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Abstract. In this paper we generalize recent comparison results of El Karoui,
Jeanblanc-Picqué, and Shreve (1998), Bellamy and Jeanblanc (2000) and
Gushchin and Mordecki (2002) to d-dimensional exponential semimartingales
S, S∗. Our main result gives sufficient conditions for the comparison of Eu-
ropean options w.r.t. martingale pricing measures. The comparison is with
respect to convex and also with respect to directionally convex functions. Suf-
ficient conditions for these orderings are formulated in terms of the predictable
characteristics of the stochastic logarithm of the stock price processes S, S∗. As
examples we discuss the comparison of exponential semimartingales to multivari-
ate diffusion processes, to stochastic volatility models, to Lévy processes, and
to diffusions with jumps. As consequence we obtain extensions of several recent
results on nontrivial price intervals. A crucial property in this approach is the
propagation of convexity property. We develop a new approach to establish this
property for several further examples of univariate and multivariate processes.
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1 Introduction

For the pricing of options in incomplete market models two general approaches
have been suggested in the literature. One approach is to price the option by
choosing an (equivalent) martingale pricing measure by some optimization cri-
terion, like minimal risk, minimal distance to the underlying measure and/or
fitting of some observed prices. In this way one gets several well established
martingale measures like the minimal martingale, the q-optimal measure, the
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minimal entropy measure, the Esscher–measure, or the variance minimal mea-
sure (see [37, 6, 29, 4, 11, 13]). A second general approach is the utility based
indifference price and variants of it due to [21] and [5] (see also [28]). The utility
indifference price is in one to one correspondence with the martingale pricing
measure obtained by minimizing related f -divergence distances (see [13]).
If no additional assumptions (like an optimization criterion or utility approach)
are made, the price of a European call option in an incomplete market model
is not unique. It lies within the no-arbitrage price interval that is due to no-
arbitrage considerations. For some classes of models the no-arbitrage interval
coincides with the trivial pricing interval and the no-arbitrage principle is of
no help for choosing a meaningful price. For the models with non-trivial no-
arbitrage intervals a basic task is to identify a martingale measure under which
the option price bounds the other option prices of the model that are evaluated
w.r.t. all other martingale measures from above or from below. Thereto, one
needs a comparison result for option prices of a model under different martingale
measures.
Comparison results of this type also give an ordering between concrete distance
minimizing martingale measures as pointed out above. One general idea is to
parametrize the set of martingale measures and prove an ordering of prices in
the parameter. After identifying the concrete martingale measures with the
parameter, one obtains an ordering of prices calculated from these measures.
More generally, it is also of interest to compare different related models. If the
parameters of one model bound the parameters of another in some sense, this
should give an ordering of the corresponding option prices. In semimartingale
models it is natural to consider the local characteristics of the semimartingale
as parameters and to require an ordering for them. In fact, we will state that
ordering the so-called differential characteristics of the stochastic logarithms of
the considered semimartingales implies ordering of the option prices.
The following example illustrates the basic idea of the main comparison results
in this paper. This example and also the further models considered in this paper
belong to the class of stochastic exponential semimartingales which are in one to
one relationship to exponential semimartingales (cp. Lemma A.1). For a given
1-dimensional semimartingaleX the solution of the equation St = s+

∫ t

0
Su−dXu

is given by S = sE(X), where E denotes the stochastic exponential of X. In turn
X = Log(S) is called the stochastic logarithm of S. For a semimartingale X the
quadratic variation of the continuous martingale part Xc is also called Gaussian
characteristic and denoted by C = 〈Xc〉. We assume that C has a representation
of the form Ct =

∫ t

0
cudu, where c is called the differential Gaussian characteristic

of X. Now let (St)t∈[0,T ] be a 1-dimensional stochastic volatility model defined
by the SDE dSt = StσtdWt, where W is a P -Brownian motion and σ is an
adapted process. Let (S∗t )t∈[0,T ] be the solution of a 1-dimensional diffusion
with evolution dS∗t = S∗t σ

∗(t, S∗t )dW ∗
t , where W ∗ is a P ∗-Brownian motion.

Observe that in this case X = Xc, and the Gaussian characteristics are given
by Ct = 〈X〉t =

∫ t

0
σ2

udu and C∗
t = 〈X∗〉t =

∫ t

0
σ∗2(u, S∗u)du. The differential

Gaussian characteristics of the stochastic logarithms X,X∗ of S, S∗ are given
by ct = σ2

t and c∗ = σ∗2. El Karoui, Jeanblanc-Picqué, and Shreve (1998) show
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that the comparison of the stochastic volatilities σ, σ∗ of X,X∗, σt ≤ σ∗(t, St)
for λ\-a.e. t ∈ [0, T ] P -a.s., λ\ the Lebesgue measure, implies an ordering of the
prices of a European option with convex payoff function h

p := Eh(ST ) ≤ E∗h(S∗T ) := p∗,

where E (E∗) denotes the expectation w.r.t. P (P ∗). The ordering of the volatil-
ities is equivalent to the ordering of the differential Gaussian characteristics of
the stochastic logarithms

ct = σ2
t ≤ σ∗2(t, St) = c∗(t, St),

for λ\-a.e. t ∈ [0, T ] P -a.s.. So the tenor is the following: Essentially ordering of
the differential characteristics of the stochastic logarithms X,X∗ of two expo-
nential semimartingale models S, S∗ implies ordering of the prices of a European
option p ≤ p∗ with convex payoff function. However, to establish this conclusion
for general models, a technical condition needs to be satisfied, the “propagation
of convexity property”.
Non-trivial bounds of the pricing interval are usually attained by Markovian
models. Also in the previous example the upper bound process S∗ is Marko-
vian. The Markovian assumption for one of the two processes to be compared
seems to be necessary. In Example 2.8 we show that if both models S, S∗ are
non-Markovian stochastic volatility models, then an ordering of the differential
characteristics of the stochastic logarithms does not imply the expected ordering
of the corresponding option prices.
The problem of deriving ordering results for option prices has been addressed in
several recent papers (see [8, 20, 2, 16, 17, 18, 33]). The models leading to the
trivial pricing interval have been characterized completely in [7, 24, 10, 26, 14].
The results for models with nontrivial pricing intervals and the corresponding
comparison results are less complete. Comparison results for diffusion processes
are discussed in El Karoui, Jeanblanc-Picqué, and Shreve (1998) and nontrivial
bounds for stochastic volatility models are given in Frey and Sin (1999). Bellamy
and Jeanblanc (2000) (see also [17]) prove that the price of an European call
for a diffusion with jumps is bounded below by the corresponding Black–Scholes
price and above by the trivial upper price (see also [3, 20] for alternative proofs).
Finally, the comparison to Lévy processes is considered in Jakubenas (2002) and
Gushchin and Mordecki (2002) and a nontrivial upper bound for discrete time
models by the Cox–Ross–Rubinstein model is established in [14] and [35].
An important generalization of the technique introduced in El Karoui, Jean-
blanc-Picqué, and Shreve (1998) and Bellamy and Jeanblanc (2000) has been
established by Gushchin and Mordecki (2002) who derive a general comparison
result for one-dimensional semimartingales to some Markov process w.r.t. convex
ordering of terminal values. Essentially the comparison of local characteristics
plus the important ’propagation of convexity’ property of the Markov process
imply convex ordering.
The role of convexity can be understood most easily in the following simple case.
Let f be a convex function and let S∗t = S∗0E(σ ·W )t be a univariate diffusion
model with diffusion coefficient σ, E the stochastic exponential. Let E∗ denote
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the corresponding expectation. Then the Black–Scholes price at time t = 0,

G(s) = E∗(f(S∗T ) | S∗0 = s),

where E∗ denotes the expectation, is a convex function in s. Let St =
sE(σ ·W )tE(φ ·M)t be a diffusion with jumps model, with compensated Poisson
martingale M and jump size φ. If the two stochastic exponentials are stochas-
tically independent (as in the case of deterministic σ, φ and intensity) then one
obtains by Jensen’s inequality

G(s) = G(E(sE(φ ·M)T )) ≤ EG(sE(φ ·M)T ) (1.1)
= Ef(sE(φ ·M)TE(σ ·W )T ) = Ef(ST )

i.e. the price of the terminal option for the jump diffusion model dominates the
price for the diffusion model. The argument for the comparison in (1.1) is valid
also in the multidimensional case as soon as one has defined an analog of the
stochastic exponential for this case. For this and some related models similar
comparison results were given by Henderson and Hobson (2003) using related
coupling arguments.
El Karoui, Jeanblanc-Picqué, and Shreve (1998) prove the essential ”propagation
of convexity” property, i.e. the convexity of the backward functional

G(t, s) = E∗(f(S∗T ) | S∗t = s) (1.2)

in s for all t in a univariate diffusion model using the theory of stochastic flows.
Bergman, Grundy, and Wiener (1996) prove this property for a one-dimensional
diffusion and for a two-dimensional diffusion with level independent character-
istics by PDE-arguments. For a partial extension to multivariate diffusions see
Janson and Tysk (2004). A propagation of convexity result for univariate Markov
processes is given in Martini (1999) and a typical Markov argument is also given
in Gushchin and Mordecki (2002) for the one dimensional diffusion case.
In our paper we derive an extension of the comparison result of Gushchin and
Mordecki (2002) to d-dimensional semimartingales. We consider the convex
ordering and also a variant of the convex ordering – the directionally convex order
– which has turned out to be of particular interest for risk measures. We also
develop a new technique based on discrete approximation by Euler schemes to
establish the propagation of convexity property for several uni- and multivariate
processes, where the known techniques do not seem to be applicable. This new
approach leads thus to more general comparison results also for one-dimensional
processes. In the case of jump diffusions this approach allows to establish a
general comparison result which extends the coupling based results essentially;
for example it allows to consider the case of random jump sizes.
In section 2 of this paper we introduce the model assumptions and state the gen-
eral comparison result. In section 3 we consider applications to the comparison
of semimartingales to several classes of models like diffusions, stochastic volatil-
ity models, Lévy processes and diffusions with jumps in the multivariate case.
A main part is to establish the propagation of convexity property for multivari-
ate diffusions, diffusions with jumps and processes with independent increments.
The result for diffusions with jumps is new also in the univariate case.
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2 Comparison results

In this paper we derive comparison results for European options under var-
ious d-dimensional semimartingale models. Of particular interest in finan-
cial mathematics are (stochastic) exponential models. For the formulation of
these models we introduce the following notation for d-dimensional (stochas-
tic) exponentials and logarithms. Let (St)t∈[0,T ] be a positive d-dimensional
semimartingale on a stochastic basis (Ω,A, (At)t∈[0,T ], P ). Then the stochas-
tic logarithm of each component exists and we write X = Log(S) with
(X1, . . . , Xd) = (Log(S1), . . . ,Log(Sd)), where the superscript i denotes the
ith coordinate, i ≤ d. Similarly we define (stochastic) exponential and loga-
rithm componentwise as S = E(X), S = eX̄ , X̄ = log(S), as well as products
and quotients as xy = (x1y1, . . . , xdyd) and x/y =

(
x1/y1, . . . , xd/yd

)
, respec-

tively, x, y ∈ Rd. We additionally assume that all semimartingales considered
in this paper are special. A special semimartingale S has unique canonical de-
composition S = S0 + MS + BS , where MS is a local martingale and BS is a
predictable càdlàg process with paths of finite variation. By S ∼ (BS , CS , νS)
we denote that the local predictable characteristics of S are given by BS , CS and
νS . The characteristics of X = Log(S) we denote by X ∼ (B,C, ν). In the case
when S, S− > 0, there is a one-to-one relationship between X = Log(S) and
X̄ = log(S). The relationships between the local characteristics of S,X and X̄
are given in Lemma A.1 and A.2 in the appendix. We consider semimartingales
whose characteristics are differentiable with respect to the Lebesgue measure,
i.e. for a semimartingale Z ∼ (B,C, ν) there exists a predictable d-dimensional
process b = (bi)i≤d, a predictable process c = (cij)i,j≤d with values in the set
of all symmetric, positive semidefinite d × d-matrices and a transition kernel
Kω,t(dx) from (Ω× [0, T ],P) into (Rd,Bd) such that

Bi = bi · t, Cij = cij · t, ν(ω; dt, dx) = Kω,t(dx)dt,

where Kω,t(dx) satisfies Kω,t(0) = 0 and
∫
Kω,t(dx)(|x|2 ∧ 1) ≤ 1. We write

Z ∼ (b, c,K) and call b, c,K the differential characteristics. Semimartingales
with differentiable local characteristics are quasi-leftcontinuous and, therefore,
discrete models are excluded from our considerations. For the notation and re-
sults on semimartingales and their characteristics we refer to Jacod and Shiryaev
(2003).
To compare European option prices under different models we assume that the
comparison process S∗ is a Markovian semimartingale. One motivation for
this restriction is that in cases of nontrivial pricing intervals the upper resp.
lower prices are typically given by Markov processes. The characteristics of
X∗ = Log(S∗) are of the form X∗ ∼ (b∗(t, S∗t−), c∗(t, S∗t−),K∗

t (S∗t−, ·)). Through-
out the paper we assume that the sets of equivalent martingale measures for S
and S∗ are not empty and we compare the evolution of the semimartingales un-
der these equivalent martingale measures. Martingale measures that correspond
to S are denoted by Q, those corresponding to S∗ are denoted by Q∗. Expecta-
tions with respect to Q are denoted by E, those with respect to Q∗ are denoted
by E∗. We summarize the modelling framework in the following assumption.
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Assumption MG Assume that S, S∗ (S∗ Markovian) are positive d-
dimensional martingales under measures Q and Q∗, respectively, and let the
differential characteristics of their stochastic logarithms X,X∗ be given as

Xt(ω) ∼
(
0, ct(ω),Kω,t(·)

)
, X0 = 0,

X∗
t (ω∗) ∼

(
0, c∗(t, S∗t−(ω∗)),K∗

t (S∗t−(ω∗), ·)
)
, X∗

0 = 0.

In this paper we compare prices of European options on d underlying securities,
when the payoff functions are convex or are directionally convex. We denote
the set of convex functions by Fcx and the set of directionally convex functions
by Fdcx. Directionally convex functions are characterized by second differences:
For g : Rd → R define the difference operator ∆ε

if(x) = f(x+εei)−f(x), where
ei is the i-th unit vector and ε > 0. Then g : Rd → R is directionally convex iff
∆ε

i ∆
δ
jf(x) ≥ 0, for all x ∈ Rd, all 1 ≤ i, j ≤ n and all ε, δ > 0. If f ∈ F ,F = Fcx

(or F = Fdcx) is twice continuously differentiable, the (directional) convexity
is characterized as follows. f ∈ C2 is convex if and only if the Hesse form
D2f(x) = (D2

ijf(x))i,j≤d is positive semidefinite for all x ∈ Rd; f ∈ C2 is
directionally convex if and only if D2

ijf(x) ≥ 0, for all i, j ≤ d and all x ∈ Rd.
For random vectors U, V the (directionally) convex order is defined by

U ≤cx V ⇐⇒ Ef(U) ≤ Ef(V ),∀f ∈ Fcx, (2.3)
U ≤dcx V ⇐⇒ Ef(U) ≤ Ef(V ),∀f ∈ Fdcx,

such that the integrals exist. We compare the terminal values ST , S
∗
T with

respect to these orders, when (St)t∈[0,T ], (S∗t )t∈[0,T ] satisfy Assumption MG. As
basic reference for results on convex type stochastic orders we refer to Müller
and Stoyan (2002).
Let H ∈ C1,2([0, T ]× Rd) → R. In the following lemma we establish that if the
process H(t, S∗t ) is a local (A∗

t )-martingale under Q∗ and if the jump measure
µ∗ satisfies an integrability condition, then H(t, s) satisfies a general version of
the Kolmogorov backward equation

DtH(t, s) +
1
2

∑
i,j≤d

D2
ijH(t, s)sisjc∗ij(t, s) +

∫
(−1,∞)d

(ΛH)(t, s, x)K∗
t (s, dx) = 0, (2.4)

where (ΛH)(t, s, x) := H(t, s(1 + x)) − H(t, s) −
∑
i≤d

DiH(t, s)sixi. For

W ∗(ω∗, t, s) := H(t, S∗t−(ω∗) + s) − H(t, S∗t−(ω∗)) −
∑
i≤d

DiH(t, S∗t−(ω∗))si we

denote by W ∗ ∗ µS∗

t the integral

W ∗ ∗ µS∗

t :=
∫

[0,t]×Rd

W ∗(·, u, s)µS∗(du, ds), (2.5)

and by A+
loc we denote the set of locally integrable increasing processes.

Lemma 2.1. Assume that H ∈ C1,2([0, T ] × Rd) and let S∗ satisfy As-
sumption MG. Assume that H(t, S∗t ) is a local (A∗

t )-martingale under Q∗. If
|W ∗| ∗ µS∗ ∈ A+

loc, or if H(t, ·) is convex, then H(t, s) satisfies the Kolmogorov
backward equation (2.4).
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The proof is given in the appendix.
More specifically, for g ∈ F ,F ∈ {Fcx,Fdcx}, we consider functions H given by
the backward functional G(t, s) = E∗(g(S∗T )|S∗t = s) in (1.2) for a Markovian
comparison process S∗. Then G(t, s) =

∫
g(y)P ∗

t,T (s, dy), where P ∗
t,T (s, dy) is

the transition probability of S∗. Throughout the paper we postulate enough
smoothness of P ∗

t,T (s, dy) to imply that G ∈ C1,2.

Assumption SC(g) Let g : Rd → R. S∗ satisfies the smoothness condition
SC(g), if the pricing functional G(t, s) =

∫
g(y)P ∗

t,T (s, dy) is in C1,2([0, T ]×Rd).
Similarly, S∗ satisfies the smoothness condition SC(F0) for some F0 ⊂ F , if
SC(g) holds for all g ∈ F0.

As second crucial assumption we need the propagation of (directional) convexity,
i.e. the condition that g ∈ F implies that G(t, ·) ∈ F ,∀t ∈ [0, T ]. In other words
the convexity of G(T, ·) = g(·) is propagated to earlier time points t.

Assumption P(g) Let g ∈ F , F ∈ {Fcx,Fdcx}. S∗ satisfies the propagation of
(directional) convexity property P(g), if G(t, ·) ∈ F . Similarly, S∗ satisfies the
propagation of (directional) convexity property P(F0) for some F0 ⊂ F , if P(g)
holds for all g ∈ F0.

In the following we extend one-dimensional convex comparison results of
El Karoui, Jeanblanc-Picqué, and Shreve (1998), Bellamy and Jeanblanc (2000)
and Gushchin and Mordecki (2002) to multivariate semimartingales. We ad-
ditionally consider also the directionally convex order. Comparison conditions
on the differential characteristics of the stochastic logarithms of S, S∗ imply a
comparison of the terminal values. The basic idea of the approach in the papers
mentioned above to derive comparison results is the introduction and study of
the backward linking process G(t, St) which relates both processes S, S∗ in a suit-
able way. This basic idea is also essential in the following development of various
comparison results. We need conditions concerning integrability and bounded-
ness of the backward linking process G(t, St).

Assumption BIC(g) Let g : Rd → R. S, S∗ satisfy the boundedness and in-
tegrability condition BIC(g), if the backward linking process G(t, St) is bounded
from below and EG(t, St) < ∞. Similarly, S, S∗ satisfy the boundedness and
integrability condition BIC(F0) for some F0 ⊂ F , if BIC(g) holds for all g ∈ F0.

Assumption CD(g) Let g : Rd → R. S, S∗ satisfy the integrability condition
CD(g), if the backward linking process G(t, St) is a process of class (D). Sim-
ilarly, S, S∗ satisfy the integrability condition CD(F0) for some F0 ⊂ F , if
CD(g) holds for all g ∈ F0.

The comparison result for directionally convex payoff functions is as follows.

Theorem 2.2 (Directionally convex order, S ≤dcx S∗). For g ∈ Fdcx∩C2

assume that S, S∗ satisfy Assumptions MG and BIC(g) (or CD(g)). Addi-
tionally, assume that S∗ satisfies Assumptions SC(g) and P(g) and let further
|W | ∗ µS

t , |W ∗| ∗ µS∗

t ∈ A+
loc.
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Then the comparison of the differential characteristics of the stochastic loga-
rithms

cijt (ω) ≤ c∗ij(t, St−(ω)), (2.6)∫
(−1,∞)d

f(t, St−(ω), x)Kω,t(dx) ≤
∫

(−1,∞)d

f(t, St−(ω), x)K∗
t (St−(ω), dx), (2.7)

λ\×Q-a.e., for all f : R+ × Rd
+ × (−1,∞)d → R with f(t, s, ·) ∈ Fdcx such that

the integrals exist, implies
Eg(ST ) ≤ Eg(S∗T ).

Proof. The main point of the proof is to show that the backward linking process
G(t, St) is an (At)-supermartingale under Q. Then it follows that

Eg(ST ) = EG(T, ST ) ≤ G(0, 1) = E∗g(S∗T ).
As |W | ∗ µS ∈ A+

loc, Itô’s formula implies that G(t, St) is a semimartingale with
evolution

G(t, St) = G(0, 1) +Mt +
∫

[0,t]

DtG(u, Su−)du

+
1
2

∑
i,j≤d

∫
[0,t]

D2
ijG(u, Su−)dCSij

u +W ∗ µS
t ,

where Mt :=
∑

i≤d

∫
[0,t]

DiG(u, Su−)dSi
u is a one-dimensional local (At)-

martingale under Q. As |W | ∗ µS ∈ A+
loc, there is a local (At)-martingale M̂

such that

G(t, St) = G(0, 1) +Mt + M̂t +
∫

[0,t]

DtG(u, Su−)du

+
1
2

∑
i,j≤d

∫
[0,t]

D2
ijG(u, Su−)dCSij

u +W ∗ νS
t ,

where W ∗ νS
t is defined as in (2.5) with µS∗ replaced by νS . Using Lemma A.2

we obtain in terms of differential characteristics of X that G(t, St) = G(0, 1) +
Mt + M̂t +At, where

At :=
∫

[0,t]

{
DtG(u, Su−) +

1
2

∑
i,j≤d

D2
ijG(u, Su−)Si

u−S
j
u−c

ij(u, Su−)

+
∫

(−1,∞)d

(ΛG)(u, Su−, x)Ku(Su−, dx)
}
du

is predictable and of finite variation. As the backward functional G(t, s) satisfies
the Kolmogorov backward equation of Lemma 2.1 we obtain

At =
∫

[0,t]

{1
2

∑
i,j≤d

D2
ijG(u, Su−)Si

u−S
j
u−(ciju − c∗ij(u, Su−))

+
∫

(−1,∞)d

(ΛG)(u, Su−, x)(Ku(dx)−K∗
u(Su−, dx))

}
du (2.8)
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First we show that the backward linking process G(t, St) is a local (At)-
supermartingale under Q. As At is predictable and of finite variation, At is
of integrable variation. Due to the comparison assumption in (2.6) and the di-
rectional convexity of G in the space variable, the first term of the integrand of
At is non-positive. Let (ω, u) ∈ (Ω, [0, T ]) be fixed and define the function

Υ(x) := ΛG(u, Su−(ω), x). (2.9)

As D2
ijΥ(x) = Si

u−S
j
u−D2

ijG(u, Su−(1 + x)) ≥ 0 for all x, Υ(·) is directionally
convex. Therefore, (2.7) implies that also the second term of the integrand of
At is non-positive. This yields −At ∈ A+

loc and it follows that G(t, St) is a local
(At)-supermartingale under Q.
It remains to prove that G(t, St) is a supermartingale. In the case that G(t, St) is
bounded below with EG(t, St) < ∞,∀t, Mt is bounded below and, therefore, is
an (At)-supermartingale under Q. It follows that G(t, St) is a supermartingale,
as it is integrable. In the case that G(t, St) is a process of class (D) we consider
a localizing sequence τn for G(t, St). As for all t ∈ [0, T ] we have Q-a.s. that
(G(t, St))τn −→ G(t, St), n → ∞, and G(t, St) is of class (D), the convergence
takes place in L1 and therefore G(t, St) is an (At)-supermartingale under Q.

Remark 2.3. 1. Theorem 2.2 is formulated for directionally convex functions
that are smooth. If the conditions of the theorem hold true for a generating
class F0 ⊂ Fdcx∩C2 of the directionally convex order it follows that ST ≤dcx

S∗T . In particular, one obtains as consequence an ordering result for European
call options.

2. As seen in the proof of Theorem 2.2 it is sufficient to assume∫
(−1,∞)d

(ΛG)(t, St−(ω), x)Kω,t(dx) ≤
∫

(−1,∞)d

(ΛG)(t, St−(ω), x)K∗
t (St−(ω), dx),

for λ\ × Q-a.e. (t, ω), instead of the directionally convex ordering condition
on the jumps in (2.7).

If the inequalities on the characteristics of X and X∗ in Theorem 2.2 are re-
versed, we obtain a similar comparison result. In this case we have to prove
that the backward linking process G(t, St) is an (At)-submartingale under Q.
The boundedness assumption on G no longer is useful for this conclusion as
boundedness of G(t, s) from above does not make sense for G(t, ·) ∈ Fdcx.

Theorem 2.4 (Directionally convex order, S∗ ≤dcx S). For g ∈ Fdcx∩C2

assume that S, S∗ satisfy Assumptions MG and CD(g). Additionally, assume
that S∗ satisfies Assumptions SC(g) and P(g) and let further |W | ∗ µS

t , |W ∗| ∗
µS∗

t ∈ A+
loc.

Then the comparison of the differential characteristics of the stochastic loga-
rithms

c∗ij(t, St−(ω)) ≤ cijt (ω),∫
(−1,∞)d

f(t, St−(ω), x)K∗
t (St−(ω), dx) ≤

∫
(−1,∞)d

f(t, St−(ω), x)Kω,t(dx)
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λ\×Q-a.e., for all f : R+ × Rd
+ × (−1,∞)d → R with f(t, s, ·) ∈ Fdcx such that

the integrals exist, implies

E∗g(S∗T ) ≤ Eg(ST ).

Proof. Similar to the proof of Theorem 2.2 we show that the backward linking
process G(t, St) is an (At)-submartingale under Q. Then it follows that

E∗g(S∗T ) = G(0, 1) ≤ EG(T, ST ) = Eg(ST ).

Proceeding as in the proof of Theorem 2.2, the backward linking process has
representation G(t, St) = G(0, 1) + Mt + M̂t + At, with At given by (2.8). It
follows from the ordering of the characteristics of X and X∗ that At ∈ A+

loc and,
therefore, G(t, St) is a local (At)-submartingale under Q.
As G(t, St) is assumed to be a process of class (D), the arguments of the sec-
ond case of the proof of Theorem 2.2 apply. Therefore, G(t, St) is an (At)-
submartingale under Q.

Similar comparison results hold true also for the convex order. By ≤psd we
denote the positive semidefinite partial ordering on the set M+(d,R) of real
positive semidefinite d× d-matrices.

Theorem 2.5 (Convex order, S ≤cx S∗). For g ∈ Fcx ∩ C2 assume that
S, S∗ satisfy Assumptions MG and BIC(g) (or CD(g)). Additionally, assume
that S∗ satisfies Assumptions SC(g) and P(g).
Then the comparison of the differential characteristics of the stochastic loga-
rithms

(cijt (ω))i,j≤d ≤psd (c∗ij(t, St−(ω)))i,j≤d,∫
(−1,∞)d

f(t, St−, x)Kω,t(dx) ≤
∫

(−1,∞)d

f(t, St−, x)K∗(t, St−(ω), dx), (2.10)

λ\×Q-a.e., for all non-negative f : R+×Rd
+×(−1,∞)d → R with f(t, s, ·) ∈ Fcx

such that the integrals exist, implies

Eg(ST ) ≤ E∗g(S∗T ).

Proof. We proceed as in the proof of Theorem 2.2. Again we first show
that G(t, St) is a local (At)-supermartingale under Q. The evolution of
G(t, St) is given by (2.8) and we have to show that −At ∈ A+

loc. Due
to the positive semidefiniteness of the symmetric matrix

(
c∗ij − cij

)
i,j≤d

:=(
c∗ij(t, St−(ω))− cijt (ω)

)
i,j≤d

for fixed (ω, t), its spectral decomposition is given

by
(
c∗ij − cij

)
i,j≤d

=
( ∑

k≤d

λka
i
ka

j
k

)
i,j≤d

, where λk ≥ 0 are the eigenvalues and

ak are the eigenvectors of the matrix (c∗ − c). Therefore the first term of the
integrand of At takes the form − 1

2

∑
k≤d

λk

∑
i,j≤d

D2
ijG(u, Su−)Si

u−a
i
kS

j
u−a

j
k, and is

non-positive due to the propagation of convexity property in Assumption P(g)
and the characterization of the convex order. Also by the convexity assumption
on G(t, ·), (ΛG)(u, Su−(ω), x) is non-negative and Υ(x) := ΛG(u, Su−, x) ∈ Fcx.
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Furthermore, by the ordering of the jump-compensators, the second term in
the integrand of At is non-positive. Therefore, −At ∈ A+

loc and G(t, St) is a
local (At)-supermartingale under Q. The (At)-supermartingale property under
Q follows similar to the proof of Theorem 2.2.

Remark 2.6. 1. Theorem 2.2 is formulated for convex functions that are
smooth. If the conditions of the theorem hold true for for a generating class
F0 ⊂ Fcx ∩ C2 of the convex order it follows that ST ≤cx S

∗
T . In particular,

one obtains as consequence an ordering result for European call options.

2. Again it is sufficient to assume∫
(−1,∞)d

(ΛG)(t, St−(ω), x)Kω,t(dx) ≤
∫

(−1,∞)d

(ΛG)(t, St−(ω), x)K∗
t (St−(ω), dx),

for λ\×Q-a.e. (t, ω), instead of the convex ordering condition on the jumps
in (2.10).

As in the case of the directionally convex ordering, under an integrability as-
sumption on G(t, St) the inequalities on the differential characteristics of X and
X∗ may be reversed to obtain E∗g(S∗T ) ≤ Eg(ST ). We omit the proof, which is
a combination of the proofs of Theorems 2.4 and 2.5.

Theorem 2.7 (S∗ ≤cx S). For g ∈ Fcx ∩ C2 assume that S, S∗ satisfy As-
sumptions MG and CD(g). Additionally, assume that S∗ satisfies Assumptions
SC(g) and P(g).
Then the comparison of the differential characteristics of the stochastic loga-
rithms

(c∗ij(t, St−(ω)))i,j≤d ≤psd (cijt (ω))i,j≤d,∫
(−1,∞)d

f(t, St−, x)K∗
t (St−(ω), dx) ≤

∫
(−1,∞)d

f(t, St−, x)Kω,t(dx),

λ\×Q-a.e., for all non-negative f : R+×Rd
+×(−1,∞)d → R with f(t, s, ·) ∈ Fcx

such that the integrals exist, implies

E∗g(S∗T ) ≤ Eg(ST ).

The Markovian assumption on the comparison process S∗ seems to be necessary
for comparison results as in Theorems 2.2–2.7. This is already known from the
comparison results for random vectors. A nice example demonstrating this in
the context of diffusion processes was communicated to us by J. Kallsen.

Example 2.8 (Larger volatility does not imply a larger price in SV
models). Let σ̄ ∈ R+ and W be a one-dimensional Brownian motion on a
stochastic basis (Ω,A, (At), Q). Let S̄ be the solution of

dS̄t = σ̄S̄tdWt, S̄0 = 1.

For K > 1 we define an (At)-adapted process σ∗t as

σ∗t :=

{
σ̄, max

u≤t
S̄u ≤ K,

0, else.

11



Let S∗ be a solution of dS∗t = σ∗t S
∗
t dWt, S∗0 = 1. Let 0 < σ̃ < σ̄ and T0 ∈ [0, T ]

be fixed. Define an (At)-adapted process σt as

σt :=


σ̃, max

u≤t
S̄u ≤ K, 0 ≤ t ≤ T0,

σ̄, max
u≤t

S̄u ≤ K, T0 < t ≤ T,

0, otherwise,

and let S be a solution of dSt = σtStdWt, S0 = 1. Then σt ≤ σ∗t and S, S∗

are not Markovian as their volatilities are path-dependent.
Let C be a European call with strike K. The price for that call option is zero
under the S∗ model. But as there is a positive probability for paths with ST0 >
S∗T0

, we have Q(ST > K) > 0. Therefore, the call price is positive with respect
to the S model although the volatility σ of S is smaller than the volatility σ∗ of
S∗.

3 Applications

In this section we give applications of the ordering results in section 2. The
main point to check is the propagation of (directional) convexity property for the
Markovian comparison process S∗. Subsections 3.1 and 3.2 are concerned with
the propagation of convexity property for multivariate diffusions and diffusions
with jumps, respectively. We first prove a convexity result for the correspond-
ing Euler approximation scheme and then obtain the propagation of convexity
property also for the limit. In the case of diffusions with jumps this result is
also new in the univariate case. As examples we consider convex comparison
of diffusions with stochastic volatility models and of diffusions with jumps with
non-Markovian martingales. This implies also convex comparison between Lévy
driven diffusions for pointwise ordered local volatilities.
In subsection 3.3 we show that the stochastic exponential of a process with inde-
pendent increments (PII) may serve as Markovian comparison process S∗ that
satisfies the propagation of (directional) convexity property. As examples we give
convex and directionally convex ordering results of the stochastic exponentials
of compound Poisson processes. Some convex comparison results of exponential
normal inverse Gaussian and variance gamma models are also stated.

3.1 Convex comparison with a multivariate diffusion

In this subsection we apply the convex comparison results in Theorems 2.5 and
2.7 to the case where the comparison process S∗ is a multivariate diffusion.
Similar results are given in different generality for one-dimensional diffusions in
the literature. El Karoui, Jeanblanc-Picqué, and Shreve (1998) compare option
prices under diffusion models to option prices where the underlying process is a
stochastic volatility model. The ordering is implied by an ordering on the cor-
responding volatilities. The proof uses PDE arguments and the propagation of
convexity property. Frey and Sin (1999) prove a special case where the volatility
of the diffusion is given by a constant σmax that dominates the volatility of the

12



stochastic volatility model. Then the option price under the stochastic volatil-
ity model is bounded above by the Black–Scholes price with volatility σmax.
Bellamy and Jeanblanc (2000) compare a diffusion to a diffusion with jumps,
using similar arguments as in El Karoui, Jeanblanc-Picqué, and Shreve (1998).
Gushchin and Mordecki (2002) extend this result to the case where the jump-
diffusion is not Markovian. They show that a diffusion may serve as Markovian
comparison process and then apply their general comparison theorem. Hob-
son (1998) proves that option prices under two different diffusion models are
ordered, if the diffusion coefficients are ordered pointwise, using coupling argu-
ments. Henderson (2002) uses the coupling method to give an ordering result on
options in stochastic volatility models, when the volatility is a diffusion that is
driven by a Brownian motion W , independent of the Brownian motion B driving
S, S∗. Henderson, Hobson, Howison, and Kluge (2003) extend this result to the
case where W and B are correlated, using PDE techniques. See also Bergman,
Grundy, and Wiener (1996) as an early reference on option price monotonicity.
The comparison results proved via PDE techniques make use of the propagation
of convexity property. For one-dimensional diffusions this property is proved
in Bergman, Grundy, and Wiener (1996) using PDE techniques, in El Karoui,
Jeanblanc-Picqué, and Shreve (1998) via the theory of stochastic flows and in
Hobson (1998) via coupling. See also Martini (1999) for the proof of this property
for Markovian and martingalian semigroups. The proofs of these papers do not
seem to be applicable to jump processes or in the multivariate case. A partial
extension to multivariate diffusions is given in Janson and Tysk (2004). We
introduce a new method of proof that relies on ordering of Markov chains that
approximate the comparison process.
Let g ∈ Fcx and assume that W ∗ is a d-dimensional Brownian motion on a
stochastic basis (Ω∗,A∗, (A∗

t )t∈[0,T ], Q
∗). For σ∗ : [0, T ]×Rd →M+(d,R) let S∗

be the unique strong solution of the SDE

dS∗t = σ∗(t, S∗t )dW ∗
t , S∗0 = 1. (3.11)

Additionally, we assume that Assumptions MG and SC(g) are satisfied, i.e. that
S, S∗ are positive martingales and that the backward functional G ∈ C1,2. We
assume throughout this section that BIC(g) or CD(g) is satisfied, depending on
which condition is needed for the comparison theorems of the previous section.
For the proof of the propagation of convexity, we use an Euler scheme for S∗

and prove the propagation of convexity for the approximating Markov chain. Let
t0 ∈ [0, T ] and discretize [t0, T ] into K+1 equidistant points ti := iT−t0

K + t0, i ∈
{0, . . . ,K}. We denote the Euler scheme of (S∗t )t∈[t0,T ], S

∗
t0 = s, by

S̃∗K,ti+1
= S̃∗K,ti

+ σ∗(ti, S̃∗K,ti
)(W ∗

ti+1
−W ∗

ti
), i ∈ {0, . . . ,K − 1}, (3.12)

S̃∗K,t0 = s.

Under some additional assumptions on the diffusion coefficient and the payoff
function g ∈ Fcx, the terminal value of the Euler scheme S̃∗K,T converges in
distribution to S∗T as K →∞, independent of the starting point S∗t0 = S̃∗K,t0

= s.
We call this the approximation property and refer to Kloeden and Platen (1992)
and to Liu and Li (2000) for weak approximation results.
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Assumption AP(g) Let g : Rd → R. The Euler scheme S̃∗K satisfies the
approximation property AP(g), if

G̃K(t, s) := E∗(g(S̃∗K,T )|S̃∗K,t = s) → G(t, s), ∀t ∈ [0, T ], s ∈ Rd,

as K →∞.

A sufficient condition for the propagation of convexity of the Euler scheme is
the ≤cx-monotonicity of the corresponding transition operator. To prove this we
assume that σ∗ : [t0, T ]×Rd →M+(d,R) is convex in the second component with
the positive semidefinite partial ordering ≤psd onM+(d,R). ByW ∼ N(µ,Σ) we
denote that W is normally distributed with expectation vector µ and covariance
matrix Σ.

Lemma 3.1 (A convex ordering result for Markov operators). Let S
be a d-dimensional random vector that is independent of W ∼ N(0, I), where
I is the identity, and let σ : Rd → M+(d,R). If σ is convex, then the Markov
operator T on the set of probability measures with state space (Rd,Bd) defined
by

T S d= S + σ(S)W

is ≤cx-monotone, i.e. S1 ≤cx S2 implies T S1 ≤cx T S2.

Proof. Let S1, S2 be d-dimensional random vectors that are independent of W
and satisfy S1 ≤cx S2. Due to Strassen’s Theorem there are random vectors
Ŝi

d= Si, i = 1, 2, on a probability space (Ω̂, Â, P̂ ) such that Ê(Ŝ2|Ŝ1) = Ŝ1,
where Ê denotes the expectation with respect to P̂ . We assume without loss of
generality that S1, S2 are these versions. Then, for f ∈ Fcx, Jensen’s inequality
implies

Ef(T S2) = Ef(S2 + σ(S2)W ) = EE(f(S2 + σ(S2)W )|S1,W )
≥ Ef(S1 + E(σ(S2)|S1)W ) = ES1Ef(s1 + E(σ(S2)|s1)W ),

where the last equality follows from conditioning on S1 = s1 and ES1 denotes
the expectation with respect to the distribution of S1. As the convex order is
stable under mixtures, it remains to prove that

E(σ(S2)|s1)W ≥cx σ(s1)W. (3.13)

As σ ∈ Fcx, Jensen’s inequality implies

g(s1) := E(σ(S2)|s1) ≥psd σ(s1),

and therefore it follows that g(s1)T g(s1) ≥psd σ(s1)Tσ(s1), where the super-
script T denotes the transpose. As σ(s1)W ∼ N(0, σ(s1)Tσ(s1)), g(s1)W ∼
N(0, g(s1)T g(s1)), this implies E(σ(S2)|s1)W = g(s1)W ≥cx σ(s1)W (cp.
Müller and Stoyan (2002, Theorem 3.4.7)).

Propagation of convexity of G follows from the convexity of the transition oper-
ator of S̃∗K and the approximation property.
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Theorem 3.2 (Propagation of convexity, diffusion case). Let g ∈ Fcx, S∗

be a d-dimensional diffusion and assume that the Euler scheme S̃∗K of S∗ satisfies
Assumption AP(g). If σ∗(t, ·) is convex for all t ∈ [0, T ], then propagation of
convexity property P(g) holds, i.e.

G(t, ·) ∈ Fcx, ∀t ∈ [0, T ].

Proof. We consider the Euler approximation scheme S̃∗K defined in (3.12) with
interpolation points ti and define the corresponding transition operator by
Tti
S

d= S + σ(ti, S)W , where W
d= W ∗

ti+1 − W ∗
ti

. Then for t0 ∈ [0, T ] we
have by the Markov property of this scheme

G̃K(t0, y) = E∗(g(S̃∗K,T )|S̃∗K,t0 = y) = E∗g(TtK−1 . . . Tt0y).

For y1, y2 ∈ Rd and α ∈ (0, 1) let Y be a Bernoulli random vector with distribu-
tion PY = αε{y1} + (1− α)ε{y2}. Then

αy1 + (1− α)y2 = EY ≤cx Y.

Using the ≤cx-monotonicity of the operator Tt for all t ∈ [0, T ] from Lemma 3.1
we obtain

G̃K(t0, αy1 + (1− α)y2) = G̃K(t0, EY ) = E∗g(TtK−1 . . . Tt0EY )

≤ E∗g(TtK−1 . . . Tt0Y ) = G̃K(t0, Y ). (3.14)

Taking expectations on both sides of (3.14) implies convexity of G̃K(t0, ·). The
approximation property AP then implies that G(t0, ·) ∈ Fcx.

The diffusion process S∗ in (3.11) has differential characteristics S∗t ∼(
0, σS∗(t, S∗t )(σS∗(t, S∗t ))T , 0

)
, where superscript T is the transposition. There-

fore, by Lemma A.2, the stochastic logarithm X∗ = Log(S∗) has differential
characteristics (0, c∗(t, S∗t ), 0), with

c∗ij(t, S∗t (ω)) =
∑
k≤d

σS∗ik(t, S∗t (ω))
S∗i

t (ω)
σS∗jk(t, S∗t (ω))

S∗j
t (ω)

. (3.15)

Using this representation and the propagation of convexity property for mul-
tivariate diffusions, we obtain a convex comparison of a diffusion model to a
stochastic volatility model. Following Hofmann, Platen, and Schweizer (1992),
a general class of one-dimensional stochastic volatility models is given by

dSt

St
= σ(t, St, vt)dWt,

dvt = b(t, St, vt)dt+ η1(t, St, vt)dWt + η2(t, St, vt)dBt,

where W and B are independent Brownian motions. This includes the mod-
els of Hull and White (1987), Stein and Stein (1991), Wiggins (1987), Scott
(1987) and Heston (1993), see also Frey (1997) for an overview over stochas-
tic volatility models. In terms of the characteristics of X = Log(S), we have
X ∼

(
0, (σ(t, St, vt))2, 0

)
. More generally, we say that S is a d-dimensional

stochastic volatility model if
X ∼ (0, c, 0) (3.16)

for an adapted predictable process c with values in M+(d,R). Under an ordering
condition on the diffusion coefficients, a diffusion S∗ is an upper bound for a
stochastic volatility model S.
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Theorem 3.3 (Convex comparison of SV model to diffusion, upper
bound). Let g ∈ Fcx∩C2. Assume that S = E(X) is a d-dimensional stochastic
volatility model, where X has differential characteristics given by (3.16) and that
S∗ is a d-dimensional diffusion with diffusion coefficient function c∗ given by
(3.15). Let S, S∗ satisfy Assumptions MG and BIC(g) (or CD(g)) and assume
that S∗ satisfies Assumption SC(g) and that the Euler scheme S̃∗K of S∗ satisfies
Assumption AP(g).
If σ∗(t, ·) is convex, for all t ∈ [0, T ], then the comparison of the differential
characteristics of the stochastic logarithms

(cijt (ω))i,j≤d ≤psd (c∗ij(t, St−(ω)))i,j≤d, λ\×Q–a.e.,

implies
Eg(ST ) ≤ E∗g(S∗T ).

Proof. This follows from Theorem 2.5 and Proposition 3.2.

As proved in Bellamy and Jeanblanc (2000) in the univariate case, a diffusion
with jumps is riskier than a diffusion, if the volatility of the diffusion with jumps
is not smaller than the volatility of the pure diffusion. We generalize this to
multivariate models and non-Markovian jump processes. We say that S is a
d-dimensional diffusion with jumps, if

X = Log(S) ∼ (0, c,K). (3.17)

Theorem 3.4 (Convex comparison of SV model with jumps to dif-
fusion, lower bound). Let g ∈ Fcx ∩ C2. Assume that S = E(X) is a
d-dimensional stochastic volatility model with jumps, where X has differential
characteristics given by (3.17), and that S∗ is a d-dimensional diffusion with
diffusion coefficient function c∗ given by (3.15). Let S, S∗ satisfy Assumptions
MG and CD(g) and assume that S∗ satisfies Assumption SC(g) and that the
Euler scheme S̃∗K of S∗ satisfies AP(g).
If σ∗(t, ·) is convex, then the comparison of the differential characteristics of the
stochastic logarithms

(c∗ij(t, St−(ω)))i,j≤d ≤psd (cijt (ω))i,j≤d, λ\×Q–a.e.,

implies
E∗g(S∗T ) ≤ Eg(ST ).

Proof. This follows from Theorem 2.7 and Proposition 3.2.

Remark 3.5. In the one-dimensional case, the comparison of c and c∗ reduces
to a pointwise comparison. If S∗ is a solution of the SDE

dS∗

S∗
= σ∗(t, S∗t )dW ∗

t , S∗0 = 1,

then c∗t = (σ∗(t, S∗t ))2. Under the assumptions of Theorem 3.3, a sufficient
condition for the upper bound is

ct(ω) ≤ (σ∗(t, St(ω)))2, for λ\×Q− a.e. (t, ω). (3.18)
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This is already stated in El Karoui, Jeanblanc-Picqué, and Shreve (1998). Under
the assumptions of Theorem 3.4 a sufficient condition for the lower bound is

(σ∗(t, St(ω)))2 ≤ ct(ω), for λ\×Q− a.e. (t, ω). (3.19)

For K = 0 the lower bound result is also stated in El Karoui, Jeanblanc-Picqué,
and Shreve (1998). Bellamy and Jeanblanc (2000) establish the lower bound for
deterministic K.

3.2 Convex comparison with a multivariate diffusion with
jumps

We generalize the results of the previous subsection to the case where the Marko-
vian comparison process S∗ is a multivariate diffusion with jumps. For the one-
dimensional case some comparison results are given in the literature. Bellamy
and Jeanblanc (2000) compare a diffusion with a diffusion with jumps, where the
jumps are driven by a Poisson process with deterministic intensity. Henderson
and Hobson (2003) consider two cases. In the first case, the jumps are driven by
a Poisson random measure and all involved parameters are deterministic func-
tions of time. Therefore, the jump and the diffusion part are independent and
coupling arguments apply, see also our introduction. In the second case they ob-
tain a convex comparison result for a diffusion with jumps where the intensity of
the Poisson random measure is Markovian and there is only one constant jump
size. Møller (2003) applies the cut criterion to prove a convex ordering result for
univariate diffusions with positive jumps that are assumed to have independent
increments. In the following we extend these results. We give sufficient condi-
tions under which d-dimensional diffusions with jumps generated by a marked
point process are comparable to non-Markovian martingales.
Let g ∈ Fcx and assume that W ∗ is a d-dimensional Brownian motion on a
stochastic basis (Ω∗,A∗, (A∗

t )t∈[0,T ], Q
∗). Assume that N∗ is a Poisson random

measure on [0, T ]× E, where the mark space E is R or Rd. Let N∗ have deter-
ministic intensity λ∗(dy)dt and λ∗(E) < ∞. For σ∗ : [0, T ] × Rd → M+(d,R)
and φ∗ : [0, T ]× Rd × E → Rd let S∗ be a unique strong solution of

dS∗t = σ∗(t, S∗t )dW ∗
t + φ∗(t, S∗t−, y)(N

∗(dt, dy)− λ∗(dy)dt), (3.20)
S∗0 = 1

Additionally, we assume as in the diffusion case that Assumptions MG and SC(g)
are satisfied, i.e. that S, S∗ are positive martingales and the backward functional
G ∈ C1,2. Again we assume throughout this subsection that BIC(g) or CD(g) is
satisfied, depending on which condition is needed for the comparison theorems
of section 2.
To establish the propagation of convexity property P(g) we proceed as in the
diffusion case. We prove the propagation of convexity for the Euler scheme
corresponding to S∗ and then make use of the approximation property. For
t0 ∈ [0, T ] we discretize [t0, T ] into K + 1 equidistant points ti := iT−t0

K + t0, i ∈
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{0, . . . ,K} and denote the Euler scheme of S∗ by

S̃∗K,ti+1
= S̃∗K,ti

+ σ∗(ti, S̃∗K,ti
)(W ∗

ti+1
−W ∗

ti
)

+ φ∗(ti, S∗ti
, Y )Ñ∗ − EY φ∗(ti, Sti , Y )λ∗(E)∆ti, (3.21)

S̃∗K,t0 = s,

where Ñ∗ is binomial with P Ñ∗
= (1 − λ∗(E)∆ti)ε{0} + λ∗(E)∆tiε{1}, Y

has distribution λ∗(dy)
λ∗(E) on (E, E), EY f(·, ·, Y ) := 1

λ∗(E)

∫
f(·, ·, y)λ∗(dy) and

∆ti = ti+1 − ti. We refer to Liu and Li (2000) for conditions that imply the
approximation property for this case.
Again, we assume that σ∗(t, ·) is convex and additionally we assume that the
jump coefficient satisfies one of the following conditions.

(J1) E = Rd and φ∗ : R+×Rd
+×Rd → Rd factorizes into φ∗(t, s, y) := ϕ∗(t, s)y,

where ϕ∗ : [t0, T ]× Rd → R+, ϕ∗(t, ·) is convex, ∀t ∈ [t0, T ].

(J2) E = R and φ∗ : R+ × Rd
+ × R → Rd factorizes into φ∗(t, s, y) := ϕ∗(t, s)y,

where ϕ∗ : [t0, T ]× Rd → Rd
+, ϕ∗(t, ·) is affine-linear, ∀t ∈ [t0, T ].

(J3) d = 1, E = R, N ≥ 0 and φ∗ : R+ × R+ × R → R+ factorizes into
φ∗(t, s, y) :=

∑
i≤m

ϕ∗i (t, s)ψ
∗
i (y), where ϕ∗i : R+ × R+ → R+ is convex, ∀t ∈

[t0, T ], i ≤ m and ψ∗i : R → R+ is non-decreasing, ∀i ≤ m.

Theorem 3.6 (Propagation of convexity, diffusion with jumps case).
Let g ∈ Fcx, S∗ be a d-dimensional diffusion with jumps and assume that the
Euler scheme S̃∗K of S∗ satisfies Assumption AP(g). If σ∗(t, ·) is convex for all
t ∈ [0, T ] and the jump part satisfies one of the conditions (J1)–(J3) then the
propagation of convexity property P(g) holds, i.e.

G(t, ·) ∈ Fcx, ∀t ∈ [0, T ].

Proof. The proof uses similar to that of Theorem 3.2 the Euler approximation
scheme S̃∗K in 3.21. The main part that needs to be established is the ≤cx-

monotonicity of the corresponding Markov operator Tti
S

d= S + σ(ti, S)W +
φ(ti, S, Y )N−EY φ(ti, S, Y )EN . This is the content of the following lemma.

Lemma 3.7 (A convex ordering result for Markov operators). Let
S,W,N, Y be independent integrable random variables, where S,W are Rd-
valued, W ∼ N(0, I) and N has values in R. Assume that σ : Rd → M+(d,R)
is convex and consider the Markov operator T S d= S + σ(S)W + φ(S, Y )N −
EY φ(S, Y )EN .
Then T is ≤cx-monotone, if one of the following conditions holds true

1. Y has values in Rd and φ : Rd × Rd → Rd factorizes into φ(s, y) = ϕ(s)y,
where ϕ : Rd → R+ is convex.

2. Y has values in R and φ : Rd × R → Rd factorizes into φ(s, y) = ϕ(s)y,
where ϕ : Rd → Rd

+, ϕ(t, ·) is affine-linear.
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3. d = 1, Y has values in R, N ≥ 0 and φ factorizes into φ(s, y) =∑
i≤m ϕi(s)ψi(y), where ϕi : R → R+ are convex, and ψi : R → R+ are

non-decreasing, i ≤ m.

Proof. 1./2. Assume that S1, S2, are d-dimensional random vectors that are
independent of W,N and Y and satisfy S1 ≤cx S2. Due to Strassen’s Theorem
we choose without loss of generality S1, S2 such that E(S2|S1) = S1. Let the
situation in 1 or 2 be given. For f ∈ Fcx Jensen’s inequality implies

Ef(T S2) = E (Ef(S2 + σ(S2)W + ϕ(S2)(Y N − EY N))|S1,W, Y,N)
≥ Ef(E(S2|S1) + E(σ(S2)|S1)W + E(ϕ(S2)|S1)(Y N − EY N))
≥ ES1Ef(s1 + E(σ(S2)|s1)W + E(ϕ(S2)|s1)(Y N − EY N)).

Due to Lemma 3.1 and stability of the convex order under convolutions and
mixtures it suffices to prove that

C := E(ϕ(S2)|s1)(Y N − EY N) ≥cx ϕ(s1)(Y N − EY N) =: B.

1. For convex ϕ : Rd → R+ Jensen’s inequality implies that ϑ(s1) :=
E(ϕ(S2)|s1) − ϕ(s1) ∈ R+. For j ≤ d we define Rj = ϑ(s1)(YjN − EYjN).
Then it follows from convexity of f that

Ef(C) ≥ Ef(B) + E〈∇f(B), R〉,

where R = (R1, . . . , Rd), ∇ is the gradient and 〈·, ·〉 stands for the scalar product
in Rd. From R = ϑ(s1)

ϕ(s1)
B it follows that E〈∇f(B), R〉 = ϑ(s1)

ϕ(s1)
E〈∇f(B), B〉. Due

to a characterization result of optimal couplings in Rüschendorf and Rachev
(1990, Theorem 1.) it follows that (B,∇f(B)) is an optimal `2-coupling. This
implies E〈∇f(B), B〉 ≥ 〈E∇f(B), EB〉 = 0, as EB = 0.
2. From affine-linearity of ϕ it follows that E(ϕ(S2)|s1) = ϕ(s1) and, therefore,
C

d= B and thus the ordering conclusion.
3. Let d = 1 and φ(s, y) =

∑
i≤m

ϕi(s)ψi(y). As for f ∈ Fcx Jensen’s inequality

implies

Ef(T S2) ≥ ES1Ef(s1+E(σ(S2)|s1)W+
∑
i≤m

E(ϕi(S2)|s1)(ψi(Y )N−Eψi(Y )N)),

it suffices to prove that

C :=
∑
i≤m

E(ϕi(S2)|s1)(ψi(Y )N − Eψi(Y )N)

≥cx

∑
i≤m

ϕi(s1)(ψi(Y )N − Eψi(Y )N) =: B.

Due to Jensen’s inequality ϑi := E(ϕi(S2)|s1) − ϕi(s1) is non-negative. For
f ∈ Fcx ∩ C2 and R :=

∑
i≤m ϑi(ψi(Y )N − Eψi(Y )N), convexity of f implies

Ef(C) ≥ Ef(B) + Ef ′(B)R.

To prove that Ef ′(B)R is non-negative, we make use of some results on associa-
tion of random vectors (cp. Müller and Stoyan (2002, Theorems 3.10.5, 3.10.7.)).
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As Y,N are independent random variables, (Y,N) is associated. From mono-
tonicity of ψi ≥ 0 it follows that Ψi(y, n) := ψi(y)n, n ≥ 0, is non-decreasing in
(y, n), ∀i ≤ m, and, therefore N ≥ 0 implies that

Z := (Z1, . . . , Zm) = (Ψ1(Y,N), . . . ,Ψm(Y,N))
is associated, thus Z̄ = Z − EZ is associated (see Müller and Stoyan (2002,
Theorem 3.10.7.)). From non-negativity of gi(s1) and ϑi(s1) it follows that
(B,R) = (

∑
i≤m

gi(s1)Z̄i,
∑

i≤m

ϑi(s1)Z̄i) is non-decreasing in Z̄ and, therefore,

is associated. Thus, EF1(B,R)F2(B,R) ≥ EF1(B,R)EF2(B,R) for all non-
decreasing Fk : R×R → R, k = 1, 2. As f ∈ Fcx, f ′ is non-decreasing and with
F1(B,R) := f ′(B), F2(B,R) := R it follows that Ef ′(B)R ≥ Ef ′(B)ER =
0.

By the propagation of convexity property, the convex comparison result of The-
orems 2.5 and 2.7 can be applied to the case, where the Markovian compari-
son process S∗ is a d-dimensional diffusion with jumps. The characteristics of
X∗ = Log(S∗) are of the form

c∗ij(t, S∗t (ω)) =
∑
k≤d

σS∗ik(t, S∗t (ω))
S∗i

t (ω)
σS∗jk(t, S∗t (ω))

S∗j
t (ω)

.

K∗
t (s,G) =

∫
1G\{0}

(
φ∗(t, s, y)

s

)
λ∗(dy), G ∈ Bd,

as KS∗

t (s,G) =
∫
1G\{0}

(
φ∗(t, s, y)

)
λ∗(dy) =

∫
1G\{0}(z)λ∗

φ∗(t,s,·)(dz) and us-
ing Lemma A.2.
We consider the one-dimensional SDE

dS∗t
S∗t

= σ∗(t, S∗t )dW ∗
t + φ∗(t, S∗t−, y)(N

∗(dt, dy)− λ∗(dy)dt).

In this case we have K∗
t (s,G) =

∫
1G\{0}(z)λ∗

φ∗(t,s,·)(dz), G ∈ B, and therefore

X∗ ∼
(
0, (σ∗(t, S∗t ))2, λ∗φ∗(t,S∗t−,·)

)
. (3.22)

Assume similarly that S is a stochastic volatility model with jumps with evolu-
tion

dSt

St
= σtdWt + φ(t, St, y)(N(dt, dy)− λ(dy)dt),

where σt is an adapted process and λ(E) <∞. Then

X ∼
(
0, σ2

t , λ
φ(t,St−,·)

)
, (3.23)

and convex comparison of a one-dimensional diffusion with jumps to a stochastic
volatility model with jumps reads as follows.

Theorem 3.8 (Convex comparison of diffusions with jumps to SV
model with jumps). Let g ∈ Fcx ∩ C2. Assume that S = E(X), S∗ = E(X∗)
are one-dimensional processes described by (3.23) and (3.22), respectively. Let
S, S∗ satisfy Assumption MG and assume that S∗ satisfies Assumption SC(g)
and that the Euler scheme S̃∗K of S∗ satisfies Assumption AP(g). Additionally
assume that σ∗(t, ·) ∈ Fcx, for all t ∈ [0, T ], and the jump part satisfies one of
the conditions (J1)–(J3).
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1. (Upper bound) Let Assumption BIC(g) or CD(g) be satisfied. If for λ\×Q-
a.e. (t, ω)

σ2
t (ω) ≤ (σ∗(t, St(ω)))2 ,

λφ(t,St−(ω),·) ≤cx λ
∗φ∗(t,St−(ω),·), (3.24)

then Eg(ST ) ≤ E∗g(S∗T ).
2. (Lower bound) Let Assumption CD(g) be satisfied. If for λ\×Q-a.e. (t, ω)

(σ∗(t, St(ω)))2 ≤ σ2
t (ω),

λ∗φ∗(t,St−(ω),·) ≤cx λ
φ(t,St−(ω),·),

then E∗g(S∗T ) ≤ Eg(ST ).

Proof. For f(t, s, ·) ∈ Fcx the ordering in (3.24) implies ordering of the jump
measures∫

f(t, St−, y)Kt(dy) =
∫
f(t, St−, φ(t, St−, y))λ(dy)

≤
∫
f(t, St−, φ

∗(t, St−, y))λ∗(dy) =
∫
f(t, St−, y)K∗

t (St−, dy).

Due to Theorem 3.6 the propagation of convexity property P(g) is satisfied, and
therefore the result follows from Theorem 2.5 .

Theorem 3.8 also allows to compare one-dimensional Lévy driven SDEs with
pointwise ordered volatilities in the convex sense. We have to pose some addi-
tional assumptions on the Lévy measure.
Let (Lt)t∈[0,T ] be a Lévy process such that E|Lt| < ∞,∀t ∈ [0, T ] and assume
that Lt has no drift component. Then the Lévy–Itô decomposition of L is of the
form

Lt = cBt +
∫
xN(t, dx)− t

∫
xλ(dx),

with c ∈ R+, with a Brownian motion B and where N(dt, dx) is a Poisson
random measure with deterministic compensator λ(dx)dt. Assume that S, S∗

are solutions of the SDEs
dSt = σ(t, St)dLt, S0 = 1,
dS∗t = σ∗(t, S∗t )dLt, S

∗
0 = 1. (3.25)

Corollary 3.9 (Comparison of Lévy driven diffusions). Let g ∈ Fcx and
assume that S, S∗ are solutions of the Lévy driven SDEs (3.25). Let S, S∗ sat-
isfy Assumptions MG and BIC(g) (or CD(g)) and assume that λ(E) < ∞ and∫
yλ(dy) = 0. Let further S∗ satisfy Assumption SC(g) and assume that the

Euler scheme S̃∗K of S∗ satisfies Assumption AP(g).
If σ∗ : [0, T ] × R → R is convex in the second component and if for λ\ ×Q-a.e.
(ω, t) it holds true that

σ(t, St(ω)) ≤ σ∗(t, St(ω)),
then Eg(ST ) ≤ E∗g(S∗T ).

Proof. The characteristics of the stochastic logarithms of S, S∗ are of the form
X ∼

(
0, σ(t, St), λσ(t,St)·

)
and X∗ ∼

(
0, σ∗(t, S∗t ), λσ∗(t,S∗t )·), respectively. The

result follows from an application of Theorem 3.8 with φ(t, s, y) := σ(t, s)y and
φ∗(t, s, y) := σ∗(t, s)y.
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3.3 Comparison of processes with independent increments

In financial modelling one often uses exponential Lévy models eX̄t , (X̄t) a Lévy
process. In this subsection we consider d-dimensional processes S = E(X), S∗ =
E(X∗) where the stochastic logarithms X,X∗ have independent increments (PII)
and compare European options with payoffs g ∈ F , F ∈ {Fcx,Fdcx}, for the
underlyings S and S∗. We assume that Assumptions MG and SC(g) are satisfied
and that Assumptions BIC(g) or CD(g) hold true to insure suitable integrability
of the backward linking process G(t, St), depending on which condition is needed
in the comparison theorems of section 2. From Lemma A.1 it follows that X̄ =
log E(X), X̄∗ = log E(X∗) are PII iff X,X∗ are PII. In Lemma 3.11 we establish
that propagation of (directional) convexity property P(g) holds true for the
exponential PII case. Thus, our general comparison results of section 2 apply
also to exponential Lévy models.

Propagation of (directional) convexity for the exponential PII case follows from
the following representation of the backward functional G(t, s).

Lemma 3.10 (Representation of the backward functional). Let
(X∗

t )t∈[0,T ], X
∗
0 = 0, be a d-dimensional martingale with independent increments

(PII) and ∆X∗ > −1. Let S∗ = E(X∗), t0 ∈ [0, T ] and assume that g : Rd → R
is s.th. G(t0, s) <∞, ∀s. Then there is a PII (X∗t0

t )t∈[0,T ] with

G(t0, s) = E∗g(sE(X∗t0)T ).

Proof. Let X̄∗ := log E(X∗) and define for t0 ∈ [0, T ] the PII

X̄∗t0
t :=

{
0, 0 ≤ t ≤ t0
X̄∗

t − X̄∗
t0 , t0 < t ≤ T.

Due to the one to one relationship between the stochastic and the ordinary
exponential there is a PII (X∗t0

t )t∈[0,T ] such that for t ∈ (t0, T ]

E(X∗t0)t = exp(X̄∗t0
t ) = exp(X̄∗

t − X̄∗
t0) = S∗t

1
S∗t0

,

and E(X∗t0)t = 1,∀t ∈ [0, t0]. By the independence of the increments of X∗t0

we obtain E∗g(sE(X∗t0)T ) = E∗(g(S∗t0E(X∗t0)T )|S∗t0 = s) = E∗(g(S∗T )|S∗t0 =
s).

In the considered case of exponential PII models, propagation of (directional)
convexity is a corollary to the previous representation result.

Lemma 3.11 (Propagation of (directional) convexity). Let g ∈ F , F ∈
{Fcx,Fdcx} and assume that X∗ is PII with ∆X∗ > −1.
Then S∗ = E(X∗) satisfies P(g).

As a first example we consider the case where S, S∗ are stochastic exponentials
of compound Poisson processes. For λ, λ∗ <∞ and probability measures R,R∗

with mass on (−1,∞)d let X = Log(S) and X∗ = Log(S∗) with

X ∼ (0, 0, λR), X∗ ∼ (0, 0, λ∗R∗). (3.26)
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A (directionally) convex comparison of R and R∗ implies the corresponding com-
parison of ST and S∗T . For the directionally convex comparison we additionally
have to assume that for all t ∈ [0, T ]∫

[0,t]

∫
(−1,∞)d

|ΛG(u, Su−, x)|λ∗R∗(dx)du ∈ A+
loc, (3.27)

for the Kolmogorov backward equation to hold (see Lemma 2.1).

Theorem 3.12 ((Directionally) convex comparison of stochastic ex-
ponentials of compound Poisson processes). Let F0 ⊂ F ∩ C2, F ∈
{Fcx,Fdcx}, be a generating class of the (directionally) convex order. Assume
that S = E(X), S∗ = E(X∗) are stochastic exponentials of compound Poisson
processes X,X∗ with characteristics (3.26) that satisfy Assumption MG. Let S∗

satisfy Assumption SC(F0) and for F = Fdcx additionally assume that (3.27)
holds true for all g ∈ F0.

1. (Upper bound) Let S, S∗ satisfy Assumption BIC(F0).

(a) If λ = λ∗ and R ≤F R∗, then ST ≤F S∗T .

(b) If λ ≤ λ∗ and R = R∗ with ER = 0, then ST ≤cx S
∗
T .

2. (Lower bound) Let S, S∗ satisfy Assumption CD(F0).

(a) If λ = λ∗ and R∗ ≤F R, then S∗T ≤F ST .

(b) If λ∗ ≤ λ and R = R∗ with ER = 0, then S∗T ≤cx ST .

Proof. The proof is an easy application of the comparison Theorems 2.2–2.7.
Parts (1b) and (2b) follow from the fact that λ ≤ λ∗ and ER = 0 imply λR ≤cx

λ∗R.

Remark 3.13. If λ ≤ λ∗, R ≤cx R
∗ and ER = 0, then Theorem 3.12 implies

ST ≤cx S
∗
T . An analogue result is true for the lower bound.

Theorem 3.12 implies an ordering result for Lévy processes with infinite Lévy
measures by approximation. For an infinite Lévy measure F we denote by Fn

the truncated measure Fn(dx) := 1{|x|>εn}F (dx), εn > 0, which is a finite Lévy
measure.

Corollary 3.14 (Comparison of stochastic exponentials of pure jump
Lévy processes with infinite Lévy measures). Let F0 ⊂ F ∩ C2, F ∈
{Fcx,Fdcx}, be a generating class of the (directionally) convex order. For Lévy
measures F, F ∗ with infinite total mass let X ∼ (0, 0, F ), X∗ ∼ (0, 0, F ∗) and
denote the truncated versions by Fn, F

∗
n . Let Sn = E(Xn), S∗n = E(X∗

n) satisfy
Assumption MG, assume that S∗ satisfies Assumption SC(F0) and for F = Fdcx

additionally assume that (3.27) holds true for all g ∈ F0. If εn, ε
∗
n ↓ 0 are such

that ‖Fn‖ = ‖F ∗
n‖ <∞ and Fn ≤F F ∗

n , then ST ≤F S∗T .
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Ordering results for (stochastic) exponentials of Lévy processes with infinite Lévy
measures are also obtained by combining one of the general comparison results
of Theorems 2.2–2.7 with the propagation of (directional) convexity property
for stochastic exponentials of PII from Lemma 3.11 (and Lemma A.1 in the
ordinary exponential case). As example we consider multivariate exponential
generalized hyperbolic models (see Barndorff-Nielsen (1977)). v. Hammerstein
(2003) derived the Lévy densities of generalized hyperbolic distributions. In
the special cases of normal inverse Gaussian (NIG = NIGd(α, β, δ, µ,∆)) and
variance gamma (VG = VGd(λ, α, β, µ,∆)) distributions they are given by

`NIG(x) =
2αd/2exβT(

2π
√
x(∆−1x)T

)d/2

δ
√
α

√
2π (x(∆−1x)T )1/4

K d+1
2

(
α
√
x(∆−1x)

)
,

`VG(x) =
2λαd/2exβT(

2π
√
x(∆−1x)T

)d/2
K d

2
(α

√
x(∆−1x)).

As in the case of NIG the scaling parameter δ appears multiplicatively in the
Lévy density, comparison of two Lévy densities with scaling parameters δ̄ ≤
δ̄∗ implies convex ordering of the corresponding exponential Lévy models S =
eX̄ ≤cx S

∗ = eX̄∗
. An analogue ordering result for VG models in the parameter

λ holds true.

A Appendix

In Lemma A.1 the relationship between stochastic and ordinary exponential in
terms of characteristics is established. This is a multivariate extension of Goll
and Kallsen (2000, Lemma A.8) and Jacod and Shiryaev (2003, Theorem II.8.10).
For a truncation function h : Rd → Rd we denote by X ∼ (B,C, ν)h that X
has drift characteristic B = B(h), that depends on the truncation function h,
Gaussian characteristic C and jump characteristic ν (cp. Jacod and Shiryaev
(2003, Definition II.2.6). Lemma A.1 in particular implies that X = Log(S) is
PII iff X̄ = log(S) is PII, as the characteristics of X are deterministic iff the
characteristics of X̄ are deterministic.

Lemma A.1. 1. Let X ∼ (B,C, ν)h be a d-dimensional semimartingale and
X̄ := log E(X). Then the characteristics (B̄, C̄, ν̄)h̄ of X̄ are given by

B̄ = B − diag(C)
2

+ (h̄(log(1 + x))− h(x)) ∗ ν,

C̄ = C,

ν̄([0, t]×G) =
∫

[0,t]×(−1,∞)d

1G(log(x+ 1))ν(du, dx), G ∈ Bd,

where diag(C) := (C11, . . . , Cdd) is the diagonal of the matrix C.
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2. Let X̄ ∼ (B̄, C̄, ν̄)h̄ be a d-dimensional semimartingale and X := Log(eX̄).
Then the characteristics (B,C, ν)h of X are given by

B = B̄ +
diag(C̄)

2
+ (h(ex − 1)− h̄(x)) ∗ ν̄,

C = C̄,

ν([0, t]×G) =
∫

[0,t]×Rd

1G(ex − 1)ν̄(du, dx), G ∈ B((−1,∞)d).

Proof. As the multivariate (stochastic) exponential (resp. logarithm) is defined
componentwise, the arguments of the proof of the univariate case apply to every
component of the multivariate characteristics and the result follows from

X̄i = Xi −Xi
0 −

1
2
〈Xc,i, Xc,i〉+ (log(1 + xi)− xi) ∗ µXi

.

The appearance of the diagonal of C in the drift part B̄ is due to that represen-
tation. The proof of part 2 is similar to that of the first part.

Lemma A.2. 1. Let X ∼ (B,C, ν)h be a d-dimensional semimartingale with
X0 = 0 and ∆X > −1. Then S := E(X) ∼ (BS , CS , νS)hS is a positive
d-dimensional semimartingale with characteristics

BS,i
t =

∫
[0,t]

Si
u−dB

i
u +

∫
[0,t]×(−1,∞)d

(hS,i(Su−x)− Si
u−h(x

i))ν(du, dx),

CS,ij
t =

∫
[0,t]

Si
u−S

j
u−dC

ij
u ,

νS([0, t]×G) =
∫

[0,t]×(−1,∞)d

1G(Su−x)ν(du, dx), G ∈ Bd.

2. Let S ∼ (BS , CS , νS)hS be a d-dimensional semimartingale with S0 = 1 and
S, S− > 0. Then X := LogS ∼ (B,C, ν)h is a d-dimensional semimartingale
with ∆X > −1 and

Bi
t =

∫
[0,t]

1
Si

u−
dBS,i

u +
∫

[0,t]×Rd

{
hi

(
s

Su−

)
− 1
Si

u−
hS,i(s)

}
νS(du, ds),

Cij
t =

∫
[0,t]

1
Si

u−

1
Sj

u−
dCS,ij

u ,

ν([0, t]×G) =
∫

[0,t]×Rd

1G

(
s

Su−

)
νS(du, ds), G ∈ Bd.

Proof. 1. This is proved in Goll and Kallsen (2000, Example 4.3) in the case
where X is a d-dimensional Lévy process. The proof for semimartingales is
similar.
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2. As S = E(X) is defined componentwise, X is given as Xi = 1
Si
−
· Si, i ≤

d. For the Gaussian characteristic it follows that Cij = 〈Xi,c, Xj,c〉 =
1

Si
−

1

Sj
−
· CS,ij . To compute the jump compensator let f : (0,∞)d → Rd

be defined by f(s) = (log(s1), . . . , log(sd))T . Itô’s Lemma for characteristics
(see e.g. Goll and Kallsen (2000, corollary A.6)) implies ν̄([0, t] × G) =∫
[0,t]×Rd

1G

(
log

(
Su−+s

Su−

))
νS(du, ds). From part 2 of Lemma A.1 we obtain

ν([0, t]×G) =
∫

[0,t]×Rd

1G

(
s

Su−

)
νS(du, ds).

It remains to compute Bt. In the same manner as for the jump compensator we
use Itô’s Lemma to obtain for G ∈ Bd and i ≤ d

B̄i
t =

∫
[0,t]

1
Si

u−
dBS,i

u − 1
2

∫
[0,t]

(
1
Si

u−

)2

dCS,ii
u

+
∫

[0,t]×Rd

{
h̄i(log(Su− + s)− log(Su−))− 1

Si
u−
hS,i(s)

}
νS(du, ds).

Applying part 2 of Lemma A.1 this yields after a bit of calculus

Bi
t =

∫
[0,t]

1
Si

u−
dBS,i

u +
∫

[0,t]×Rd

{
hi

(
s

Su−

)
− 1
Si

u−
hS,i(s)

}
νS(du, ds).

Proof of Lemma 2.1 1. Assume that |W ∗| ∗µS∗ ∈ A+
loc and let t ∈ (0, T ]. Similar

to the proof of Theorem 2.2 Itô’s lemma and Lemma A.2 imply that G(t, S∗t )
is a semimartingale with evolution G(t, S∗t ) = G(0, 1) +M∗

t +M∗∗
t + A∗t , where

M∗,M∗∗ are local (At)-martingales under Q∗ and

A∗t :=
∫

[0,t]

{
DtG(u, S∗u−) +

1
2

∑
i,j≤d

D2
ijG(u, S∗u−)S∗i

u−S
∗j
u−c

∗ij (u, S∗u−)

+
∫

(−1,∞)d

(ΛG)(u, Su−, x)K∗
u(S∗u−, dx)

}
du.

is predictable and of finite variation. As G(t, S∗t ) a local (At)-martingale it
follows by the uniqueness of the representation of a special semimartingale, that
A∗t is a predictable local martingale with finite variation starting at zero and
therefore is zero.
2. We show that G(t, ·) ∈ Fcx implies the integrability condition |W ∗| ∗ µS∗ ∈
A+

loc. Then the result follows from the first part. As G(t, S∗t ) is a local martingale
under Q∗, it is a special semimartingale. The process∫

[0,t]

DtG(u, S∗u−)du+
1
2

∑
i,j≤d

∫
[0,t]

D2
ijG(u, S∗u−)dC

S∗ij
u

is of finite variation and predictable and therefore is in Aloc. Due to a rep-
resentation result for special semimartingales (see Jacod and Shiryaev (2003,
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Proposition I.4.23)) it follows that W ∗ ∗µS∗ ∈ Aloc. Convexity of G(t, ·) implies
W ∗(ω∗, t, s) ≥ 0. Therefore, |W ∗| ∗ µS∗ = W ∗ ∗ µS∗ ∈ A+

loc.
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36. Rüschendorf, L. and S. T. Rachev (1990). A characterization of random
variables with minimum L2-distance. J. Mult. Anal. 32, 48-54.

37. Schweizer, M. (1996). Approximation pricing and the variance-optimal
martingale measure. Ann. Probab. 24 (1), 206–236.

38. Scott, L. (1987). Option pricing when the variance changes randomly:
Theory, estimation and an application. J. Financ. Quant. Anal. 22, 419–
438.

39. Stein, E. M. and J. C. Stein (1991). Stock price distributions with stochas-
tic volatility: An analytic approach. Rev. Financ. Stud. 4, 727–752.

40. Wiggins, J. B. (1987). Option valuation under stochastic volatility: Theory
and empirical estimates. J. Financial Econ. 19 (2), 351–372.

29


