" in X(Cp). (4.18)

Let .
ﬁ;t(ml, mg) = ij(ml, mg) (419)

be the corresponding minimal metric and let
M,(Cr,m,) = {my € M*(Cr); ﬁ r(mi,m,) < oo}, (4.20)
?EP(CTN, ») denotes the corresponding class of processes. For m, € M'(Cr) and

m € M,(Cr,m,) consider the Liouville equation

X; =B+ ess sup | b( X5, ys)dm(y)|. (4.21)

Cr

Lemma 4.6 Assume (4.17) and let

esssup| [ (0., )m(dy)] < oo.
s< Cr

Then
(a) Equation (4.21) has a unique solution X.

(b) If ®(m) is the law of X, then ®(m) € M,(Cr,m,), that is
¢ M,(Cp,m,) = M,(Cr,m,).

Proof: Let X € X,(Cr,m,) and define

(SX)e == Bt—l—esssup| (X57y5) (dy)l.
_ P
(SX)e = (SY )| Ieggggpl/ Xo, ys)m(dy))|
— p
eggggpl/ (Ye, ys)m(dy)||
< esssup | X — Y57,
0<s<

by the Lipschitz condition (4.17).
This implies

— Y4 < P N P
ess sup [(SX), — (SY),|F < ¢ esssup X, — Y, |7,
and N
Ly (SX,SY) <el; (X,)Y).
Define, inductively, X° = B, X* = SX"!, then
L2 (X7 X" < ¢ L (X X0).

18



Furthermore,
La(XLX0) = (Besssuo| [ Wy m(dy))”
(Besssal] [ 0. u)m(ay)| + [ BJm(ay)})”

< Cessspol [ O]+ (Besssup | BI1 < o
RS s<t

IA

This implies
M L (XX <Y et L (X X0) < o0,

n>1 n>1

Therefore, X 2% X uniformly on bounded intervals, and
E esssup,<¢ | X, [P < o0. O

In addition, suppose that b is Lipschitz in both arguments

b(21,y1) — b2, y2)| < cller — 2| + [y1 — v2l] (4.22)

with 0 < ¢ < %, and consider the map
O : M,(Cr,my,) — M,(Cr,m,).

Lemma 4.7 (Contraction of ¢ w.r.t. ENZ*N)

Under (4.22) and the assumptions of Lemma 4.1, fort <T and mq,ms € Mp(CT, my),
it holds:

c

2 (@(ma), ©(m2)) < 1_ e

= (ma,ma). (4.23)
Proof: Let for: = 1,2, and t < T,

X( = B, +esss 75p|/ 5 ,ys ydmi(y)|,

0<s<
and let m € M*'(my,my). Then

E ess Sup XM — x @)

- E|esssup|/ X,y W) (51 |—esssup|/ X,y dmy (5 )P
< Blesssup X0 - XO 1+ [ [yl0 - yPlam(y .y )P
5% OTXCT

Therefore, passing to minimal metrics on the RHS,

(E ess sup |X5(1) - Xs(2)|p)1/p < C(EGSS<S}1p |Xs(1) - Xs(2)|p)1/p

Yel( inf / ess sup [y — y@ldm(ys, )17, ic.
OTXOT t

meM(my,m2) s<

(1= )(Eesssup | X[V = XP)'P < e (my,mo) < el (myma).
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Passing to the minimal metrics in the LHS, we obtain

B @(my). (my)) <

_ ch;T(ml, mg).

a

Next we conclude the existence of a unique solution of the McKean-Vlasov type
equation

X, =B, + ess sup | / b( X5, ys)us(dys)|, Xizo = Xo. (4.24)
Theorem 4.8 Under (4.22) and

esssup | [ b0, )dm ()| < o,
s Cr

equation ({.24) has for m € Mp(CT,mO) a unique weak and strong solution in
Xp(CT,mO).

Proof: From Lemma 4.7 with ' := t=, m € M,(Cr,m,)
GE (@M (m), @ (m)) < CF G7(@(m), m) < oo,
which implies the theorem. a

Consider the system of N interacting particles driven by equation (4.3) i.e.

XN = wi —|—esssup|—Zb XN XN (4.25)
7=1

XN = X 1<i<N.

We show that X*V has a natural limit X?, where X? are iid copies of the solution
of (4.25).

Theorem 4.9 Suppose that ({.22) holds and that the r.v. Y,; := b(X! X7) on
C10,T] are in the domain of normal attraction (dna) or satisfy the bounded law of
the iterated logarithm (BLIL) and satisfy E||b(X}, X7||2, < oo, then for anyi > 1

supay E HXZ"N — X0 < 00, (4.26)
N

where ay = VN or ay = /Nloglog N.

Proof: Similar to the proof of Theorem 4.4, we obtain from the condition 2¢ < 1,
for o> 1

N

Z esssup|—Zb X XY /b(X;,y)us(dy)P.

LET(XZ X
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If (Y;,; are in dna (cf. Hoffmann-Jorgensen (1977)) then (4.26) follows with ay =
VN. If (Y;,;) satisfy the BLIL, then for the corresponding centered sum Sy

EEHS—NHOO < Tm Bl o 5 s, (cf. Kuelbs (1977)) and (4.26) is a consequence.
apn apn D

We remark that by Corollary 5.7 of Hoffmann-Joérgensen (1977) a sufficient con-
dition for the dna of Sy = Ej\; X; is given bx

E|| X[ < oo, (4.27)
|| lo. the bounded Lipschitz-norm w.r.t. any Gaussian metric p.

Corollary 4.10 Under the assumptions of Theorems /.8 and 4.9 let m denote the
law of X, my the law of (XVN ..., XNN) then my is m-chaotic.

Remark 3. In the case 0 < p < 1 we see by similar methods that there exists no
unique solution of the Liouville equation and also there is no propagation of chaos.
5 Minimal Mean Interaction in Time
Consider the analogue of equation (4.3) with minimal mean interaction in time

- . 1 X . ,
XpU = Wt ess inf % 2 b(XEN, XN (5.1)
=
XN = X1 1<i<N.
The corresponding Boltzmann type equation is
X, = B+ esss<itnf | /b(XS, y)us(dy)| (5.2)
Xeo = X,

We obtain the following results. As the proofs are similar to those in Section 4, we
omit them.

Theorem 5.1 If m, € M*(Cr) and

1
b(21,y1) — (22, y2)] < ellor — o + [y1 —12]], 0 < e < 3 (5.3)

and

esssup | [ b(0,ys)dmo(y)| < oo, (5.4)
s< Cr

then (5.2) has a unique strong solution in X,(Cr,m,).

The system (X*V) in (5.1) has a natural limiting process (X*), which are iid
copies of the solution X of (5.2).
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Theorem 5.2 Under the assumptions of Theorem 5.1 and Theorem 4.9 holds for
any v > 1
7,N 7,N
sup ax E sup | X, — X < oo. (5.5)
+<T

As corollary we obtain:

Corollary 5.3 Under the conditions of Theorems 5.1 and 5.2, the system (5.1) has
the propagation of chaos property.

6 Interaction with the Normalized Variation of
the Neighbours; Relaxed Lipschitz-Conditions

Consider the following system

XN = / WZ XN, X, ))ds (6.1)

XN = X 1<i<N,

where . .
fi B 2
E| X! — EX '

is the normalized variation of particle i, ((W}), X!) are independent identically dis-
tributed processes on Cr x IR. The drift is given by the mean of the interactions
with the normalized variation of all particles. We assume that

b(x,0)=0, Va, (6.3)

i.e. the interaction is zero, if the relative variation is zero.
The McKean-Vlasov type equation corresponding to (6.1) is given by

X, = Bt—|—/0t(/b(Xs,y)dP)%S(y))ds (6.4)
Xt:O — Xm

where B £ Wi. Note that B in this section is not necessarily a Brownian motion.
We study these equations under a relaxed Lipschitz condition. Assume that b has a
partial derivative

b, (6.5)

w.r.t. the second coordinate and consider
(L1) by(21,y) = (w2, y)| < cloy — o
and
(L2)  [by(@1,y1) = (w2, y2)| < cflwr — @2 + [y — wal].
(L2) allows a quadratic growth of b w.r.t. the second component. To obtain
contraction properties in this case, we have to switch to a suitable probability metric
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with regularity conditions of higher order. This makes necessary an essential change
in the method of the proofs given so far.
For m € M;(Cr) the distribution of a process (&) let m denote the distribution

of the normalized process (£,) assuming an absolute first moment of m;,. Define

o

Ny = my —0,=N" and (6.6)
y

Fw = [ Pt (6.7)

o0

In concordance with the usual notation of derivates of a function f by f), s > 1,
we define the s-fold integrated function by f(=*) since this is the inverse operation
and (fCNW) = f ete.

Note that by (6.3) we can replace the integration w.r.t. ms in (6.4) by integration
w.r.t. Ns. Consider the Liouville equation

¢
X, = B, —I—/ (/ b(Xs,y)dNy(ys))ds. (6.8)
0
By integration by parts (6.7) is equivalent to
¢
o=+ [ ([ X nab ) (6.9)
0

Theorem 6.1 Suppose that m € M'(Cr) has a finite first moment and
Esup,oq |Bs| < oo. Furthermore, let (L1) be satisfied and suppose that

/OT/Ib’z(o,y)llFNs(wldy: /OTE/OES |40, )]dt < oo. (6.10)

Then (6.8) has a unique strong solution X and, moreover, F sup,.p |X;| < oo.

Proof: Let
t
(SX): = Bit / ds( / B(X e, )N (y)).
0 R
t
_ B4 / ds( / by( X, ) dES ().
0 R

Then by the Lipschitz condition (L1),
m&x»—<sy»|f;‘/¢ky/ (B(Xr ) — BV, e JFS )
S(/%/dX Vol 1P () s
Observe that the total variation norm of the measure Fy " (dy) is 1;
Var (P) = [ 1Pt W—/Q@@+Aﬂuwgm@=m&hﬂ
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Therefore,
t
|(SX): — (SY)| < c/ | X, — Y;|ds (6.11)
0

implying
t
L7 ,(5X,5Y) < c/ L7 (X, Y)ds.
0

Define inductively, X° = B, X" = SX"~! then

* n n— nTn *
Li (X", X" <e¢ HLLT(Xl,XO). (6.12)
Note that
(XX = Esup| [ ds( / Wy ( By, ys)d S (ys)] (6.13)
s<T Jo R

IA

T
E / s / B3 Buy )| | E. (),
0 R
T
< B / s / (| Bu) + 18500, ) ) | Ew. (yo) s
0 R

T T
< B[ asapis [ ds [ 0.l Pl < .
0 0 R

The equality in (6.10) results from

[ 10 )l
= [ B0, ()= Fatwldy

= [ mwlE i+ [ 010 - B )y

+oo Y &s
= /_ (/0 |b’2(0,t)|dt)ngs(y) = E/O 165(0, ¢)|dt < oo.

o0

Consequently, L} 7(X', X%) < oo. (6.12), (6.13) imply the existence and the uni-
queness of a strong solution X. Moreover,

LY (X, B) < ZLT,T(XnaXn_I) < €CTLT,T(XlaB) < 003

n>1
that is, I/sup,cr |Bs| < oo implies I sup g |X;| < co. 0
We next extend the result of Theorem 6.1 to the case where p-th moments

exist, p > 1. Denote HXH*T,p = (ESUPth |X(t)|p)1/pv 1 < p < oo, and HXH*TOO =
E ess supoci<t | X (1)].
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Theorem 6.2 Suppose that || B||7, < oo for some 1 < p < oo. Suppose that (L1)
holds and suppose that

T
/ ds( / B30,y Fov, (o) Pdye) /7 < 00 (1< p < o0) resp.  (6.14)
0 R

/0 ds(ess sup [B,(0, )| Fxc (52)]) < o (p = o0). (6.15)

Then (6.8) has a unique solution X and || X||7, < co. In particular, if ®(m) is the
distribution of the solution of (6.8), then ®(m) maps M,(Cr,6,) into M,(Cr,d,).

Proof: As in Theorem 6.1
(530 (5X)] < e [ 1~ Vs,
0
implying for any 1 < p < o0
L3(SX,8Y) < / L (XY )ds.
0
Further, for 1 < p < oo (the case p = oo is similar)

L2p(X.B) = (Esup| | ds( / By Baya) A () 7)1
R

s<T 0

< (B[ ds [ Bl )
= /0 dS[E(/IR|b/2(B57ys)||FNs(ys)|dys)p]1/p
< [ st [ (el 0D P ) 1

T T
< e / ds(E|B,JP)" + / ds( / 1850, o) P () P dy) 77 < oc.
0 0 R

Then continue as in Theorem 6.1, to complete the argument. O

Denote by M3 (Cr,d,) the space of all m € My(Cr,d,) such that

: . d
i?iTEE“’ — B&| =1 AL >0, £ =m. (6.16)

0

Condition (6.16) postulates that the L'-variation does not converges to zero for
0 < s < T. For a Brownian motion this means that we do not start deterministically
at one fixed point at s = 0.

Let ®(m) be the solution of (6.8)

X, = Bt—|—/0t ds(/}Rb(mes)d my (ys))

under the assumptions of Theorem 6.2 with p = 2. Then by Theorem 6.2, ® maps
MQ(CT, (SO) into MO(CT, (SO).
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Theorem 6.3 (Contraction to @)
Suppose that the Lipschitz condition (L2) holds, and mq,mz € M;(Cr,d,). Then a
contraction of ® w.r.t. 5, holds:

05 (@(my), @(m2)) < ct/o 05 o (ma, ma)du. (6.17)

Proof: For my,my € M3 (Cr,4,) let

s
s [

Dy N dF o (y))ds
X0 D 4.
Then
M @ t (1)
Xy =X, = /[/ blz(Xs(l)aygl))dFN(l) (ygl))
0 R s

- [ B s
R kS

Since the total variation norm of F](Vzl) is 1 and the total mass is 0, by the Jordan
decomposition

P de) = pif (de) = g (do),
where pf (IR) + p5 (IR) = 1, pf (R) — 5 (IR) = 0, in other words,
1
is (R) = g (IR) = 5.

We write
-1 i ) —
FEDds) = ¥ (de) — pl (d)

and so,

t
X=X = [ [ Byt - )
0 R

/ B(X ),y ) (2 — =) (dy®)).
R

(1)+ (2)+

Let dm} (ygl), y£2)) be a coupling for MS and ps~ ", that is, m] is a positive measure

(1)+

with total mass 5 and such that mmT = pu;’", ¢« = 1,2, m; the i-th component.

Similarly, let dm; (yg ), y£ )) be a couphng for /,LE, )~ and /,ng)_. Then

t
xM—x® = / ds] / (XD, y ) — by (XP, yP))dmF (yV, )
0 R

B A“’Mﬁ”, g = (X, yP)dms (D, y ).
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Consequently, by the Lipschitz condition

X=X (6.18)
t
< [ st X)Xy ldm + )00
= /dS/ | XM = XP| + elyl) — yP)d(m} +m7 )y, y ).
IR2

Observe that the total mass of m¥ + m is 1, and for ¢« = 1,2, mym} + mm, =

o (-1)

+ /,LE, )~ is the variation of FNE’) . Minimizing w.r.t. all couplings m} +m; with

marginals /,Lgi)—l_ + /,Lgi)_, 1 =1,2, we get

1
|X§1>—X§2>|§/ cds|X5(1)—X5(2)|—|-/ 1w 0-(2) = Fes o= (x)|de.
0 R ) ) L

As FM(51)++M(51)—($) = F\/ar( (- 1)))(:1;), we have that the integral on the right hand side

N(1
equals, using [ |F,, (z) — F,,(2)|dz < [ |z|Var(ps — p2)(dz)
/ |F\/ar F(—l) (z) — FVar(F(—(;)))(x”dx (6.19)
Ng

< /|:1;|Var (Var(F ) Var(F](VL )))(dl’)

< /|:1;|Var P ))(dx)
= [ el gu <x>—FJ§§3<x>>|dx
— /|:1;||F Lo (@)lde (as N, = PE—5,)

= /|:1;||F0(1)(:1;)—F0(2)(:1;)|d:1;
R &s &s

0(1 O(
= 2/4;2(55 755 )7

o(1) . o9 ) _ ey /p1e _geld (i (@)
where £, are 1.v.’s with laws P& = PE—FEN/EET-BET and P = my",

By the minimality of x4,
ra(€, €)= inf (B |y — P2l = €0}, (6.20)
o(1) o(2)

By means of (6.20) we estimate k2(&, ,&, ) by mz(fﬁl),ff)) making use of the as-
sumption that

sup BI¢0|* < Ar
s<T

- () _ pel] —. 4
inf BI¢7 — BEP| = A7 > 0.
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Then

o(1) o(2)
Ka(€, 75 ) (6.21)
o(1) o(2) o) o)
< (€, ,f AR |+E|€s %)
&Y Ef & — g
S 214T£2( ) (2) (2))
Bl — BN B|€? — EeP)
< oa fﬁ”—Efﬁ” ¢ — gel?
= 7l (1) 1)) (D (1) )
B — BE| BIET — BET
g S me e
+ 2A70(— TR @)
Bl&7 — BT | BIEY — B
24
< iy (€ — B, — Be?)

Bl — B

1 1 2 2
bo245(EJE®) - E§(2)|2)1/2|E|§§ - eV - Bl — Bl

(Bl — BeM))(B1e? — BP))

< erla(g),€9),
using the fact that

|BEW — BEP| < 6,(EM,€9) < (M), ),

%
|Eel) —pel| — A*

and . Combining our estimates we write

t
X X< [ eds X XO 4 erun ), (622
0

S

using the assumptions E(fﬁ”)Q <00, 1=1,2,and E|§§2)—E§§2)| > A% > 0 uniformly
on s € (0,T]. Then, by the Gronwall inequality, with ¢} = ¢V ¢,

1
sup [ X{0 = X < e [ oD i)
s<t 0

The above implies by passing to minimal metrics that

0,(@(ma), @(mo)) < ceT [145 (m1,ma)ds. 0

Theorem 6.4 Suppose that || B[, < oo, (L2) and for some m, € My(Cr,d,) with
Ng = N holds

/0 ds( / 18500, )P (9) dy)' /2 < oo (6.23)

and

¢"(m,) € M5(Cr,4,), Vn € N, (6.24)

then the Boltzmann type equation (6.4) has a unique weak and strong solution in

My (Crp,4,).
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Proof: From Theorem 6.3, for m € My(Cr,4,)

Tk
G254 (m), 1 (m)) < CR o (G (B(m). 8.) + 65,1, 8,)) < o0

Therefore, (®*(m)) is a Cauchy sequence in (Cr, {5 ) and converges to a fixed point.
If X6+ X®) are the optimal couplings of ®*+1(m), ¢ (m) we get that (X®) is
a LiT—Cauchy sequence, leading to a (unique) Lj p-fix point X. a

Remark 4. Condition (6.24) postulates that the solutions of the Liouville
equations corresponding to ®”*(m,) have strict positive variation. A simple suf-
ficient condition for this to hold in the case that b is bounded, [b] < M is that
inf,cr |Bs — EB;| > T'M + . This condition is useful only for fixed T but not for
T — oo. But it might be possible in examples (as in the construction of solutions
of SDE’s is typically done) to construct a solution piecewise on small time intervalls
and to join the pieces to a solution on the whole real line. For special choices of
b it is possible to obtain weaker sufficient conditions for (6.24). Condition (6.16)
is needed in order to reconstruct the process. Without this condition we only can
reconstruct the normalized process (cf. (6.21)).

We now turn to equation (6.1). The next theorem asserts that as N — oo each
XN has a limit X°. (X?) are independent copies of the solution of (6.4) considered
in Theorem 6.4.

Theorem 6.5 Suppose that (L2) holds and moreover, ||b||o. = sup,, [b(z,y)| < oo.
Suppose also that uniformly on 1,

|I/Vi|T7OO ;= esssup sup |WSZ| <X < .
0<s<T

Then for any > 1, T >0,

supv NE sup | XV — X!| < oc.
0<t<T

Corollary 6.6 (Propagation of Chaos)
Let m denote the law of X' satisfying (6.4) and let Wy denote the law of
(XUN L XNNY . Then under the assumptions of Theorems 6.4 and 6.5 Wy is

m-chaotic.

Proof of Theorem 6.5. Omitting the index N, we get

Ni- X = / > 5>—/Otds/OTb<Xs,ys>P§s<dy>

I (1) ]()—I—[3( ), where

s S B(XL X, v ds—Zb
/ -

J

2 |

Lt): = |
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7=1 7=1
t 1 N . g] t B o
Bt = ([ dsy YU - [ s [ )Pt
0 N 0 C
Jj=1 T
ElL|r: = E sup E|L(1)]
o<t<T
r X o o
= B [ sl S X)L X)L
0 Jr
From (1.2)
|b($,y)—b(i‘,y)| = |b$ ) —b(l‘ 0) (b(i’,y)—b(i‘,@)ﬂ
= |/ by(z, t)dt — /b;(x,t)dﬂ
|yl
< [ e~ b vl
0
< e —z(lyl.
Therefore,

TN
Bt < | ¥ - R
Assuming that [[b]|o. = sup,, |b(x,y)| < oo and

(W1 :=esssup sup |WEY| < K,

0<s<T
then '
sup [ X0V < K 4T+ bl
i\\N
Therefore,
T . — .
El\li|r, < C/ ds B|X! — X}|
0
T 1 N _. o] _ ot
Bl < [ dory 3O )~ 8K
For 0 <y <y,

)~ el = [ a0l

IA

Yy
c / By 1) — B0, 1)]
Yy
Yy
+ c/ |b’2(0,t)—b’2(0,0)|dt
Yy
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B 1
< clzlly—yl+ §|y2 — v

< dly—yl(el+ L3,
In general,
bl ) = bz, )] < ely — (o] + LI
Assuming that X7V are bounded a.s., | X7V |7 o, := esssup supg, o [ XV < 0o, we
obtain
T & e .o
Ifale = Elblr < [ dory ALK = L)
r 4N Y 1 e 0 J
<< doy L BIK = X1 (X014 50 K 41X
T 1N o 0]
< Cabs ; dSﬁ;EU{s_XJ

Using the estimates for |I1|7 and |I5]r, we have

N
NIX = Xlga = Y X = Xz

=1
T N N
< cun / As{3 BIXT = Xy + Y BN - X))
0 =1 7=1
N T 1 N o 9]‘ - o
DO AREES SE T SR IS ATE T
By the Gronwall lemma 4
oJ o
i\ T T YVioX \ X,
IX =X lr1 < cans fy dsla iy Jy dslar 00, 6N X )= [, (X, ys) PXe(dys)| <
Cabs * (O(\/Lﬁ)) by the Pyke and Root (1968) inequality. O
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