Reprinted from JOURNAL OF MULTIVARIATE ANALYSIS Vol. 32, No. 1, January 1990
All Rights Reserved by Academic Press, New York and London Printed in Belgium

A Characterization of Random Variables with
Minimum L?-Distance
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A complete characterization of multivariate random variables with minimum L?
Wasserstein-distance is proved by means of duality theory and convex analysis.
This characterization allows to determine explicitly the optimal couplings for
several multivariate distributions. A partial solution of this problem has been found
in recent papers by Knott and Smith.  © 1990 Academic Press, Inc.

1. INTRODUCTION

For probability measures P, Q € M'(R*, B¥) let

o(P. Q) =int { ] 1x— 517 du(x. )i e M(P. )} 1)

denote the L? Wasserstein-distance, where M(P, Q) is the set of all dis-
tribution functions with given marginals P, Q. The problem to find explicit
solutions of (1) for k=2 or to determine (P, Q) has been an open
problem for long time (see, e.g., the discussion in [10, p. 654; 12]), while
for k=1 the solution of (1) goes back to the classical papers of Frechét
[2] and Hoeffding [5].
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If X, Y are square integrable random variables, X~ P, Y~Q (X~ P
denoting that X has distribution P) then

E|X—Y|*=|EX—~EY]*+tr 5, +tr £, —2 tr Cov(X, Y), (2)

where 2, = Cov(X), 2, = Cov(Y). Therefore, problem (1) is equivalent to:

Find sup{tr(y); y € Cov(P, Q)}, (3)

where Cov(P, Q)= {y e R***;3X~ P, Y~Q with ¢ =Cov(X, Y)}, and
also equivalent to:

Find sup{E<X, Y); X~ P, Y~Q}. (4)

For P=N(a, 2,), Q= N(b, 2,) one has

Cov(P, Q)={|,DGR"X"; (E; 4 >go}=:1< (5)
D %

(20 denoting positive semidefiniteness) and in this case problem (1) was

solved by Dowson and Landau [1] and Olkin and Pukelsheim [9] (cf.

also [4, 3]). Obviously, for any P, Qe M'(R*, B¥) with means @, b and

covariances 2|, X,, respectively, one has

Cov(P, Q) =K (6)
and, therefore,

a(P, Q) za(N(a, 2), N(b, X))

{cf. also Theorems 2.1 and 2.5 of [3]).

Some general results for problem (1) have been obtained recently in two
papers of Knott and Smith [8, 13]. In [8] Knott and Smith consider the
existence and description of solutions of the form (X, ¢(X)) with regular,
invertible functions ¢. In [13] they introduce the related notions of weak
and strong optimality in the context of transportation problems for multi-
valued functions and obtain in this context sufficient conditions for strong
optimality which under additional compactness assumptions are also
necessary for weak optimality. Their results imply in particular sufficient
conditions for problem (1).

We take up the idea of Knott and Smith and establish for problem (1)
a necessary and sufficient condition. Some examples show the applicability
of this characterization. We also give an extension of this result to distribu-
tions on general locally convex topological vector spaces.
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2. CHARACTERIZATION OF SOLUTIONS

For a closed convex function f on R* (closed = lower semicontinuous) let
* denote the conjugate function
jug

f*(y)= sup {0 =f(x)} (8)

and denote the subdifferential of fin x by

f (x)={yeR/(z)=f(x)2<z—x,p), ze R} (9)

(cf. Rockafellar [11]). The elements of df(x) are called subgradients of f at
x. Then it holds that for all x, y,

Fx)+f* () 2<%y (10)
with equality if and only if y € 9f (x).

THEOREM 1. Let P, Q€ M'(RX, B*) with | |x|* dP(x)< o, | |x|*dQ(x)
< o0.

(a) There exists a solution p of (l); equivalently, there exist
rw's X~P, Y~Q with E|X—Y|*=0(P, Q).

(b) Let X~ P, Y~Q; then (X, Y) is a solution of (1) if and only if
Yedf(X) a.s. for some closed convex function f. (11)

Proof. (a) The existence of a solution of (1) is well known, cf. [10;
7, Theorem 2.19; 4].

(b) We shall make use of the following special case of duality
theorems established by Kellerer [7, Theorem 2.6],

C(P, @) i=sup { [ <x.»> dutx y)i ne M(P. 0]

=inf{fgdp+jh dQ; ge L'(P), he L'(Q)
G5y Sg) ) Yy = IR QL (12)

Let X~P, Y~Q and assume that Yedf(X) as. for a closed convex
function 7. Then for any other rv’s ¥~ P, ¥~ Q holds by (10),

EC T SEfX)+/HI)N=Ef(XN)+fXY)=EX, Y).  (13)

Therefore, by (2), (4) the pair (X, Y) is an optimal coupling.
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Let, conversely, (X, Y) be a solution of (1) and assume w.lo.g. that
C(P, Q)=I(P, Q) < oo, then by Theorem 2.21 of [7] there exists a solution
geL'(P), he L'(Q) of the right-hand side of (12). Defining f=g** we
obtain that f is closed, convex, and (x, y) <f(x)+/*(y)<g(x)+h(y);
Le., also the pair (f,/*) is a solution of the right-hand side of (12). This
implies that

X, Yy=fX)+f*(Y) a.s. (14)

and, therefore, by (10) that Yedf(X)as. |

ExaMpPLES. (a) Note that the proof of the sufficient condition in
Theorem 1(b) does not need the assumption of square integrability. The
square integrability assumption is made in order to ensure the existence of
integrable functions f(x), g(y) with f(x)+g(y)< (x, y)> which is needed
for the existence of solutions for I(P, Q).

(b) For a positive semidefinite matrix Te R***, let T~ denote the
Moore Penrose inverse and define f(x) =3 (x, Tx), g(y) = 4(y, T ), then
f(x)+g(Tx)=4%(x, Tx)+ 3 (Tx, T~ Tx)=(x, Tx) and, moreover, g=/*
on {x: Tx=0}" (cf [11, p. 108]). Therefore, if Q = P” denotes the image
of P under T and if X~ P, then the pair (X, TX) is an optimal coupling.
With X2,:=TX, T"=Cov(TX) this corresponds to the case that
rg(Z,)crg(2)). In the normal case we obtain in this way the solution of
Dowson and Landau [1] and Olkin and Pukelsheim [9]. Especially, if
6 =(04,.., 0;), 0,>0, then the scalings (X, 6X), 6X=(c,X,, .., 0, X,) are
optimal couplings. So we can easily calculate explicit distances in scale
families like, e.g., isotropic Cauchy densities

o
X1, X5) = —, o>0.
fa( 1 2) zn(xf_"_x%_,{_o,h)}/z

(c) An interesting consequence of Theorem 1 (b) is that for any P,
Q € M'(R*, B¥), square integrable, one can find a closed convex function f
and X~ P, Y~ Q such that Yedf(X) as. Especially, if 4 = R*, Bc R,
0<i(4)< o0, 0<r¥(B)<oo, then there exist rv’s X, Y uniformly
distributed on 4, B with Y e df(X). Of practical interest is to find smooth
(polynomial) mappings F: A - B with 0F/dx>0 (the Jacobi matrix of
convex functions is positive semidefinite) such that ¥=TX is uniformly
distributed on B. This problem leads to a Monge-Ampére partial differen-
tial equation. Some examples of this type are discussed by Knott and Smith

[8].
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(d) From Rockafellar [11, p. 2387, holds: T(x)edf(x) for some
closed convex function if and only if T is cyclically monotene, i.e.,

-1
Y xip1—x:, Tx;) <0 for xg, . X, 1, X, =Xo€ R (15)
i=0

(e) Let UeB* T:U— R* injective, measurable with 6T/dy positive
definite. If Pe M'(R*, B*) with support S(P)cU and density f, then
Q := P7 has the density g:=f-T~'/0T ' on V=T(U) (6T ' the Jacobi
matrix). If X~ P, then (X, 7T(X)) is an optimal coupling. This allows us to
give many examples of solutions of (1), especially in exponential families.

(f) If k=1 and F, G are the dfs of P, O, then, as is well known, a
solution of (1) is given by X=F '(U), Y=G ~(U), where U is uniform
on (0, 1). Defining ¢(x):=G "o F(x) and f(x):= {3 #(y)dy, [ is convex
and Y:=G Y (U)edf(F }(U)). So the classical result is a consequence of
Theorem 1.

(g If x,.,x,eRY y,.,p,eR Pi=(/n)Yr ¢, Q:=
(1/n) 37, ¢,, then any ue M(P, Q) is of the form p=2's;¢, ,,, Where
S'=(s;) is a doubly stochastic matrix and the solution of (1) is attained by
an extreme point of M(P, Q). Therefore, (1) is equivalent to the rearrange-
ment problem

n

Z |xi—yn(i)12:ni££7 (16)

i=1

where v, is the set of permutations of 1, ..., n.

If y,=Tx,, 1 <i<n, T positive definite, then the identical permutation is
a solution. In general it seems to be difficult to construct a mapping f as
in Theorem 1. Approximative solutions may be based on (15). Assume that
7 =1id is our starting approximation. Then by (15) for m =2 and any pairs
i, j it should hold that

<xi’yi>+<xj7yj>§<xi’yj>+<xj:yi>' (17)

If for some pair i, j (17) is not satisfied then exchange y, with y,. This is
repeated until all pairs satisfy (17). In the next step in (15) with m=3 we
consider all triples i, j, / and it should hold that

{xpyid+ <xj’ yj> +{xp 2,0 2<%, yj> + <xj> 2> +<x;, 2. (18)

Repeat this procedure with m =2, 3, 4, ... until the objective function does
not change essentially.
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3. MaxiMAL CORRELATION

The proof of Theorem 1 extends to a more general situation. Let E be
a separable, locally convex topological vector space (Ictvs) with dual space
E* supplied by the E-topology. Then

cExE* > R!
(x, )= y(x)= 1 {x,¥)

is continuous w.r.t. the product topology on E, E* and, therefore, ¢ is
measurable w.r.t. the Borel g-algebra on Ex E* which is identical to the
product c-algebra. For tight probability measures P, Q on E, E* let
M(P, Q) denote the set of all tight probability measures on E x E* with
marginals P, Q. Motivated by (4) we denote

c(p, @) =swp {[ Cm ) dutyyueMr 0} (19

the maximal “correlation” between rv’s X, ¥ with X~ P, Y~ Q.

From loffe and Tichomirov [6] we use the following notations and
results from convex analysis. Let for a closed convex function f on X and
xeX

U (x)={yeE*f(z)z(z—x,y),Vz} (20)

denote the subdifferential of f at x (we admit that f(x)=co and so in (20)
we also can restrict to zedomf). Furthermore, define the conjugate
function

f*y)=sup ({x,y>—f(x)),  yeE* (21)

and, similarly, f** = (f*)*: E—> R' (cf. [6, p. 159]). Then
fE)+f*(»)zLxp),  VxeE yekE* (22)
and
yedf(x) iff f(x)+/*y)=<xp) (23)

For the application of Theorem 2.21 of [7], we need an additional assump-
tion.

THEOREM 2. Let P, Q be tight probability measures on E, E*, respec-
tively, then:
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(@) There exist rv’s X~P, Y~Q with E(X,Y>=C(P,Q)=
inf{[fdP+ | f* dQ; f convex, closed}=I(P, Q).

(b) If C(P,Q)<oo, clx,y)2f(x)+g(y) for some feL'(P),
y e LYQ) finite, and X ~ P, Y ~ Q, then it holds: (X, Y) is a solution of (19)
if and only if Ye df(X) for some closed convex f.

From Theorem 2 one can infer as in Example 1(a) optimal couplings for
Gaussian measures in Hilbert spaces (cf. also Theorem 3.5 of [3]).
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