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Abstract

Partitioning algorithms for the Euclidean matching and for the semi-
matching problem in the plane are introduced and analysed. The algorithms
are analogues of Karp’s well-known dissection algorithm for the traveling sales-
man problem. The algorithms are proved to run in time n log n and to ap-
proximate the optimal matching in the probabilistic sense. The analysis is
based on the techniques developed in Karp (1977) and on the limit theorem
of Redmond and Yukich (1993) for quasiadditive functionals.

1 Introduction

Define for (x1, . . . , xn) ∈ IRd, d ≥ 1 the weighted Euclidean matching functional

L(x1, . . . , xn) = min
σ∈Sn

m∑

i=1

‖xσ(2i−1) − xσ(2i)‖ (1.1)

where Sn is the set of permutations of {1, . . . , n}, m =
[

n
2

]
, and ‖‖ is the Euclidean

norm. L is a quasiadditive functional, i.e. L is subadditive, continuous and there
exists an approximating superadditive functional L̂ ≤ L+1 on [0, 1]d defined by the
corresponding boundary matching functional which allows matching to boundary
points (cf. Redmond and Yukich (1993) for an indication and Sachs (1997) for a
detailed proof. See also the detailed discussion in the recent book of Steele (1997).
Therefore as consequence of the general version of the Beardwood, Halton and Ham-
mersly (BHH) Theorem of Redmond and Yukich (1994) for any iid sequence (Xi)
on [0, 1]d with PXi = µ holds

lim
n→∞

L(X1, . . . , Xn)

n(d−1)/d
= β(L)

∫
f(x)

(d−1)
d dλ\d(x) (1.2)

in the sense of complete convergence, where f is the density of the Lebesgue con-
tinuous part of µ. Papadimitriou (1978) proved (1.2) for the matching functional
in the uniform case while Rhee (1993) gave a proof of a more general limit theorem
based on a continuity property of L.
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Karp (1977) introduced a partitioning algorithm for the traveling salesman prob-
lem (TSP) using a random subdivision of the domain (in the case d = 2). This
partitioning algorithm subdivides the set of cities into small groups, constructs an
optimum tour through each group and then patches the subtours together to obtain
a tour through all the cities. Based on the BHH-Theorem, Karp could prove that
this algorithm is asymptotically optimal in a model with randomly distributed cities
in the sense that for any ε > 0 the probability that the tour length T (X1, . . . , Xn)
exceeds the optimal tour length by a factor more than 1+ε converges to zero. More-

over the algorithm is proved to run within time D1ε
2d

1/ε2

1 n + 0(n log n) with some
constants d1, D1. In particular this was the first instance of a polynomial approxi-
mation to a NP-problem. Papadimitriou (1978) introduced and analysed a 3-phase
algorithm for Euclidean matching and obtained some bounds for the constant β.
Dyer and Frieze (1984) introduced a partitioning algorithm with a different fixed
partitioning scheme for the Euclidean matching problem and proved that it approx-
imates the optimal matching in a probabilistic sense for uniform distributions.

In this paper we introduce analogues of Karps algorithm for the Euclidean match-
ing and for the semi-matching problem. In the semi-matching problem it is allowed
that any point is matched to any number of points with sum of the weights equal
to one. We prove that in both cases the proposed partitioning algorithm approxi-
mates the optimal solution in a probabilistic model and operates in running time
n log n for general distributions. For the Euclidean matching it is useful to construct
the partitioning in such a way that nearly all subproblems have an even number of
points. In contrast to the TSP which is an NP-problem, the Euclidean matching
and semi-matching problems can be formulated as linear programming problems
and therefore have a polynomial running time exact solution of order O(n3). But
the improvement of the order of the running time to O(n log n) by the partitioning
algorithm discussed in this paper is of practical interest also for these combinatorial
optimization problems.

Yukich (1995) introduced to any quasiadditive functional L with dual functional
L̂ a functional

L̂A(F ) =
1

m

∑

i≤md

L̂(m[(F ∩Qi)− qi]), (1.3)

F ⊂ [0, 1]d a finite subset, (qi) centering points and (Qi)
md

i=1 the usual partition of
[0, 1]d into subcubes. He proved that

L̂A(U1, . . . , Un) ≤ 1 + L(U1, . . . , Un) and (1.4)

EL̂A(U1, . . . , Un) ≤ 1 + EL(U1, . . . , Un)

≤ 1 + EL̂A(U1 . . . Un) + C(log n)−1/dn(d−1)/d.

The expected execution time for calculating L̂A is O(n2 logB−1 n), where B is a
constant arising from the execution time of L̂(F ) in the form A|F |B 2|F |. So L̂A

approximates the functional L in the sense of expectations and can be calculated in
order O(n2 logB−1 n). In contrast we construct an approximatively optimal match-
ing. So our aim is different from that in Yukich’s paper.
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2 Weighted Euclidean matching in IR2

In this section we introduce and analyse a partitioning algorithm for weighted Eu-
clidean matching in IR2. The construction and analysis of this algorithm is motivated
by Karps (1977) treatment of the TSP.

2.1 Introduction of the partitioning algorithm

For n points x1, . . . , xn ∈ [a, b] ⊂ IR2, a < b let |T ∗
n | denote the value of an optimal

Euclidean matching

|T ∗
n | = min

σ∈Sn

m∑

i=1

‖xσ(2i−1) − xσ(2i)‖ m =
[
n

2

]
. (2.1)

The following partitioning algorithm proceeds by subdividing the rectangle [a, b]
into a number of subrectangles such that at most one of them has an odd number of
points. Determining a matching in each of the subrectangles results in a matching
of the {xi} which is approximatively optimal if the number of subdivisions is chosen
suitably.

For n =
∑mn

i=0 αn,i2
i, αn,i ∈ {0, 1}, αn,mn = 1 let t = tn = 2`n , 0 ≤ `n ≤ mn be

an upper bound for the number of points in the subrectangles. We assume that all
points x1, . . . , xn have different x− and y−coordinates and let w.l.g. b1−a1 ≥ b2−a2.

Specification of the algorithm: Cut the rectangle into two parts parallel to the y−ax
is such that the left part contains 2mn , the right part n − 2mn points. In the right
rectangle cut parallel to the smaller side such that 2k points, where k = max{j <
mn; αn,j = 1}, are in one part of the new pair of rectangles. Continue cutting
parallel to the smaller side inductively until the last constructed rectangle contains
at most tn points.

Figure 1: Example of a subdivision with n = 379, tn = 16

256

64

32
16

11

Finally each of the rectangles with 2k points, where `n + 1 ≤ k ≤ mn is divided
in k − `n steps cutting parallel to the shorter sides into 2k−`n rectangles with each
tn = 2`n points in it so one obtains a partition with many rectangles containing
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2`n points and possibly one rectangle with a number ≤ 2`n points. The resulting
partition looks like
Figure 2: Final form of the subdivision.

The even number of points in the subrectangles allows a simplified analysis of this
algorithm. In the subrectangles we determine an optimal matching which finally
results in a matching of {xi} which we call “Partmatch”. Let |Wn| denote the value
of this matching.

2.2 Analysis of the execution time

The partitioning algorithm (“Partmatch”) in 2.1 subdivides the rectangle [a, b] into
subrectangles with at most tn points and finds optimal matchings in the subrectan-
gles.

We assume that we can solve an Euclidean matching problem with k points in
time ≤ Dkp, with constants p,D. This is fulfilled for p = 3 using Papadimitriou
and Steiglitz (1982), Theorem 11.3, Problem 14. Improvements of this order to
O(n2,5 log n) for some geometric algorithms are given in Vajda (1989). Therefore,
for our subdivided rectangles we need at most the time

Dt
p
n(2mn−`n + 2mn−`n−1 + · · ·+ 1 + 1) = Dt

p
n2mn−`n+1 (2.2)

≤ Dt
p
n
2n

tn
= 2Dt

p−1
n · n,

for constructing the optimal matchings in the rectangles.
The partitioning algorithm divides successively a rectangle with k points into

two subrectangles with
[

k
2

]
and

[
k
2

]
+ 1 points by cutting along the smaller side.

Putting the cities into two linked lists H according to increasing values of
x−coordinates and V according to increasing values of y−coordinates a partitioning
of the rectangle into two subrectangles cutting parallel to the smaller side is done
by producing two sublists H1, H2 resp. V1, V2 giving the corresponding horizontal
or vertical coordinates. This needs in each step time proportional to the number of
points in the rectangle.
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For the sorting step with Heapsort or Mergesort (cf. Ottmann and Widmayer
(1990)) we need O(n log n) steps. For the subdivision of the rectangle into subrect-
angles with 2k points `n + 1 ≤ k ≤ mn, we need, observing that the size of the
succeeding subrectangle is smaller than

[
n
2

]
,≤ Kn(1 + 1

2
+ 1

4
+ · · · +1/

2
[n/2] ) ≤ 2Kn

steps. Finally the rectangles with 2k points are subdivided in (k−`n) subrectangles
of 2`n points each, which need for a rectangle with 2k points at most

K(2k + 2 · 2k−1 + 4 · 2k−2 + · · ·+ 2k−`n−1 · 2`n+1) = O(2k(k − `n))

steps.
Together this results in

mn∑

i=`n+1

O(2i(i− `n)) ≤ Cmn

mn∑

i=`n+1

2i ≤ C(log n)n.

Theorem 2.1 With suitable implementation the partitioning algorithm partmatch
operates within the time bound

2Dt
p−1
n n + O(n log n) (2.3)

2.3 Error analysis

To obtain an upper bound for the error |Wn| − |T ∗
n | of the partitioning algorithm to

the optimal matching we use a result on cutting games from Karp (1977).
Given a rectangle [a, b] ⊂ IR2 in the first round of the game the rectangle is

divided into two subrectangles. Player 1 decides whether to cut parallel to the x−
or the y−axis, then player 2 decides where to put the cut.

In the `-th round each of the 2`−1 subrectangles is divided according to the same
principle. After k rounds the game ends and player 1 pays to player 2 an amount
equal to the sum of the perimeters of the 2k rectangles produced in round k. Call
the short strategy for player 1 to cut parallel to the shorter side and the bisection
strategy for player 2 to divide a rectangle into equal halves. Then with Fk(a, b) the
sum of the perimeters of a k round game, where both players play optimal (i.e. use
a minimax strategy) the following result holds.

Theorem 2.2 (cp. Karp (1977), Theorem 2, Corollary 1)

a) The short strategy is optimal for player 1 the bisection strategy is optimal for
player 2 (in the sense of minimax).

b) Fk(a, b) = mins+t=k 2(2t(b1 − a1) + 2s(b2 − a2))

c) supk
Fk(a,b)

2k/2 < ∞
For F ⊂ [a, b] ⊂ IR2 with |F | = n and a rectangle Y let per(Y ) denote the perimeter
of Y , let |T ∗(Y )| denote the value of an optimal matching of F ∩Y, |T ∗

n | = |T ∗([a, b])|
and let |T ∗

n ∩ Y | be the sum of segments of an optimal matching of F with both
endpoints in Y .
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Lemma 2.3 |T ∗(Y )| − |T ∗
n ∩ Y | ≤ per(Y ).

Proof: Let y1, . . . , yk denote the cutting points of segments of the optimal matching
of F with ∂Y , numbering w.l.g. the yi clockwise. Let x1, . . . , xk denote the corre-
sponding endpoints of the segments in Y .

Figure 3: Segments of an optimal matching.
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Case 1
In Y is no unmatched point. Then w.l.g. k ∈ 2IN and

y1y2 + y3y4 + · · ·+ yk−1yk ≤ y2y3 + y4y5 + · · ·+ yky1

where for two points w, z on ∂Y wz is the length of the shortest way on the
boundary. So we obtain a matching of the points on the boundary of length ≤
1
2
per(Y ). This results in a matching of the points in Y by keeping the matchings of

points in Y , deleting the segments [xi, yi] and joining [x2i−1, x2i], 1 ≤ i ≤ k
2
. From

the triangle inequality we obtain

|T ∗(Y )| ≤ |T ∗
n ∩ Y |+ 1

2
per(Y ) (2.4)

Case 2
There is an unmatched point in Y . For k even we argue as in case 1. For k odd we
match x1, . . . , xk−1 as in case 1 and match xk with the unmatched point. This adds
at most 1

2
per(Y ) to the sum of all matchings. This implies the bound in the lemma.

2

Lemma 2.4 The sum of the perimeters of the rectangles of [a, b] produced by the
partmatch algorithm is bounded above by Fmn−`n+1(a, b).

Proof: The resulting partition of the partitioning algorithm may be regarded as a
play of a (mn − `n + 1)-round cutting game. If at some rectangles no cut is made
(in case αn,i = 0), the play can be regarded as one in which player 1 chooses the
optimal short cut strategy while player 2 chooses his cutpoint at the boundary of
the longer side of the rectangle. Thus by Theorem 2

∑
per(Yi) ≤ Fmn−`n+1(a, b).

2

As consequence we obtain the following error bound
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Theorem 2.5 An error bound of the partmatch algorithm is given by

|Wn| − |T ∗
n | ≤ Fmn−`n+1(a, b) (2.5)

≤ F[log2
2n
tn

](a, b) = O

(√
n

tn

)

Proof: Let Y1, . . . , Ymn−`n+1 denote the subrectangles produced by partmatch with
2mn , . . . , 2`n points and Ymn−`n+2 the rectangle with less than 2`n points (if αn,i = 0

then set Yi := φ). Furthermore, for k = 1, . . . , mn − `n + 1 let Y 1
k , . . . , Y 2mn−`n−k+1

k

denote the subdivisions of Yk into rectangles with 2`n points (eventually defined to
be empty). By Lemmas 2.3, 2.4 we obtain

|Wn| =
mn−`n+2∑

k=1

2mn−`n−k+1∑

j=1

|T ∗(Y j
k )|

≤ ∑

k

∑

j

(
|T ∗

n ∩ Y j
k |+ per(Y

j

k )
)

= |T ∗
n |+

∑

k

∑

j

per(Y j
k )

≤ |T ∗
n |+ Fmn+`n+1(a, b)

≤ |T ∗
n |+ F[log2

2n
tn

](a, b)

Since by Theorem 2.2, Fk(a, b) = O(2k/2), we obtain

F[log2
2n
tn

] = O
(
2

1
2
[log2

2n
tn

]
)

= O

(√
2n

tn

)
= O

(√
n

tn

)

2

We next show that in a model with random independent points in [0, 1]2 we can
choose the parameter tn such that the corresponding partmatch algorithm approxi-
mates the optimal matching with high probability.

Theorem 2.6 Let (Xi) be iid random points in [a, b] ⊂ IR2 and let PX1 be not
singular w.r.t. λ\2. Then for some D1 > 0 and ε > 0 there exists a tn = tn(ε) such
that the corresponding partmatch algorithm Wn(tn) satisfies:

a) P (|Wn(tn)| ≤ (1 + ε)|T ∗
n |) = 1− o(1)

b) With suitable implementation the running time is (for some 1 ≤ p ≤ 3)
≤ D1(

1
ε2 )

p−1n + O(n log n)
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Proof:

a) Let ε > 0 be given. By the Theorem of Redmond and Yukich (1993) (cp. (1.2))

lim
n→∞

|T ∗
n |√
n

= β
∫

f(x)
1
2 dλ\2(x) =: β̃ > 0

since PX1 is not singular w.r.t. λ\2.

From Theorem 2.5 there exists a constant C > 0 such that |Wn| − |T ∗
n | < C

√
n
tn

.

Choosing tn := 2[log2(4(C+1)2/β̃2ε2)]+1 we have on {|T ∗
n | > β̃

2

√
n } =: An

|Wn|
|T ∗

n |
≤

|T ∗
n |+ C

√
n
tn

|T ∗
n |

(2.6)

< 1 + 2C

√
n
tn

β̃
√

n

< 1 +
2C

β̃

β̃ε

2(C + 1)

< 1 + ε.

Since
∑

n P (Ac
n) < ∞ we conclude that

∑
n P

( |Wn|
T ∗n

≥ 1 + ε
)

< ∞.

Therefore,

|Wn|
|T ∗

n |
−→ 1 a.s. (2.7)

and in (2.7) even complete convergence holds.

b) By Theorem 2.1 the running time is bounded by

2Dt
p−1
n · n + O(n log n)

≤ 2D

(
8(C + 1)2

β̃2ε2

)p−1

· n + O(n log n)

≤ D1

(
1

ε2

)p−1

· n + O(n log n)

2

From the proof of Theorem 2.6 we obtain a somewhat stronger form of convergence
using the (possible) choice p = 3 and ε = εn ∼ 1/ 4

√
log n, t = tn ∼

√
log n

Corollary 2.7 Under the assumptions of Theorem 2.6 choosing tn ∼
√

log n and
εn ∼ 1/ 4

√
log n we obtain
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a)
∞∑

n=1

P (|Wn(tn)| ≥ (1 + εn)|T ∗
n |) < ∞ ;

in particular |Wn(tn)|
|T ∗n | −→ 1 almost surely.

b) The running time of the partmatch algorithm with t = tn is bounded by O(n log n).

Remarks:

a) For the practical application of the algorithm, the choice C using the bound in
Theorem 2.5 should be much too pessimistic and also an optimal matching in
the subrectangles could be replaced by a good branch and bound approximation.

b) The Euclidean metric is not used in an essential way and we could take any `p-
metric on IR d, p ≥ 1, d = 2 for a similar result, the constant β(L) of course will
be dependent on the metric. For the `p-metric obviously the matching functional
is quasiadditive.

c) Karp’s (1977) partitioning algorithm and its analysis has been generalized by
Halton and Terada (1982) to the d-dimensional case (for uniform random vari-
ables, cf. also Karp and Steele (1985)). It seems possible to analyse also similar
extensions of the Euclidean matching to the d-dimensional case.

2

3 Weighted semi-matching in IR2

For x1, . . . , xn ∈ [a, b] ⊂ IR2, a < b let Ls(x1, . . . , xn) denote the semi-matching
functional i.e. the optimal solution of the following linear program

(SM) : min
∑
i,j=1
i<j

xij eij (3.1)

i−1∑

j=1

xji +
n∑

j=i+1

xij = 1, ∀ i = 1, . . . , n

xij ≥ 0, ∀ i, j = 1, . . . , n; i < j

where eij = ‖xi − xj‖.
For an optimal solution of (SM) it is known that xij ∈ {0, 1

2
, 1},∀ i, j = 1, ..., n;

i < j (cf. Lovasz and Plummer (1986), pg. 291).
If there is a circle of even number with all weights equal to 1

2
, say u1, . . . , u2m,

then for ‖u1 − u2‖+ . . . + ‖u2m−1 − u2m‖ ≤ ‖u2 − u3‖+ . . . + ‖u2m − u1‖
replace the matching of u1, . . . , u2m by connecting u2i−1 and u2i, 1 ≤ i ≤ m. This
reduces the value of the matching. Therefore, we can assume for an optimal solution
w.l.g., that it consists of pairs of points with weight one and of a set of circles with
an uneven number of points with weight 1

2
.

It has been proved in Steele (1982) and Yukich (1995) that Ls is quasiadditive.
Therefore, the convergence theorem of Redmond and Yukich (1993) applies to Ls.
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3.1 The algorithm

As for Euclidean matching we divide the rectangle [a, b] in smaller subrectangles with
at most tn points each. Then we solve the problem in the subrectangles exactly and
get a semi-matching. We assume that no points have identical x− or y− coordinates
and determine an upper bound tn, 3 ≤ tn ≤ n for the number of points in the
subrectangles. Let kn :=

[
log2

2(n−2
tn−2

]
.

We divide [a, b] into two rectangles with
[

n
2

]
resp. n−

[
n
2

]
points, cutting along

the shorter side. Then we repeat this step kn times with each of the rectangles.
In this way we obtain in the first step two rectangles with at most

[
n
2

]
+ 1 ≤ n+2

2

points, in the second step 4 rectangles with at most
[

n
2

]
+ 1/2 + 1 ≤ n+6

4
points.

Generally in the `- th step we obtain 2` rectangles with at most (n − 2 + 2`+1)/2`

points. After kn steps each rectangle contains at most n−2
2kn + 2 ≤ (tn − 2) + 2 = tn

points. In comparison to Euclidean matching an uneven number of points in the
subrectangles does not cause a problem in semi-matching. Let |Un| denote the value
of the matching consisting of optimal semi-matchings in all of the subrectangles.

Since the algorithm constructs 2kn ≤ 2 n−2
tn−2

rectangles with at most tn points,
and assuming that each subrectangle can be solved in time ≤ Dtpn, we obtain the
execution time

≤ 2
n− 2

tn − 2
Dtpn + O(n log n). (3.2)

3.2 Error analysis

For F ∈ [a, b] ⊂ IR2 with |F | = n and a rectangle Y in [a, b] let |S∗(Y )| denote
the value of an optimal semi-matching of F ∩ Y, |S∗n| the value of an optimal semi-
matching of F and |S∗n ∩ Y | the sum of the segments of an optimal semi-matching
of F in Y .

Lemma 3.1 |S∗(Y )| − |S∗n ∩ Y | ≤ 3
4
per(Y ).

Proof: Consider at first those segments of an optimal semi-matching in Y which cut
the boundary in y1, . . . , y2m and which lie on circles with weight 1

2
and are ordered

clockwise. W.l.g. let

‖y1 − y2‖+ ‖y3 − y4‖+ . . . + ‖y2m−1 − y2m‖ ≤ ‖y2 − y3‖+ . . . + ‖y2m − y1‖

We now construct a semi-matching joining all these points as follows. Start
with y1 and take the polygonsegment in Y to the next boundary point, say yj. If
j is even then we connect it to yj−1, otherwise to yj+1. If we reach in this way
an already visited point, we match the points in Y along the constructed route
and continue with a new unmatched point on the boundary. In the other case
we start from yj−1 resp. yj+1 until we reach an already visited point. This leads
to a semi-matching whose value is bounded above by 1/2 times the length of the
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circle segments in Y plus 1/2 times the length of the way on the boundary, i.e.
1
2
‖y1 − y2‖+ . . . + ‖y2m−1 − y2m‖ ≤ 1

4
per(Y ).

If there are points in Y which are matched with weight 1 with points outside
Y , then match them with weight 1 if there are two points of this kind. Otherwise
match them in a circle of weight 1

2
. In both cases the value of this semi-matching is

at most 1
2
per(Y ).

Finally, an isolated point in Y can be included in a circle at the cost of at most
diam(Y ) ≤ 1

2
per(Y ). Altogether

|S∗(Y )| − |S∗ ∩ Y | ≤ 1

4
per(Y ) +

1

2
per(Y )

=
3

4
per(Y )

2

Corollary 3.2 |Un| − |S∗n| = O(
√

n
tn

)

Proof: This follows as in section 2, noting that

|Un| ≤ |S∗n|+
3

4
Fkn(a, b) and

Fkn(a, b) = O(2kn/2) = O

(√
n− 2

tn − 2

)
= O

(√
n

tn

)

2

As consequence we obtain

Theorem 3.3 Let (Xi) be iid random points in [a, b] ⊂ IR2 and let PX1 be not
singular w.r.t. λ\2. Then for some D1 > 0 and any ε > 0 there exists a tn = tn(ε)
such that

P (|Un(tn)| ≤ (1 + ε)|S∗n|) = 1 + o(1).

With suitable implementation the running time is (for some 1 ≤ p ≤ 3)

≤ D1

(
1

ε2

)p−1

n + O(n log n).

Proof: The proof is analog to that of Theorem 2.6. Observe that by small shifts of
the points we can avoid identical x− or y−coordinates. 2

The analogue of Corollary 2.7 concerning a.s. convergence therefore is also true for
semi-matchings.
Acknowledgement: The authors thank M.Dyer and A. Frieze for pointing out
their related paper of 1984.
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