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Abstract

We use the theory of probability metrics to study the asymptotic nor-
mality of the collision resolution intervals in the CTM multi-access protocol
under general conditions on the number of retransmitted messages and of
new arrivals during the collision slots. Our main result establishes stability
of the central limit theorem for the CTM algorithm. We provide extensive
simulation results investigating the extent to which the mean of the colli-
sion resolution interval eventually becomes unstable for increasing values of
n, the number of users who initially collide. The normal fit is numerically
investigated and is shown to be quite satisfactory and stable with respect to
moderate perturbations and n ≥ 50.

1 Introduction

The Capetanakis-Tsybakov-Mikhailov (CTM) protocol is one of the more elegant
solutions to the classical multiple-access problem in which a large (actually, infinite)
population of users share a single communication channel. Throughput of this pro-
tocol is close to the throughput of the slotted Aloha protocol, and the CTM protocol,
unlike slotted Aloha, is inherently stable. The “tree splitting protocols”, of which
the CTM protocol is an example, pose some interesting mathematical problems, and
have been the subject of intensive study in recent years (see Aldous (1987), Aldous
(1991), Bertsekas (1987), Borovkov (1988), Fayolle (1986), Fayolle (1985)).

We now briefly review the definition of the CTM protocol, see Bertsekas and
Gallager (1987). Time is divided into slots of equal duration. During each slot, one
of the following events occurs:
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1. The slot is wasted because no one transmits.

2. Exactly one user transmits a message, in which case the message is successfully
received.

3. The slot is wasted because two or more users transmit, interfering with each
other. This is called a collision.

At the end of each slot, every user knows which of these three events occured (this
is sometimes called “trinary feedback”).

When a collision occurs, all users involved (those which transmitted during the
slot) divide themselves into two groups on a random basis. Each user performs
the equivalent of an independent coin toss in order to make its decision; p is the
probability that a user selects the first group. Users in the first group re-transmit
their messages during the slot following the one in which the collision occured; users
in the second group defer their re-transmissions until all users in the first group
have successfully transmitted their messages. If one of these groups contains more
than one user, another collision will occur, in which case this group divides in the
same way. Collisions are resolved on a LCFS basis, i.e. the most recent collision is
resolved before any prior collisions.

Assume that new messages are generated according to a Poisson process with
aggregate rate λ. Actually, users who have transmitted a message which collided do
not generate any new messages until their message has been transmitted; however,
since only a finite number of users are involved in any collision, the rate λ remains
constant when the total user population is infinite.

Let Ln be the number of slots required for resolution of a collision between n
users. Ln includes the slot in which the initial collision occured, plus the times for
the two groups of users to transmit their messages. It is easily seen that

Ln
d
= 1 + LIn+X + L̃n−In+Y , n ≥ 2(1)

with initial conditions L0 = L1 = 1, where In
d
= Bi(n, p) is the number of users

who retransmit immediately, X is the number of new arrivals in the collision slot,
and Y is the number of new arrivals during the slot in which the deferred retrans-

missions occur. Ln
d
= L̃n, and X, Y, (Ln)n≥0, (L̃n)n≥0 are assumed to be mutually

independent. For practical systems, the total number of users sharing a multiple-
access channel might conceivably be as large as 103 or 104 but the number n of users
involved in any collision would be at most a small fraction of this. Fayolle, et al.
[6], showed that limn→∞ ELn/n exists only if

log p/ log(1− p) is irrational;(2)

otherwise ELn/n oscillates around a certain value. The non-linearity of Ln for
n → ∞ was pointed out in several of the above mentioned works. In a subsequent
paper, Fayolle et al. (1986) proved the linearity of the variance of Ln under (2)
and the finiteness of all moments of Ln. Confirming a conjecture of Massey (1981),
Regnier and Jacquet (1989) proved that the variance of Ln is not linear for
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In
d
= Bi(n, p), p = 1/2, and X = Y = 0. In Jacquet/Regnier (1988) and Reg-

nier/Jacquet (1989) the asymptotic normality of the standardized sequence {Ln}
(for X = Y = 0 or both Poisson) was established.

In this paper we examine the asymptotic normality of the law of Ln without
the specific assumptions on the distribution type of In, X and Y provided that the
variance of Ln is asymptotically linear. The proof is based on contraction properties
of certain ideal probability metrics (see Rachev (1991), Rachev/Rüschendorf (1991),
Rachev/Rüschendorf (1991)). In the second part of the paper we numerically inves-
tigate the influence of non-linearity in the case

In
d
= Bi(n, p), X = Y = 0 and p = 1

2
. It turns out that E Ln/n, (Var Ln)/n

increase monotonically with n until n reaches a largest value (n = 39, 488). After
that the linearity breaks down in agreement with the theoretical results in Fay-
olle/Flajolet/Hofri/Jacquet (1985), Massey (1981), Regnier/Jacquet (1989). From
the practical point of view it is of interest to consider the simple normalization

Yn = (Ln − `n)/
√

n, with `n = E Ln(3)

(corresponding to the normal domain of attraction in the CLT). A simulation study
of the empirical d.f. of Yn seems to confirm the normality for 102 ≤ n ≤ 104. The
“instability” of E Ln/n and Var Ln/N and hence the non-normality of Yn’s law arise
only in the regime of n À 104. But the order of magnitude of the instability is seen
from our numerical results and simulation study to be extremely small (but existent
in accordance with the theoretical results) and can be neglected from the practical
point of view. This has the valuable consequence that in practical applications one
can use just simple linear normalizations as in (3) and the normal approximation
also for n extremely large.

Our main theoretical result indicates that normality holds if the variance behaves
linearly and the number of retransmittances are not concentrated too much in the
extremes. In this sense our result can be considered as a stability result for the
asymptotic distribution. This idea of stability is confirmed by simulations for some
cases of immigration in section 3. In our numerical study we detect the theoretically
predicted instability but only for extremely large n and with a practically neglegable
order of magnitude. Our simulation study confirms the stability in the standard
model concerning dependence on p.

2 Asymptotic Normality of the Law of Ln

In this section we prove the asymptotic normality of Yn (see (3)) under the following
three conditions: for some r ∈ (2, 3],

(a) E Xr/2 + E Y r/2 < ∞ and In

n

Lr−→ p ∈ (0, 1);

(b) σ2
n =(Var Ln)/n → σ2; and

(c) supn E|Yn|r < ∞ for some r ∈ (2, 3].

3



Note that the number of retransmitting users In is not necessarily binomial in
our assumptions. This allows e.g. to consider departures from independence in the
protocol.

Regnier and Jacquet (1989) showed that (a), (b), and (c) hold for In
d
= Bi(n, p), (2)

and X = Y = 0. More generally (see Fayolle/Flajolet/Hofri/Jacquet (1985),

Jacquet/Regnier (1988)) one can allow X
d
= Y

d
= Pois(λ).

Theorem 1 Under (a), (b), and (c) the distribution of Yn is asymptotically N(0, σ2).

Proof: From the definitions of Ln, Yn, and (1), (3)

Yn
d
= (

In + X

n
)1/2 YIn+X + (

n− In + Y

n
)1/2 Ỹn−In+Y + Cn(In, X, Y ),(4)

where Ỹn is an independent copy of Yn and

Cn(k, m, m̃) := n−1/2(1 + lk+m + ln−k+m̃ − ln).

Define a sequence of normal N(0, σ2
n)-distributed independent r.v.’s Zn, which are

independent of (In), X and Y , and let

Z∗
n = (

In + X

n
)1/2 ZIn+X + (

n− In + Y

n
)1/2 Z̃n−In+Y + Cn(In, X, Y ),

where Z̃n is an independent version of Zn.
Let µr be one of the following ideal metrics of order r > 0:

µ(1)
r (X,Y ) = sup{|E(f(X)− f(Y ))| : ‖f (s)‖q̃ ≤ 1}

r = s + 1/p̃, s ∈ IN, p̃ ∈ [1,∞],
1

p̃
+

1

q̃
= 1,

µ(2)
r (X,Y ) = sup

t∈IR
|t|−r|E eit X − E eit Y |, and

µ(3)
r (X,Y ) = sup

h∈IR
|h|r sup

A∈B(IR)
|P (X + hN ∈ A)− P (Y + hN ∈ A)|,

where N is a standard normal r.v. independent of X and Y , see Aldous (1987),
Rachev (1991) (Sect. 14.2) and Rachev/Rüschendorf (1991).

Claim 1. (µr-closeness of Z∗
n and Yn). Set an = µr(Zn, Yn) and suppose

a := sup
n

an < ∞.(5)

Then supn µ(i)
r (Z∗

n, Yn) ≤ a[pr/2 + (1− p)r/2].

For µr = µ(i)
r (i = 1, 2, 3),

µr(Z
∗
n, Yn) ≤ ∑

k,m,m̃

P (In = k, X = m, Y = m̃)
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µr(

√
k + m

n
Zk+m +

√
n− k + m̃

n
Z̃n−k+m̃ + cn(k, m, m̃),

√
k + m

n
Yk+m +

√
n− k + m̃

n
Ỹn−k+m̃ + cn(k, m, m̃))

≤ ∑

k,m,m̃

P (In = k, X = m, Y = m̃)a[(
k + m

n
)r/2 + (

n− k + m̃

n
)r/2]

= aE[(
In + X

n
)r/2 + (

n− In + Y

n
)r/2].

Using assumption (a), the RHS of the above inequality converges to a[pr/2 + (1 −
p)r/2].

Claim 2. (Condition (5) holds.)

a ≤ C sup
n

(E|Yn|r + E|Zn|r) < ∞.(6)

(Throughout the paper, C stands for an absolute constant.)
For i = 1, 2, or 3

µ(i)
r (X,Y ) ≤ C(E|X|r + E|Y |r) < ∞

provided that E(Xj − Y j) = 0 for j = 1, 2, (see, for example, Rachev (1991),
chapters 14, 15) and thus (6) holds.

Claim 3. (Asymptotic normality of Z∗
n.) For n →∞, bn = µr(Zn, Z∗

n) → 0.
We consider the case µr = µ(1)

r only. Let κr be the r-th pseudomoment,

κr(X,Y ) = r
∫

IR
|x|r−1|FX(x)− FY (x)|dx.

Then since the mean and variance of Zn coincide with those of Z∗
n (µr(Z

∗
n, Yn) < ∞

implies E((Z∗
n)j − Y j

n ) = 0, j = 1, 2) it follows that bn ≤ C κr(Zn, Z∗
n).

Recall that (Zn)n≥1 is independent of (In)n≥1 and X, Y . Let No denote a standard
normal r.v. independent of (In) and X,Y . Consequently,

Z∗
n =

√
In + X

n
ZIn+X +

√
n− In + Y

n
Z̃n−In+Y + Cn(In, X, Y )

d
= (

In + X

n
σ2

In+X +
n− In + Y

n
σ2

n−In+Y )1/2 No + Cn(In, X, Y )

=: ηn No + Cn(In, X, Y ).

From assumptions (a), (b) we get the convergence of ηn in probability:

ηn
P−→ (p σ2 + (1− p)σ2)1/2 = σ.

Since Z∗
n = ηn No + Cn(In, X, Y ) has the same mean and variance as Zn

d
= σn No,

σ2
n = E(ηn No + Cn(In, X, Y ))2

= E η2
n + E(Cn(In, X, Y ))2.
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As ηn
L2−→ σ we conclude that Cn(In, X, Y )

P−→ 0. This implies that
bn = µr(Zn, Z∗

n) → 0.
With an = µr(Zn, Yn) ≤ µr(Z

∗
n, Yn) + bn and ā = lim an we finally obtain from

claims 1 - 3

Claim 4. ā = 0.
To prove the claim choose no = no(ε) (ε > 0), so that ak ≤ ā + ε for k > no.

Then for n ≥ no as in the proof of claim 1,

an ≤ µr(Z
∗
n, Yn) + bn ≤ (

no−1∑

k=0

+
n∑

k=n−no

)P (In = k) sup
0≤k≤no−1,
n−no≤k≤n

(ak+X + an−k+Y )

×E[(
k + X

n
)r/2 + (

n− k + Y

n
)r/2]

+
n−no−1∑

k=no

P (In = k)E[(
k + X

n
)r/2(ā + ε) + (

n− k + Y

n
)r/2(ā + ε)] + bn.

Recall Claim 2, a = supn an < ∞, and thus, as n →∞,

ā ≤ lim sup
n

(
no−1∑

k=0

+
n∑

k=n−no

)P (In = k)2aE(Xr/2 + Y r/2)

+ (ā + ε)(pr/2 + (1− p)r/2) + lim sup bn

= 0 + (ā + ε)(pr/2 + (1− p)r/2) + 0.

Since r > 2, pr/2 + (1 − p)r/2 < 1 which implies that ā = 0 and thus the proof of
the theorem is complete since µr convergence implies weak convergence. 2

Remarks:

a) Theorem 1 shows a remarkable stability of the central limit theorem for Ln.
It says that the central limit theorem can be expected if the variance be-
haves approximatively linear and even true under protocols which are not
based on a binomial number of retransmitting users. It is clear from Fay-
olle/Flajolet/Hofri/Jacquet (1985), Jacquet/Regnier (1988), Regnier/Jacquet
(1989) that in examples it is not easy to obtain the asymptotic behaviour of
the first moments. Our method of proof separates this problem and establishes
a general structural stability property concerning the asymptotic distribution.
This should be of some interest for the application of the algorithm, too. This
stability is not clear or expected from the methods which established the cen-
tral limit theorem up to now in some very special cases. The progress in this
paper is achieved by the use of ideal probability metrics which reflect the struc-
ture of the algorithm. For some related examples of this method cf. Rachev
and Rüschendorf (1991).

b) In a subsequent paper (to be published elsewhere) we find that the linearity of
Var (Ln) can be weakened to the condition that Var (Ln) = nG(n), where G(n)
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is regularly varying of order 1, i.e. G(tn)/G(n) −→ 1 for all t > 0 as n → ∞
and bounded away from zero and infinity (which is of interest for the case that
log p/ log(1− p) is rational). If the random retransmittance distribution leads
to extremely small or large groups, then different normalizations of Var (Ln)
are necessary and nonnormal limiting distributions arise. More precisely we

prove that Yn =
Ln − ln

λn

w−→ Zλ,α a symmetric α-stable r.v. with characteristic

function E exp{itZλ,α} = exp{−(λt)α} with scaling factor λ > 0 and index of
stability α ∈ (0, 2] if

a’) (group size condition)
In

n
Lq−→ p, 0 < p < 1 for q =

r

α
and E(Xq + Y q) <

∞.

b’) (variability condition) λα
n = nG(n) for some slowly varying function G

bounded away from 0 and ∞.

c’) (tail condition) E(Y j
n − Zj

λ,α) = 0, j = 1, ..., s and supn κr(Xn, Zλ,α) <

∞ where κr(X, Y ) =
∫ |x|r−1|FX(x) − FY (x)|dx is the r-th difference

pseudomoment, r > max{1, α}.
In the normal case α = 2, a’) is identical to a), b’) is equivalent to σ2

n =
nG(n) and c’) is equivalent to c). So the tail and variability conditions in
a’), c’) essentially determine the limiting index of stability and we find that
the behaviour of the approximative linearity of the variance in this paper is
essentially necessary for asymptotic normality.

2

3 Numerical Results

In the first part of this section we study numerically the extent of non-linearity of

ELn, Var Ln in the special case of (1.1) where X = Y = 0, In
d
= Bi(n, p), log p/ log(1−

p) rational. Up to now there is theoretical but no numerical evidence for the non-
linearity and its magnitude in the literature. Consequently we check the influence
of this non-linearity on the asymptotic “normality” of Yn – the normalized version
of Ln (cf. (3)) – which is motivated from the practical point of view, since it is much
simpler to use the linear normalization than the exact ones. Finally, we investigate
stability of the limiting distribution w.r.t. p and present some simulations in the
case where X and Y are not zero.

3.1 Computation of the Moments

From (1) we readily obtain the following deterministic recursions:
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(i) Recursion for the mean ln = E Ln:

ln =
1

1− pn − qn
[1 + (pn + qn)l0 +

n−1∑

k=1

(
n

k

)
pk qn−k(lk + ln−k)], n ≥ 2(7)

with q = 1− p, l0 = l1 = 1.

(ii) Recursion for sn = E L2
n:

sn =
1

1− pn − qn
{(pn + qn)[1 + s02l0 + 2ln + 2l0ln](8)

+
n−1∑

k=0

(
n

k

)
pk qn−k[1 + sk + sn−k + 2lk + 2ln−k + 2lkln−k]}, n ≥ 2,

s0 = s1 = 1.

(iii) Recursion for mn = E L3
n:

mn =
1

1− pn − qn
[(pn + qn)(3l0sn + 3sn + 3s0ln + 6l0ln + 3ln(9)

+m0 + 3s0 + 3l0 + 1) + Mn], n ≥ 2

with

Mn :=
n−1∑

k=1

(
n

k

)
pk qn−k(mn−k + 3lksn−k + 3sn−k + 3skln−k + 6lkln−k

+3ln−k + mk + 3sk + 3lk + 1), and m0 = m1 = 1.

(iv) Recursion for fn = E L4
n:

fn =
1

1− pn − qn
[(pn + qn)(1 + fo + 4mn + 4mo](10)

+ 6 sn + 6 so + 4`n + 4`o + 8`n mo + 8`omn

+ 4`nso + 4`osn + 8`o`n) + Fn], n ≥ 2,

with

Fn :=
n−1∑

k=1

(
n

k

)
pkqn−k(1 + fk + fn−k +

+ 4mk + 4mn−k + 6sk + 6sn−k + 4`k + 4`n−k + 8`kmn−k

+ 8`n−kmk + 4`ksn−k + 4`n−ksk + 8`k`n−k)

and fo = f1 = 1.

(v) Formula for E Y 4
n , Yn = Ln−ln√

n
:

E Y 4
n =

1

n2
(fn − 3l4n + 6snl

2
n − 4mnln).(11)
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A numerical study for the mean and variance of Ln for n ≤ 20 is provided in
Regnier and Jacquet (1985). We evaluated recursions for the first through fourth
moments using a variety of different precisions on different machines. For large
values of n, computation of the moments is susceptible to numerical roundoff error,
and high precision is required. Initially, we computed moments for several different
values of p, carrying the recursions out to about n =30001. For values of n up to
1000, these results were compared with the sample moments from the simulation
runs, and showed close agreement.

Initial investigation of the behaviour of the mean ln of Ln at p = 0.5 failed to
show the predicted instability of `n/n. The normalized value ln/n seemed to converge
rapidly, reaching a value of about 2.885 for n = 2400, and showing no variation out to
7 decimal places with further increase in n. The increments ln/n− ln−1/(n−1) were
observed to always be positive, another indication of convergence. This apparent
disagreement between theory and experiment was sufficiently disturbing that an
additional, larger computer run was deemed necessary. In order to push into a
regime of yet higher n and also obtain greater accuracy, a run was made on a Cray
Y-MP (NSF, San Diego) using double-precision arithmetic (about 28 significant
digits). The first moment was computed for values of n up to 250,000, and the new
results demonstrated the predicted instability. At n = 38, 488, a negative increment
appears, and subsequently, values of the increment oscillate in a sinusoidal fashion,
with a peak magnitude of about 1×10−10. The behaviour of the increments is shown
graphically in Figure 1 on a logarithmic scale.

1Examining (7) - (9), it is clear that the required computation grows as n2. However, one can
achieve a substantial improvement in run time by discarding terms in which the binomial coefficient
is very small (say, more than four standard deviations from the peak of the distribution); in this
case, computation grows as n3/2.
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Figure 1. Increments of ln/n, p = 0.5

n = number of users who initially collide.

Based on recursions (7) - (10) the numerical results for evaluation of ln/n,
∆(ln/n) := ln

n
− ln−1

n−1
, Varn := Var(Ln/

√
n) and ∆(Varn) := Varn− Varn−1 are

shown below:

Table 1. numerical results p = 0.5, L0 = L1 = 1

n ln/n ∆(ln/n) Varn ∆(Varn)
2 2.5000D+00 1.5000D+00 4.0000D+00 4.000D+00
3 2.5556D+00 5.5556D-02 3.2593D+00 -7.4074D-01
4 2.6310D+00 7.5397D-02 3.3832D+00 1.2396D-01
5 2.6838D+00 5.2857D-02 3.3875D+00 4.2812D-03

10 2.7853D+00 1.0985D-02 3.3832D+00 1.1672D-04
100 2.8754D+00 1.0113D-04 3.3834D+00 9.1046D-07
500 2.8834D+00 4.0528D-06 3.3834D+00 -8.5624D-08

1000 2.8844D+00 1.0224D-06 3.3834D+00 -4.1963D-08
5000 2.8852D+00 3.4639D-08 3.3834D+00 2.1844D-08

10000 2.8853D+00 7.3428D-09 3.3835D+00 -4.1539D-07

On the other hand the change of the initial conditions disturbes the value of ln/n
and Varn.
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Table 2. p = 0.5, L0 = L1 = 0

n ln/n ∆(ln/n) Varn ∆(Varn)
2 1.0000E+00 1.000E+00 1.000E+00 1.000E+00
3 1.1111E+00 1.1111E-01 8.1481E-01 -1.8519E-01
4 1.1905E+00 7.9365E-02 8.4580E-01 3.0990E-02
5 1.2419E+00 5.1429E-02 8.4688E-01 1.0703E-03

10 1.3427E+00 1.1048E-02 8.4579E-01 2.9179E-05
100 1.4327E+00 1.0107E-04 8.4586E-01 2.2762E-07
500 1.4407E+00 4.0304E-06 8.4586E-01 -2.1503E-08

1000 1.4417E+00 1.0117E-06 8.4586E-01 -1.2471E-08

Table 1 confirms the stability of ln
n
≈ 2.88, Varn ≈ 3.38 for moderate

n ∈ (102, 104), and p = 0.5. Slight perturbation of p around 0.5 does not change the
overall stability of ln

n
for practically relevant n, see Figure 2.

Figure 2. |∆(ln/n)|, p = 0.499

Summarizing our numerical findings it appears that for reasonably large n ≥ 100
and p = 0.5 the non-linearity of `n/n, and Varn is not observed in a practical relevant
magnitude, also in this range of values of n the behavior of `n and Varn is stable
with respect to p. We check the adequacy of the normal approximation of the
distribution of Yn by producing histograms and sample moments of Ln by Monte-
Carlo simulation.
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3.2 Simulation Results

A full simulation of the protocol would require storage and manipulation of state
information for all users involved in collisions. However, there is a simpler approach
which avoids actual implementation of the CTM protocol, and requires less memory
and much less computation. Our simulation simply carries out the stochastic recur-

sion Ln
d
= 1 + LIn + L̃n−In , In

d
= Bi(n, 1

2
) directly. A short FORTRAN 77 program

performs the requisite operations. The most natural and direct implementation of
the recursion is via a recursive routine (although the FORTRAN 77 standard does
not provide for recursion, many FORTRAN 77 compilers permit it). This routine,
which is called LRES, is invoked by the main routine. LRES invokes a function
called BINOMIAL which returns a binomial random value. A SUN Unix / IBM Aix
implementation of LRES is shown below.

INTEGER FUNCTION LRES (N,P)
INTEGER N, I, BINOMIAL
AUTOMATIC I
REAL P
EXTERNAL BINOMIAL
IF (N.LE.1) THEN! No further splitting required.

LRES = 1
ELSE! Further splitting is required.

I = BINOMIAL (N,P)
LRES = 1 + LRES(I,P) + LRES(N-I,P)

END IF
END

500,000 to 1,000,000 trials were required to obtain accurate histograms. Simula-
tion run times were found to grow roughly linearly with n. Output values of Ln were
normalized and binned; bin counts were then plotted against a normal curve having
the same mean and standard derivation. The curves in Figures 3 are for n = 1000.
Simulation results, which are based on over 930,000 trials, agree fairly well with
the normal curve. As mentioned in the introduction in this case (Ln − ln)/σn is
asymptotically normal in spite of the fact that ln and σn are not asymptotically
linear.
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Figure 3. Simulation curve for Yn = (Ln − ln)/σn for n = 1000, p = 0.5,
L0 = L1 = 1, based on 936,725 trials, and the fitted normal curve
with mean zero and variance 3.3834 as given in Table 1.

Figure 4. Normal fit to empirical df with n = 50, p = 0.5

For n = 20 or n = 30 the normal fit is no longer good. Further simulation results
indicate stability w.r.t the value of p.
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Figure 5. Normal fit with σ2 = 3.3874 to the simulated
Yn’s; n = 1000, p = 0.49, L0 = L1 = 1 based on 697,675 trials.

The Shapiro-Wilks test applied to our simulation results confirmed the above
findings. We considered the binomial case with p = 0.5, 0.499, 0.498 and n = 10,
30, 100, 300, 1000, 40000 and 50000. Let W denote the Shapiro-Wilks statistic, w
the observed value of W and α = P (W ≤ w) under the assumption of normality,
then for n ≤ 30 we obtained for any p that α ≈ 0 (up to 4 digits). For the other
values of n we did two samples in order to control the sampling error.

Table 3. Shapiro-Wilks test for normality and various values of n, p.

n = 100

p w1 α1 w2 α2

0.5 0.9810 0.1146 0.9905 0.9564
0.499 0.9815 0.1461 0.9852 0.5191
0.498 0.9838 0.3611 0.9845 0.4392

n=300

p w1 α1 w2 α2

0.5 0.9783 0.0233 0.9803 0.0791
0.499 0.9861 0.6308 0.9823 0.2091
0.498 0.9808 0.1029 0.9822 0.2030

n=1000

p w1 α1 w2 α2

0.5 0.9814 0.1439 0.9865 0.6701
0.499 0.9832 0.2913 0.9861 0.6339
0.498 0.9825 0.2233 0.9813 0.1354

Similarly for n = 40000, 50000 the Shapiro-Wilks statistic did not produce an
anomalous result and was consistent with the normal hypothesis.
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In the final simulations we considered the case with nonzero immigrations X, Y in
a symmetric and a nonsymmetric case with masses in 0,1,2

Figure 6. Normal fit for n = 40/100 and X ∼ 3
4
δ0 + 1

8
δ1 + 1

8
δ2, Y ∼ δ0,

(nonsymmetric case)

n = 40

n = 100
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Figure 7. Normal fit for n = 50 / 10000 and X ∼ Y ∼ 3
4
δ0 + 3

16
δ1 + 1

16
δ2

(symmetric case)

n = 50

n = 10000

These examples confirm our general robustness idea, that asymptotic normality
is approximatively valid if the variances behave approximatively linear (which is
observed in these examples empirically).

16



4 Conclusions

The essential findings of this paper are the following.

a) Asymptotic normality is predicted by our theoretical results to hold under a
broad range of protocols which are not too much concentrated in the extremes
(in technical terms, where the variance behaves approximatively linear). This
suggests that a normal approximation is approximatively valid if the variances
behave empirically or theoretically approximatively linear. These predictions
are verified in some cases with immigration in a simulation study. For other
(nonlinear) types of behaviour of the variance nonnormal limit distributions
arise.

b) The theoretically predicted instability in the case p = 1
2
, X = Y = 0 is nu-

merically detected but only for an extremely large number n. The order of
magnitude of the instability can be neglected from a practical point of view
and one can use the simple linear normalizations in the range n ≥ 100 (or even
n ≥ 50).

c) The simulation studies confirm a good fit for the normal approximation in the
range n ≥ 100. They also show stability of the limiting normal approximation
w.r.t. p in the binomial protocol (without immigration).

Acknowledgement. The authors thank to U. Rösler for discussions on contraction
properties of Lp-minimal metrics. Some of the simulations in section 3 were done
by M. Cramer. They also thank the reviewers for their remarks resulting in some
essential improvements of the paper.

References

[1] Aldous, D. J.: Ultimate instability of exponential backoff protocol for
acknowledgement-based transmission control of random access communication
channels. IEEE Transactions on Information Theory IT 33 (1987), 219 - 223

[2] Aldous, D. J.: Asymptotic fringe distribution for general families of random
trees. Annals of Applied Probability 1 (1991), 228 - 266

[3] Bertsekas, D. and Gallager, R.: Data Networks. Prentice-Hall, New Jersey, 1987

[4] Borovkov, A. A.: On the ergodicity and stability of the sequence wn+1 =
f(wn, zn): applications to communication networks. Theory of Probability and
its Applications 33 (1988), 595 - 611

[5] Fayolle, G., Flajolet, P., Hofri, M.: On a functional equation arising in the
analysis of a protocol for a multi-access broadcast channel. Advances in Applied
Probability 18 (1986), 441 - 472

17



[6] Fayolle, G., Flajolet, P., Hofri, M., Jacquet, P.: Analysis of a stack algorithm
for random multiple-access communication. IEEE Transactions on Information
Theory IT-31 (1985), 244 - 254

[7] Jacquet, P. and Regnier, M.: Normal limiting distribution of the size of tries.
In: Performance’ 87, P. J. Courtois and G. Latouche (edt.), 209 - 221. Elsevier
Science Publications B. V. (North Holland), 1988

[8] Maejima, M. and Rachev, S. T.: An ideal metric and the rate of convergence
to a self-similar process. Annals of Probability 15 (1987), 702 - 727

[9] Massey, J. L.: Collision-resolution algorithms and random-access communi-
cations, Multi-User Communication Systems. Longo, Ed. CISM Courses and
Lectures, 1981

[10] Rachev, S. T.: Probabiltiy Metrics and the Stability of Stochastic Models.
Wiley, Chichester, New York, 1991
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