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Symmary. This paper gives a review of Fréchet-bounds and their applications.
In section two an approach to the marginal problem and Fréchet-bounds
based on duality theory resp. the Hahn-Banach theorem is discussed. Main
applications concern the Strassen representation theorem for stochastic
orders, the sharpness of the classical Fréchet-bounds, the representation
of minimal metrics, couplings of distributions, the Monge-Kantorovic-probiem,
the construction of random variables with maximum (resp. minimum) sum and
variances of the sum, maximally dependent random variables and others. For
multivariate marginal systems there is a useful reduction principle and there
are some bounds for simple systems, which yield a characterization of the
marginal problem for a system of two dimensional marginals in a three-fold
product space. In section three we discuss some generalizations of the Young-
inequality, which are useful for solving the dual problems of the Fréchet-bounds.
A basic notion in this connection is the notion of c-convex functions. As an
application one can give a nice characterization of solutions of certain trans-
portation problems. We give a probabilistic proof of some generalizations of
the Young- and the Oppenheim-inequality. In section four we discuss some
statistical applications and problems. The Huzurbazar conjecture on marginal
sufficiency, the probiem of the optimal combination of marginal tests and the
question of estimation theory in marginal modeis is considered.

1. Introduction

The marginal model is formally defined as follows. Let E = E,  x ... xE_,
'2[=?[1 R ...0 an be a finite product of measure spaces. Let €CP({1,....,n}),
the system of all subsets of {1,....n} with JEUQ J={1,...,n} and let for JE &,

PJE M (’El'!J EJ) be a consistent system of probability measures on
1:_,(E)=JEHJ EJ==EJ,
the marginal model M_!_:

where =, denotes the J-projection from E to EJ. Define

151



152 L. RUSCHENDORF

- _ L pHlu_
&)} MQ—M(PJ.JEC‘)—(PEM(EJ[).P —PJ,JEG}

n
to be the set of all probability measures on E with marginals PJ=P J

the J-components, J€ &.

of

There are some different type of problems of interest in marginal
models and related to Frechet-bounds. The marginal problem is the questi-
on, whether Mc# J. It was shown by Vorobev (1962), Kellerer (1964), that
the property "consistency of (PJ)JEQ implies MQ # @" is a purely combina-
torial (graphtheoretic) property and is equivalent to the nonexistence of
“cycles” in €. Systems € with this property are called decomposable resp.
simplicial complex (in [100]). Some related existence problems are investi-
gated in [46], [261, [391, [35]. For non-regular systems the marginal pro-
blem is generally not easy to decide except in cases, where explicit con-
structions are known (cf. [143, (841). Generaily, MQ is a convex set of
probability measures, which in a topological situation with tight F‘J is also
compact. From a theorem of Douglas (1964), P € MQ is an extreme point

. _ . 1 . ol . . _
iff F = {JEZZQfJ om;f € (PJ)} is dense in 8 (P). For simple marginals mo
re information is known if n = 2. Generally, MQ can be empty, can be a

small (even one-point) set or can be a large set of distributions.

In applications MQ describes a model for systems of n components,
where for certain subsystems J €& one knows the distributions F‘J “exact-
ly", i.e. there are many joint measurements of these components available.
The marginal problem only arises if the specification of PJ is not exact. Of
particular relevance for applications is the modelling problem. This means
that one should not only solve constructively the marginal problem, but more-
over construct submodels P= (Pe' %€ 8} C MQ with the parameter & speci-
fying interesting aspects of the model like e.g. values of certain dependence
measures. An interesting problem in this connection is to find an optimal fit
of a probability measure (resp. a density) by an element of Me (resp. a cor-
responding density with fixed marginals). For several distances characteri-
zations of the optimal fit have been derived (cf. [101, [841, [911]), allowing
in some cases explicit resp. "approximative” solutions. Measuring the distance
by the Kullback-Leibler measure an iterative procedure, the “iterative
proportional fitting” (IPF) resp. "scaling projection method” has been
investigated in the literature. But so far only in the finite discrete case a
valid convergence proof has been found (cf. [101). Most papers are concerned
with the case & = {{1},....{n}} of simple marginals. In this case we use the
notation
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(2) MQ=M(P1.....PH).

Some relevant papers on construction problems are {621, [431, (551, [52],
{873, [1001.

A third class of problems is to find upper and lower bounds for
[@dP, ¢: E » R measurable, only based on the knowledge of the marginal
structure. The optimal bounds are called Eréchet-bounds, defined by:

(3) M (q>)=sup{fde; PeEMg}. m (cp)=inf(f<de; PeMgl.

Since mQ(cp) = ( @) it is enough to consider either M or Mg - The
classical Fréchet- bounds concern the case of simple margmals and E = R,
1<isn.Then P E€ M(P,‘,....Pn), if and only if the distribution function F F

satisfies:

(4) E(x)sF(x)sF(x), xER ,

P

where F(x)—(Z F, (x)) = (n-1M),, F{x)=min(F (x, )). E,F are the "lower"” resp.
“upper” Frechet bounds F is a distribution functuon (is an element of the
Fréchet-class §(P_, P, N, EedP.. LP)ifn = 2, but Dall'Aglio (1972)
showed that for n 2 3, F is a df only in very exceptional cases. Based on (4)
many authors established sharp bounds for n = 2 and @ix,y) = dix-y), ¢
convex (or concave); in particular @(x.y) = Ix-yl*, a 21, cf. (301 - [33],
[973, [111 - [141, [83, 1121, (1081, [109], £79], [25]. In particular we
refer to the interesting survey article of Dall’'Aglio (1972).

More general results on Frechet-bounds can be derived from duality
theory. Define the dual problems corresponding to (3)

U(tp)==inf{ Z ff dP ; JZQfJon = @}

(5) i(ep): ‘sup( 2 ff dpP Lf om <o},

then, obviously,
(6) Mécp)SU(«p). l(«p)sme(cp)

and the question of equality in (6) and the existence of solutions is interest-
ing. Some general results on this question were derived in (581, [751], [34],
(793, (471, [483, [491], [701], yielding explicit results in particular in the case
of simple marginals. In the case of multivariate marginals there are only few
papers on Fréchet-bounds resp. Fréchet-classes (cf. (143, (113, (961, [981).

Applications concern almost sure representations of stochastic orders
(Strassen's result), construction of maximally dependent random variables,
random variables with maximum sums, r.v.'s with minimum variance of the
sum (Monte Carlo Simulation), the Monge-Kantorovic mass transportation
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problem, construction of minimal metrics and optimal couplings and many
others. A basic problem for the study of Fréchet bounds is the study of
inequalities of the type ¢ < JE}:Q fJonJ arising in the definition of the bounds
in (5).

We finally mention some statistical problems connected with marginal
models. A general question is the following: How can one improve statistical
procedures knowing the marginal structure in comparison to the status of
ignorance. A different question concerns the robustness of statistical pro-
cedures against departures from an ideal independent situation by depen-
dence. There are some close connections between the marginal problem and
some recent papers on graphical interaction models, which allow a simpli-
fied statistical analysis by their inherent conditional independence proper-
ties (cf. (161, [561]). A stochastic ordering result in marginal models allows

an easy proof of the Huzurbazar conjecture on partial sufficiency (cf.
{951).

2. Existence and Duality

One method to prove existence and duality results for the marginal
problem is to apply some wellknown duality theorems for (topological) vec-
tor spaces. This leads to general duality results, where Méq:), m‘(tp) are
replaced by

(7) Mg(®) = sup {fedP; PEMS),

where r\710= = ba (PJ. J €@) is the set of finite additive contents with mar-
ginals PJ. In a second step one has to establish conditions on @, resp. the
topology. to ensure that

(8) Mg(®) = Mg(®), Mole) = mele)

and to ensure the existence of solutions. This approach has been developed
in {751, (761, [79]. The first step can also be based on the Hahn-Banach
theorem directly. This has been discussed in greater generality by Lembcke
(1972) and Luschgy and Thomsen (1983) (the latter paper also including a

discussion on extreme points). The following formulation in Section 2.1 arose
from a discussion with H. Luschgy.

2.1. A Generalization of the Marginal Problem

Let on a general measure space (X,B) (which in this section is not
necessarily a product space) Si CB,i€l, be a system of sub-o-algebras
with probability measures P, € M’(X,?Bl), i € I. Define
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M={PEM (X,B); PIB =P.i€l}

(9) ~
M={Pe€ ba(X,®); PIB =P, i€ 1};

M is the set of bounded additive contents with marginals P,. We assume
consistency of (P), i.e

(10) AED | NDBy, implies that P,1(A)=P,2(A).

Furthermore, we define

an F={ ¥ f;1 Cl finite, f €R' (B ,P)}= @ 8B P)
|e|°i o i i el [ |

the direct sum of the ?Bi—measurable functions which are integrable w.r.t.
PI. F is a vector subspace of the vectorspace

(12) M= (p€eR(X,B); IfeF with p<f},

the set of measurable functions which are majorized by an element of F. By
consistency the linear operator

(13) T:FoR, T(leﬁlo fl) = lezlo If‘dPI
is well defined.

Theorem 1. a) (Marginal Problem)
M#Q iff T20 (i.e. fE€F, f20 implies Tf20).
b) (Duality) For @ € 8™ we have:

(14) M(g): =sup {[@ dP; P € M} = U(@): =inf {Th; heF, @ <h).
c) If Ul@)> -, then there exists a PE M with ﬁ(cp)= JedP.

Proof. a) The direction "=" is trivial. For the converse direction ob-
serve that U is sublinear on 8™ and Uf = Tf for f € F. If S is a linear func-
tional on 8™, S < U, then for f € F, f 2 0, holds: -Sf = S(-f) < U(-f) =
inf{Th; -f <h, h€ F} < TO =0 ie. S 2 0 and, obviously, SIF = T

By Hahn-Banach there exists an extension Sof Tto 8™, S < U. Riesz’
representation theorem ensures the existence of an element P € ba(X,®)
representing S. Since S|F = T, it follows that P € M.

b), c) A corollary to the Hahn-Banach theorem is the existence of an
extension S with Sp = Ug if Up > -o. The corresponding content then
yields b}, ¢} if Up > -w. If Up = -o, then also M(g@) = -w; so b) is valid
generally.
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Remark. Related existence problems are proved similarly. Let e.g. for
a finite measure y g‘: = (P € ba(X,®B); PIB| = P.i €1, P <y} Replace the
operator from (14) by Uu(v) = inf {U(po) + [h, du; ¢, *+hz e}. Then the
existence and duality results analogously to (14) are valid (cf. [571).

Consider next the following assumptions:

At (X,3I,Pl). i€l, are compactly approximable, i.e. there exist compact
set-systems & C®B with P,(B) = sup {P(E): E CB, EE€l iel

A.2 (X,B) is a topological space with Borel oc-algebra ® and R= R('gl 3')
contains a countable basis of the topology.

Let B'(X,R(lg' % ).P) denote the set of P-integrable functions, where

P is considered as a content on the algebra $(|léll 3‘) (cf. Dunford., Schwartz
(1967), Def. 17, p. 112).

Theorem 2. a) If A.1 holds, then: M# @ iff T20. Furthermore, M(p)=U(g}
for €N X, R(Y AP

b) If A.1 and A.2 hold, then M(¢)=U(p) for ¢ € Cb(X).

Proof, A.1 implies that any P € M is compactly approximable on
‘.R(léJl %) and, therefore, o-additive on 9‘(‘leJl A,). implying the existence of

a ¢-additive extension. The proof of the duality theorem is similar to {791,
[84], Theorem 3. o

Remark. The duality part of Theorem 2 in the case of multivariate
marginals was stated in [84], Theorem 3, for upper and lower semicontinuous
functions. The indicated proof is only valid for bounded continuous function.
it can presumably be extended to upper semi-continuous functions (one has
to prove, that U is o-continuous for increasing sequences), but the result
is not true for lower semicontinuous functions, as was indicated by a
counterexample of H. Kellerer. a

2.2. TIhe Case of Simple Marqinals, Mg = M(P .....P)

In the case of simple marginals the duality and existence results of
2.1 have been generalized by Kellerer (1984) to more general functions and
spaces. The proofs are based on the study of the continuity properties of
MQ,U resp. me,l. These continuity properties combined with Choquet's ca-
pacity theorem yield in particular the following duality theorem. (E, I') are
assumed to be Hausdorff topological spaces with Borel o-algebras ﬁl. This
assumption is made throughout the rest of this paper. Also we assume ge-
nerally that P‘J are Radon measures, J €@ .
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Theorem 3. (Kellerer (1984), Theorem 2.21)
The duality theorem MQ(¢)=U(ep) is true for

a) ¢ €&, the class of upper-semicontinuous functios with values in R.
In this case there exists a maximal measure,

b) ¢ € Qm(E. ® Qll). the class of measurable functions w.r.t. @ 2[].
which are majorized from below by an element of F(F as in Section
2. 1). There exists a solution f* € F of the dual problem if U(p) < .
The product c-algebra can be replaced by the Baire o-algebra.

c) PE Sm(E). the class of lower majorized Suslinfunctions w.r.t. § . o

Kellerer (1987), Proposition 5.6 also proved a related result for mul-
tivariate marginals in the decomposable case.

An interesting consequence of the duality theorem is the following
theorem of Strassen (1965) (who gave a proof in the case of polish spaces)
saying that for n = 2 one can restrict in the definition of U to two valued
functions.

Theorem 4. (Strassen (1963), Kellerer (1984))

Let n=2 and 862[182[2. then
. 2 4
(15) MQ(B)—mf {P1(B1)+P2(BZ); BC iL=)11t‘ (Bl)}
me(B)=sup {P1(B1)+P2(82)—1; BDB1sz}.

If B is closed, then Bi can be restricted to the class of closed sets. o

We next discuss some more concrete applications of the duality
theorem.

2.2.1. Stochastic Orders
Let n=2, E1=E2=Y, (Y,<) an ordered topological space with

(16) R(Y)={(x,y)EYxY; x<y}

closed, then one obtains from (15) the a.s. representation for the stochas-
tic order <_ | w.r.t. monotone increasing functions.

Theorem 5. a) (cf. [471, Prop. 3.11; [85], Lemma 1)

(17) MQ(R(Y)) =1-sup {P1(A) - P2(A); A closed, isotone}.
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b) (Strassen representation theorem, cf. [101])

P < P, = IPEMIP P) with P(R(Y) =1. o

Strassen's a.s. representation theorem has ben very influential for the
theory and applictions of stochastic ordering. It has been extended to order-
ing results for stochastic processes (cf. [44], (1031, (78], it has been
extended to “"stochastic” ordering not induced by a partial order on Y as e.q.
the ordering w.r.t. convex functions (cf. {1041, [77]) and found many ap-
plications in the ordering of queues, Markov chains, risk theory and in sta-
tistics (cf. (1031, {623, [71], (781, (88]).

2.2.2. Sharpness of the Classical Fréchet-Bounds

For product sets A = A x ... x A_ €A ® ...®A_there is the obvio-
us generalization of the Fréchet-bounds in (4).

Theorem 6. (cf. [791], Theorem 6)

(18) MG(A1x...xAn)=min{Pi(Ai); 1<i<n}
n
mQ(A1 X ..o.x An) = (151 Pi(Al) -(n-1),.

Proof. In the case n=2 we obtain from (15)
M‘!(A1 x A2) = inf(P1(B1) + PZ(BZ); A1 x A2 C B1 xE2 U E1 x 82}
= min (P1(A1), P2(A2)).

The case n22 is proved by induction. Let Q € M(P_,...,P ) satisf
o 1 n y

Q (A x...xA)=min(P (A)), then sup{P(A x...xA ); PEM(P ,...,P )}=
o 1 n [ 1 n+1 1 n+1
sup sup P(A,x...xA_ ) 2 sup PA,x...xA_ )
QEMI(P,,....Py) PEM(Q.Ppn4+y) 1 n+l PEMIQL.Pnet) 1 n+1

=min (Q (A, x...xA ), P (A )) (from the case n=2)
o 1 n n+ n+1

1
= min (Pl(A')) by induction.
Since the oppositive inequality is trivial, the first part of (18) is proved. The

proof of the second part is analogously. a]

In [79] the proof was given by direct calculation of the upper resp.
lower bounds for the duality theorem. Theorem 6 implies that the Fréchet
bounds are identical to the Bonferoni bounds in the following sense. Define

n
Bi=E,x...xAx..xE_, p =P (A), then A, x...xA = N B . The Bonferoni
1 i n I 1 i 1 n  j=t 1

bounds are defined by
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(19) Otlp) =sup (P((B): B €A, P(B)=p, 1<i<n)
Cttp) =inf (PCAB): Be A, P(B)=p, 1ism.

So the knowledge of the whole marginal distribution does not help to obtain
better bounds for product sets in comparision to knowing only the probabi-
lities Pi(A]). For the ordering by survival functions

(20) PSSQ if P(lx,0)) <Q([x,0))
for all x€ R" it has been proved that
(21 PSSQ iff [fedP< [edQ

for A-monotone (in pairs) resp. quasimonotone resp. L-superadditive func-
tions (cf. Cambanis, Simons and Stout (1976) and Whitt (1976) for n = 2,
Riischendorf (1979, 1981, 1983), Tchen (1980), Marshall, Olkin (1979), Mos-
ler (1982) for n 2 2), (21) combined with (18), (4) imply sharp results for
MQ(‘P)' These are related to rearrangement inequalities (cf. [112], [81]).
The case n = 2, ¢{x,y) = ~¢(x-y), § convex, is due to Bertino (1966). Some
partial results are in [79] for the lower bound mQ(ep). An open problem is
e.g. to determine me((p) for Y = [0,11, P, = R(0,1), the uniform distribution

1Y}

1<i< 3 and »p(x)=|£l1xl. o

2.2.3. Representation of Minimal Metrics
Some of the wellknown probability metrics have a representation as a
“minimal metric”.

2.2.3.1. Levy-Prohorov-Metric

On a metric space (Y,d) with Borel c-algebra ® define for A€ B, €50,
(22) A®:={y€Y; dix,y)<e, for some x€A}, A°:=A.

From (15) we obtain

Theorem 7. (cf. Dudley (1976), Theorem 18.2)
Let P.,PEM'(Y,B), €20;

a) 8>0. There exists P€ M(P1,P2) with P{(x,y) € Y xY; d{x,y)>e} <8
- YVAEZ =F(Y): P1(A)$P2(A‘) +3;

b) 820. There exists P€ M(P1,P2) with P{d(x,y)>e} <3
«-P1(A)$P2(A‘)+8, VAE Z(Y). a
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Theorem 7 implies the Strassen-representation of the Levy-Prohorov
metric

(23) n(P P)=inf (e>0: P(A)<P,(A%) +e, VAEZ (V).

Define for PE€ M1(YxY.B®3) the Ky-Fan (probability-) metric
(24) K(P) =inf {€e > 0: P(d(x,y) > €) €}

and consider the corresponding minimal metric
(25) K(P1.P2)=inf{K(P); Pe M(P1,P2)).

Theorem 8. (Strassen (1964), Dudley (1968))
(26) K=mn. a

x metrizes the topology of weak convergence on the set of tight
Borel measures (this is immediate from Dudley (1976), Theorem 8.3, who con-
siders the case of separable metric spaces), i.e.

(27) —®, p if and only if n(P_,P) > 0.

n

A basic coupling result is the almost sure representation theorem. The proof
of part b) makes essential use of Theorem 8.

Theorem 9. (Aimost sure representation theorem)
a) (Skorohod, Strassen, Dudley, Wichura, cf. [23])

Let P P € M'(Y,d) be tight. Then n(P _.P) » O if and only if there
exists a probability space (Q,¥.R) and Y-valued random variables

X
X_.X on (0,%), such that R n=P_, RX=P and d(X_X)> 0 as.

b) Rachev, Riischendorf and Schief (1988), Dudley (1989)

If Pn,Q'1 e M(Y.d) are tight and n(Pn,Qn) - 0, then d(Xn.Yn) - 0 a.s.
for some versions X_, Y _on a probability space (Q1,%,R) with

Xn Yn
R —Pn,R —Qn. a

Remark. If P_ € M ), Y=Y, xY,a product space, P_ € M(Qn,R)
and Pn-ﬁ—v P, then the following sharpening of Theorem 8 is not true:
“There exist versions of Pn of the form (Xn,Z), such that (Xn) is a.s. con-

vergent (cf. [70]).” a

2.2.3.2. g°-Metrics

Define the probability metric
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(28) R (P) = ess_sup d(x,y) =inf {e>0; P(d(x,y)>e) =0}.

Theorem 7.b) implies the following representation of the corresponding mi-
nimal metric.

Theorem 10. (cf. Dudiey (1976), Theorem 18.2)

(29) Qw(P P ) =inf {8%(P); P€ M(P P )}
=inf{e> 0; P (A)SP (A ) YAe (M} a
For the 8P-distance, 1<p(w

(30) 8P(P) = f dP (x.y) dP(x.y)

(the corresponding probability metric is d (P) (8P(P))'/P) the duality the-
orem of Section 2.2 implies for P P e M'(Y) with [dP(x, a)dP (x) ¢ @

(31) Qp(P1.P2)=sup {(JfdP +fgdP,; fe® (P), ge 8 (P), f(x)
+gly) <dP(x,y)}
(cf. also [681). For p=1 there is the following strengthening of (31).

Theorem 11. (Kantorovic-Rubinstein-Theorem, cf. [461, {581, [1061],
{10713, £281, (471, [70D).

if fdix,a) (P1+P2)(dx) < ®, then

(32) 8P P_) =sup ([ fd(P -P,): feLip(Y)), where
Lip(Y) = {f: Yo R"; 1f(x) - f(y)| <dOx,y)}.
Proof. From (31)
I\1 _ _ ) _ 1
g P1.P2)‘s,up{_ff1dP1 [f,dP s f,(x) f(y) <d(x.y), f,es (P)).

Let P‘ =R + Rl, i = 1,2, be a decomposition of P i = 1,2, where the measu-
res Ri are orthogonal with supports A, A L Af R 0, then define

(00 { sup (f1(x1)—d(x1.x); x, € A if x€A,
X}: =
inf {f2(x2) +d(x2,x); x,€ A2) if x€ A1

Then f€ Lip(Y) and f is better then f,, f ie. flx)=2f, (x), x€ A, f(x)sf (x},
x€A,. and, therefore, If dP, —If dP Ide - I f dR SIfd(R -R )-

ffd(P -P ) and from (31) B‘(P P )—I(P P ) 'sup(ffd(P -P ) f e Lip(Y)}.
If R#O R, #O then the result follows from the following relatnons
8 (P1,P2)2I(P1,P2)—I(R1,R2)‘Q (R, R nE mf{fd(x,y)dR(x,y) REM(R R ))

2inf{ fd(x,y)dP{x,y); PE M(P1.P2))=B (P,.P,). For the last inequality observe
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that for R € M(R1_R2) and Q € M(R,R) concentrated on the diagonal,
P+=Q+ReM(P.P,) and [dx.y)dP = fd(x.y)dR. If R,=0, then P.=P, and the

equality is trivial. a

The idea of this proof is due to Szulga (1978). The integrability as-
sumption [ d(x.a) (P, + P,){dx) < @ was removed by Kellerer (1984). For Y = R'
the minimal 8P metrics are explicitely known (cf. Gini [361, Salvemini [97],
Dall’'Aglio £11) - [141, Fréchet [301 - [331], Hoeffding [401, Vallender
€1091).

> _ )
(33) ] (P1.P2)—I|F1(x) Fz(x)ldx
S/E(P P.)= }IF'1(t)—F_1(t)Ipdt 21
12’7 3" 2 »P2h
where FI are the df's of Pl.

For Y = R¥ there are few explicit solutions. Let |x| denote the eucli-
dean norm in RX.

Theorem 12. a) (Knott and Smith (1984 ), Riischendorf and Rachev (1990))
If f |x|2dP‘(x) < o, i = 1,2, then random variables X, Y with distributions

P,. P, satisfy: EIX - Y2 = 82(P1.P2) =3 f: RX 5 R' closed, convex such
that a.s. Y € 3f(X), the subgradient of f in X.

b) (Dawson and Landau (1982), Olkin and Pukelsheim (1982), Givens and
Shortt (1984))

For nonsingular covariance matrices Z Z and a,.a € R*:

(34) 82(N(a,.Z,). N(a,.Z,)) = la,-a |2 +tr I +tr £ -2 tr(2)/ 25 z”z)"2
o
Remark.
a) A differentiable continuous function f is convex, if and only if
(35) ®(x): = Vf(x) is monotone, i.e. <x-y, ®(x) - ®(y)> 20, Vx,y

(cf. [741, p. 99). Therefore, if X has distribution P if ® is the gra-
dient of a differentiable function f, ®(X) = Vf(X), has distribution P
then (X,®(X)) is an optnmal coupling w.r.t. 82-distance if and only |f

2®
® is monotone. Let w= Z ® dx, then dw= 2 (—1— L )dx A x, and
=1 I i’ 1<) dxy 3x ]

by Poincaré's lemma we obtain: if ® is continuously dlfferentlable.
then (X,®(X)) is an optimal coupling w.r.t. ®2-distance, if and only if
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o @
(36) 1. %{-: 2”‘, Vi#j and

2. ® is monotone.

For linear functions ®(x) = Ax, this is equivalent to the assumption
that A is positive semidefinite and symmetric. In the normal case
(34) with a, = a, = 0, we obtain with ¢(x)=2;1/2£¥2x: (X, (X)) is
optimal if 2123=£22 . In the general case we use
e =£!72(x]722,21%) 722} %x to obtain (34).

b) The proof of Theorem 12. a) can be based on the duality theorem and
results from convex analysis (for some extensions cf. Section 3).
The minimal 8P-metrics are special instances of the Monge-Kantoro-
vic mass transference problem. A review of this type of problems
and several further representations of minimal metrics are given in
Rachev (1985). Some results for the 82-metrics and their application

to approximation problems are discussed in [86].

2.2.4. Probability on Diagonals

For n22, E,=...=E_=Y and for A€ 11 let
n
(37) A_(A):={(x,....x); x€ A} € '91 L
and let
(38) P a.aP (A=inf (E P (AN ACH, T A=AL

Theorem 13. 3P" € M(P_.....P ) such that for all A€ ¥, :
- — -
(39) PT(A_(A) =Mg(A (AN =P a..aP (A).

Proof. For n = 2 the equality M‘(AZ(A)) = F’1 A PZ(A) follows from

(15). Since P, A P, is a measure on Y, M‘ is additive on A . This implies by

an inductive argument the existence of P*e M(P1.P2) with P'(AZ(A)) = P1 A P2(A),

[ - — - -

VAeX (fP (A, + Az) = MQ(A1 + Az) = M.(A1) + M.(Az). then P7(A) =
MQ(A‘). i=12).

If n2 2, then take Q€ M(P_,....P ) with QA _ (AN =P a...a P _(A),AEXA,,

2 pey P P(An(A)) =inf{Q(B,) +P (B,): A (A)CB xYuY x B}

= inf {Q(A_(A)) + P (ANA); A C A} = inf{P a...A P _y(A)+P (AN A A CA}
=PiA.a Pn(A). The oppositive inequality is trivial. o
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In the case n=2, A=Y, (39) implies with A2=A2(Y) and
(40) dv(P1.P2)=sup (P1(B)—P2(B); BE2[1}.
the wellknown representation of the sup-metric dv:
(41) dv(P1.P2)=1—Mc(A2) =m¢(A2)
due to Dobrushin (1969).

2.2.5. Random Yariables With Maximum Sums

Problem: For P € M (R) withdf's F, 1 <i<n, determine the maxi-
mum resp. minimum probability of

n
(42) A ():={xeR"; I x <t}
n i=1 i
This problem was solved independently by Makarov (1981) and Riischendorf

(1982) for n = 2. (For a different proof cf. also Frank, Nelsen and Schwei-
zer (1987).) Makarov introduces this problem as "Kolmogorov's problem™.

Theorem 14. (Makarov (1981), Riischendorf (1982))
For n=2 and te R we have
(43) Mc(Az(t)) =F, F2(t) = iQf (F1(x—) + F2(t-x)) the infimal convolution.
(44) m¢(A2(t)) =F,v Fz(t—) -1, where F v Fz(t)) =sup (F1(x-) + Fz(t-x)).
o
For n = 2 there are some particular results in [77], obtained by ex-

plicit solution of the dual problem. if e.g. P, = ... = Pn = R(0,1), then
. 2 n
(45) MQ(An(t)) == t, O<t <5,
(46) m_(A (1)) =min{(Z2t-1)_,1}, t20.
& n n t
If P‘=8(1.8), 1<i<n, then
__n _
47 MQ(An(k)) = (1-9), k<nd,

the solution P* € MQL being a mixture of the uniform distribution on
n
{x: ,21 x, =k} and a one point measure in (1,...,1).
i=
Similar formulas are possible for other geometric objects like circles
or triangles (for n = 2).

2.2.6. Monte-Carlo-Simulation
Problem: For P‘E MUR"Y) construct rv's Xi'~Pl with

(48) Var (,§1x;‘) < Var (£ X)) for any X, ~P,.
i= i=
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For n = 2 a solution is the wellknown method of "antithetic variates” (cf.
Hammersley Handscomb (1964)). For n 2 2 there are some particular re-

sults.

1. If P,=R(0,1), then it is possible to construct X"' ~P, 1sisn, with
2 X=2 (cf. Gaffke and Rischendorf (1981). So (X,) solve (48)
trivially.

2. If P' are uniform on {1,..., n}, then one can construct XI', 1<i<n,
with £ X"€ {a,a+1), which solve (48) (cf. [827).

3. If P,=®(1,8), then one can again construct X:'~P' with i‘; X;'E(k.k +1},

% s&s-"—r:—‘-, which solve (48). The minimal value of the variance equals
the cyc.lic function

(49) vk(9)=a(k,3)(1- a(k,9)), a(k,8):=k9 (mod 1)

(cf. Snijders (1984)).

In these examples it is possible to concentrate the distribution of
ZXi' “close” to nEX:. For a symmetric distribution (like N(a,6%)) and n =

n
2m one can choose rv's Xi with‘§1xl = nEX1.

For P‘e MYURK, B%), 1<i<n, we can similarly consider -:‘— '51 X‘ as
n
simulation for a=+ T EX (typically: P_=...=P ) with error EIJ- X -al2.
n =1 i 1 n n 1
The corresponding probiem is to determine the minimum of IZJ E(Xi,X >.
<
For n=2 we obtain a characterization of a solution from Theorem 12 (cf.
. - . * .

also Section 3.1): E<X1.X2> )(1~F’T.)?2~P2 E<X1,X2>
- 3f: R » R closed, convex, such that X; € af(—X:).

2.2.7. Maximally Dependent Random Variables

Lai and Robbins (1978) constructed for given P‘ e MR, i € N,
random variables Xl' ~ Pi such that

max X; max X;
(50) plei=n "< PN T vneN,
xX* = (X‘) is called maximally dependent sequence. In the case Pl = R(0,1)

there is a nice geometric construction (cf. also {761). In terms of limit

theorems Lai and Robbins established that 1m'.:-n( XT is not much larger than
ESE gl

max )'(v‘, where (;('l) is an independent sequence (in the case P,=P_,Vi). For
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a construction based on duality theory cf. [34]1 , [50). From (18) one ob-
tains P( max X <t) = (|§1 Fpl(t) -(n-1)),. Solutions then can be defined

1<i<n
iteratively.

In the case n = 2, P, =R(0,1),i=12, M(P‘.Pz) is called the class of
doubly stochastic measures. Let U be a R(0,1)-distributed random variable
and for a )k‘—preserving transformation g: £0,11 » [0,1] define P to be the
distribution of (U,g(U)), gP to be the distribution of (g(U),U). If g is one to one
then P P are called permutation measures since P (AxB)=aAN g"(B))

A.BEB'C0.17 and PPy

The only monotonic transformations of [0,1] which are &' preserving
are g (u) = ula'l, g (u) =1 - ulA'], the corresponding permutation measu-
res are the Fréchet-distributions. The property of two random variables
X.Y that Y = g(X), g l‘-preserving was introduced by Lancaster (1963) un-
der the notation: Y is gompletely dependent on X. By Theorem 1 of Brown
(1966), M(P1.P2) is the closure of the set of all permutation measures
w. r.t. weak operator topology on L', i.e. w.r.t. convergence of integrals of
functions f(x)-g(y) € L'(32). This theorem implies in particular that each
doubly stochastic measure (also the product measure) can be approximated
w.r.t. convergence in distribution by a sequence of permutation measures
and it is easy to give an explicit constructon of an approximation sequence
(cf. also Kimeldorf and Sampson (1978)). So in a certain sense complete
dependence is close to independence. This is related to the generation of
chaotic (stochastic) behaviour of dynamical systems by deterministic models.

2.3. The Case of Muitivariate Marginals

[n the case of multivariate marginals there are few explicit results.
In the decomposable case there is an interesting reduction principle which
is proved in [96] for Borel spaces (the proof being valid for universally mea-
surable separable metric spaces). Let h,: E - W‘ be measurable, Ei. W'

i

Borel spaces, 1 <i < n, let hJ==(hJ)JeJ: Jel'a EJ»JEIIJ WJ, Jc{1,...,n}, h=(h1.

Theorem 15. (cf. [931)
If € is decomposable, then

h_ (ph. = hy
(51) Me-(P,PEM¢)—M(PJ,J€@). o

h h
For the special case M(P1,....Pn)h=M(P11,....Pn") cf. also Rachev and

h
RiUschendorf (1986), Scarsini (1989). If h.: ([0,12,A )~ (El.l'.P') with (A" '=P,-
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then any PE M(P1,....Pn) has a representation P = Qh. Q € M(R(0,1),...,R(0,1)).

h
If E,=R . h(x)=F, (x), x €(0,1), where F,are the df's of P, then A'=P,

and P Q". Therefore,
(52) Falx)=Qthsx)=Q(F " < x, 1<isn) = Fo(F (x),...F (x )),

FQ is the so called "copula”.

(51) implies in particular for the case of simple marginals and
h:E- R, h eB(P):

(53) M_(Bh)=f fLF (wd
e\ N T Ty YA

h

where Fh' is the df. of Pi .

For some decomposable cases in [14], [96] sharp bounds have been
proved as e.g. for star-configurations 61 = {{1,j}, 2 £ j < n} or simple series-
configurations @ = {{1,2}, {2,3}}. In (961 is a discussion of two principles
of deriving bounds, the method of Bonferoni-type bounds and the method
of conditioning.

In the nonregular case the set M, can be empty, can contain one
element (uniqueness) or can be a large convex set. This is in contrast with
the decomposable case. A further difference is the fact that the continuity
properties of MQ. U in the nonregular case seem to be strictly weaker than
in the regular case. But these properties need a more detailed investigation.

Example, Let n = 3, € = {{1,2}, {2,3}, {1,3}}, the simplest nonregular
case, and let € = [0.1]. If P = pUA-W for all i,j, where PY = R(0,1) is
uniform on (0,1), then MQ =g

If P e M (L0,113) with marginals (Pl ), i,j < 3, and P{x: Zx = cl =1,
then M = {P}. For the proof note that for any Q € M we have

I(Z X, -¢) dQix) = I(Ex ~e) dP(x)=0 ie. Qix: Ex =c}=1. This implies

1|:|1t—><1r=x I1r=x1r=x
that the conditional distributions P 3 12 2=Q vorte 2 and,

therefore, P =Q.

If P =R(0,1)®R(0,1) for ali i,j, then »‘co 1]—R(O 1N®R(0,1)®R(0, 1€ M'
Let v, : [0, 1]-)[ 1,1] satisfy Iv (x)dx =0, 1<i< 3. The measures
-—(1+ﬂv (x)))}\ €0.11° '(v) all have two dimensional marginals »‘to 12’ i.e.
P € M One can explucntely construct all elements of M which are con-

tmuous w r.t. X\m 1 (cf. [87D). o
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For P € M1(E'xEJ) let P,
and define for A€ Q[1®?[3

_pmimpEx . T
Ixj-PU be the conditional distribution

(54) U13')‘2(A)= =inf (P1|x2(A1) + P3!x2(A3); ACA xEJUE xAL}

L13|x2(A)= =sup (P1'x2(A1) + P3|x2(A3); ADA, x A3) .

Theorem 16. {cf. [96])

a) If € ={{(1,2}, (2,3}, 8681®82®83. then
(55) MQ(B)=IU13|x2(Bx2)dP2(x2)

meB) =L 5, (B, JdP,(x,).

b) If €={(1,2}, {1,3}, {2,3}}, then

(56) Mg(®) < Ulp): =min { f U23'X1(cpx1)dP1(x1). J'U13')(2('px2)dP2(x2).
fU12|x3(q>x2)dP3(x3))
for p€ 8 _(E), where Umxk(cpxk) are defined analogously to (54). a

From (56) for ¢ = 1,0 A=A x A2 X A3 follows
(57) MQ(A)SUUA)Smin (PU(AlXAJ))'
the right hand side being the Bonferoni bound. The last inequality typically
is strict. This is in contrast to the case of simple marginals.

In the case &=J3:=({1,2}, {1,3}, {2,3}} let
(58) C(P12.P23)={P13; M(P ,.P,5.P ;) 7 @)
be the compatibility set of P Dail’Aglio (1959, 1972) proved that in
the case E, = R

(59) F13(x1.x3)==fmax (F”xz(x )+ F 2(x3)--1,0)dP2(x2)

12'P23'

1 2lx

sF 30 xg) sFo(xxj) = J min (F1'x2(x3). F (xgNdF ,(x,),

3|><2
F13, F13 are the minimal and maximal df's of elements of C(P12.P23). For
the converse Dall’Aglio (1959) gives a counterexample.

The following resuit gives a characterization of the marginal problem
_ 3
€=1.
Theorem 17. (cf. [96])

P13€ C(pP ) - ch=np(x1,x3) bounded, measurable:

12'P23
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~

(60) L13(¢p) <f pdP < UB(@), where

0 (cp)=J'U13

13 2((p)sz(xz). L (¢)=!L13|x2(cp)dP2(x2).

| x 13

It is not sufficient to consider indicator functions only.

3.  lnequalities of the Type: c(x.y) s f(x)+g(y)
In this section motivated by the duality theorem we investigate gene-
ralizations of the Young inequality (cf. Section 3.2 for a statement).

3.1. c¢-Convex Functlons

For n =2, & = {1}, {2}}, P .P, € M (Y) and ¢ = cix,y) € Bm from
Theorem 3 follows:

(61) Mglc) = inf{ffdP1+J'g dP; f€ Q‘(P1), g€ Q‘(Pz), cix,y) < f(x) +gly)}

and there exist solutions of the dual problem, if f cix,a)(P,  + P2)(dx) < .
A “"maximal” measure P € Mg exists if c eg(Y x Y) i.e. c is upper semi-
continuous.

If (f,g) are admissible (i.e. f(x) + gly) 2 clx,y)) and P € Mg, then
(P,(f,g)) are solutions if and only if

(62) clx,y) = f{x) + gy} [PI.

Therefore, for the calculation of the Frechet-bounds one needs sharp ine-
qualities of the type c(x,y) < f(x) + gly).

For clx,y) = £ «x,y>, x,y € R¥. a theory of these inequalities has
been established in the convex conjugate duality theory (cf. Rockafellar
(1970)). This led in Theorem 12 to a characterization of optimal couplings
w.r.t. 82-distance. For general c: E1 X E2 - R‘. there are several papers,
but the results are less complete. For the literature we refer to (191, [271],
[423, 011,

For f:E1—> R' define the c-conjugate

(63) P E >R, fT(y) = sup (c(x.y) - f(x))
xek 1
and the doubly c-conjugate
(64) " E R 7700 = sup (clx,y) - ¥ (y)).
yEE

Then, for any admissible pair (f,g) we have:
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(65) f(x) +gly) 2 F0) + F7(y) 2 £770x) + £ (y) 2 cx.y).
Define the equality domains of (f,f%) by
(66) E_f00 = {y: f(x) +£%(y) = clx,y)}
EfT(y) ={x; fx)+ f2(y) = clx,y}.
Define the class of ¢-convex functions
(67) re(,) ={h:E, 5 R; hix)= sup Ce(x,y) +a,] for some aiei,
y, € E o 1€ 1}
Te(E, )‘(h E, —>R h(y)—su? Celx,y) +b1, b, €R, x, €E,,
1 any index set}.
Elster and Nehse (1374) proved that
a) fferc(E,), f"Tel(E),
b) f** is the largest c-convex function which is majorized by f,
c) f=f"" = fET(E,).
if clx,y) = ¢<x,y>, x € Y = E a locally convex topological vector space,
y€e Y* = E , then FC(E ) is |dentucal to the class of convex, closed (= lower
semicontmuous) functlons on Y. From (64) it is clear that in the duality
theorem (61) we can restrict to c—convex functions. It is however known that

for certain classes of functions the class of c-convex functios is very large,
so that in these cases the reduction is not very interesting (cf. [193, [11).

Theorem 18. For c € 8 _ with I c(x,a)dP (x) ¢ . i =12, we have:
PEMgisa maximal measure induced by random variables X ~ P, Y ~ P
if and only if

(68) YE E f(X) a.s. for some c-convex f€®' (P, ) or, equivalently, if
and only if X€ E 7Y,

Proof. If Y € ch(X) a.s. for some c-convex f 681(P1), then for any
random variables X ~P1, Y ~F’2 we have: Ec (X,¥) SEF(X) +Ef*(Y) =
EG(X) +f7(Y))=Ec (X,Y)), i.e. (X,Y) is an optimal coupling.

There exists a solution (f,g) of the dual problem, f eg' (P ),
g EEWP ). By (65) we can w.l.g. assume that f is c-convex and g = . The
converse direction is implied by (62). (=]

From (68) it is of interest to characterize the equality sets of c-

convex functions. For f: E,» Re>O, define the g-c-subdifferential

(69) 3. :f(x) ={y: f(x") - f(x) zclx',y) —clx,y) g, Vx'€ E1},
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acf(x) = ac Of(x) the c¢c-subdifferential. The elements of 3 f(x) are called

c-subgradients of f in x. There is the following characterization (cf. [191,
2713, 1)
(70) y€d _flx)my€E f(x) (ie. fx)+f ly)=clx.y)

If 3
c

- f(x)-cix,y) = iQ_f (f(x') - clx',y))

(eo x€ 3 f (y), if fis c-convex).

[fx)#@ for all Ocese_, then f(x) = £"%(x).

Lemma 19. Let Q:E1-) Ez' ®(x) € acf(x) for x € A, then

(71) cly,®(x)) + clx,®(y)) <cix,®(x)) +cly, Ply)), Yx,ye A.
Proof. Since f(y) - f(x) 2z c(y,®(x)) - c(x,®(x}) and f(x) - fly) 2 c(x,®(y)) -
cly.®(y)), (71) follows by adding these inegualities. a
Remark.
a) If clx.y)=-Ix-yl%, x.y € R¥, then (71) is equivalent to the monotony
of @,
(72) <y - x,®(y) - ®(x)>20.
If & = Vf, f continuous, differentiable, then from (35), this is neces-
sary and sufficient for ®(x) € acf(x)= 3f(x).
If f,g.c are differentiable and @: R¥ » R, then the condition that
®(x) € 3 _f(x) implies that hiy): =fly) - f(x) - c{y,®(x)) - c(x,®(x)) 20
has a minimum in y=x and, therefore,
(73) Vi) =3 clx,@(x)).
If the differential form w= a1c(x.¢(x)) -dx is closed, we obtain
(74) fix)=c,+ [ 9. clx,®(x))-dx.
1 o5x !
Similarly,
(75) VET(@(x)) = 3 ,c(x,®(x))
and if ® is invertible and azc(x.¢(x))~dx is closed, then
- - -1 .
(76) f (y)~-02+®(of)_’y 3 ,c(®” (u),u) - du.
With the substitution v=® '(u), i.e. du=®'(v)dv. We define C,tc,=
c{0,8(0)); then we obtain
(77) f(x) + fT(®(x)) =c(0,8(0)) + o f [3,clu,®u)-u+ 3,¢(u,®(u))@’(u)l-du
-+ X

= c(0,0(0) + [ dlc(u,®(u))) = c(x,®(x)).
O x
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Therefore, the condition that ®{x) is the c-subgradient of a differentiab
function f, is equivalent to

(78) f(x) + £2(y) = £(x) - £(d 7 (y)) + (@ (y)) + £*(y) =
c(@ iy + § 3,c(u,®)-du 2 clx,y),
Q~1(y)-»x
equivalently, to the differential characterization
(79) ! (3,cluy) -3, c(u,®W)I-dus<0, Vxy.
® N(y) x

{The case cix,y) =-Ix-yl®, a>1, has been considered in [96].)
As consequence of this discussion we obtain

Theorem 20. if ® is continuously differentiable, injective and if
3,c(x,®(x)) - dx, i = 1,2 is closed, then: ®(x) € acf(x), Y x, for a continuous
differentiable function f if and only if (79) holds for all x,y. a

3.2. Generalizations of Young's Inequality

In this section we consider some generalizations of the Young-inequa-
lity. Let ®: [0,0) » [0,») be a Young-function i.e. ® is right continuous,
nondecreasing, ®(0) = 0 and @(x)—x—_’——» « and define the generalized inverse

@

® (y) =sup {x: ®(x) <y}. The Young-inequality states the inequality:
(80) xy< [ owadts | 87(s)ds

for all x,y > O with equality if and only if ®(x-) <y < @®(x) (cf. (6], [57],
[171).

Define for a measure generating function F on 0.)2 and corespond-
ing measure m

x ®(s)
(81) hi(x):=m{(s,t); O<s<x, O<t<d(s)}= J(')( (J; dF(tls))dF,(s)
@ (v)
hz(y)==2( [ aFGslONaF (o),
F(-1), F'(-) denote the conditional resp. marginal "distribution” functions.

Theorem 21. For x,y> 0 we have:
(82) F(x,y) +F(0,0) = (F{x,0} + h,(x)) + (F(0,y) + h,(y).

Proof. Define A=00,xIx[0,y], B={(s,t); 0<s<x, 0<t<®(s)},
C={(s,t); O<tsy, O0<s<¢® (y)}. Then
(83) ACBUC and BNC=4.

Therefore, m(A) = F(x,y) - F(x,0) - F(0,y) + F(0,0}) <m(B) + m(C) = h1(x) + h2(y).
o
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Remark.

a) The idea of the proof of Theorem 21 is due to Pales (1987) who noted
that in the classical geometric proof one can use more general mea-
sures.

If m=f)l€, then we obtain more explicitely:

x

®(s)
(84) h,(x)= ( f f(s,t)dt)ds = [ (3 F(s.®(s)) -3 F(s,0))ds
0 o ! 1

Ot x

= ] 3 F(s.8(s) ~F(x,0) + F(0.0)
and
hy(y) = (f) 3 F(®7(1),0dt - F(0.y) + F(0,0),

where the partial derivatives exist a.s. w.r.t. the Lebesgue measure.
Therefore, from (82)

x b4 -
(85) F(x,y) <F(0,0) +(,|; 31F(s,¢(s))ds +(J; BZF(C’ (1),t)dt.
This inequality is due to Pales (1987) for F& CZ with 3,3 _F(s,t)20.
Example. Let for a> 1, Flx,y) = -Ix-yl%, x.y€ Rl, then 3,3 Flx.y) =
a(a—1)|x-—y|°'°220. Therefore, by (86) we obtain the inequality
X
(86) Ix-yl*2a c{ Is - ®(s)|% Vsgls - ®(s))ds
H - -1 -
+a (I) lt-® ()% "sglt-® (1)dt,

1

>
where sg(x) = { o if x=0 and ® is a Young function. An analytical
-1 <

derivation of (86) has been given in [961. A consequence of (86) and (62)
is the wellknown fact that random variables (X,Y) with ®(X-) < Y < ®(X)
and ® a Young function are optimal couplings w.r.t. the distance cix,y) =

Ix - yl*. a

We next derive an extension of (82) to the case of the whole real
line.

Theorem 22. Let ®: R' 5> R' be nondecreasing, right continuous. Let
F be the generating function of a finite measure, F(x,y) = P(X < x, Y < y),
then

x
(87) F(x,y) < f(x) +gly), where f(x) =_f P(Y < ®(s)|X =s)dP*(s) and
x o«
gly)= [ P(X<® (s)Y=5)dP (s).
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Proof. Fix,y) =P(Xsx,Y<®(X)ay) +P(X<x,Y<y,Y> (X)) <
P(X<x,YS®(X))+P(X<c® (Y),Y<y) =£ PY < ®(X)|X=s)dP (s) +
g‘ P(X> @ (V)Y =5)dPY(s) = f(x) +gly). a
In (87) we have equality, iff
(88) ®(X-) <Y< d(X) a.s.
(85), (87) imply optimal coupling results and Fréchet bounds for A-monotone

(resp. L-superadditive) functions (cf. (21)).

An extension of the Young inequality to n-variables is the Oppenheim
inequality. Let f Lo, uo)-)[O ») be Young-functions, 1<i<n, then:

(89) Hf(t)s Z J'(#‘fj)df

This inequality was used in Gaffke and Riischendorf (1981) to determine
Me(ep) for @(x)= .Iix' and simple marginals P1,....Pn. For the literature cf.
Oppenheim (1927), Cooper (1927), and Dankert and Konig (1967).

Consider the curve y(t) =(f1(t),...,fn(t)). t20 and the points

P.= (fj(ti))KJ‘n, 1<i<n, A= (f‘(t‘))ul‘n. Define, furthermore,
(90) Vi={xeR_;x < f.(t). X, € fj(fl—(xi)). j#i} and
V:=[0,A1=00,f (t )T x...x CO.f (t )].
Theorem 23. (Generalized Qppenheim Inequality)

Let m be a Radon measure on R" and define cp(t1,...,tn)==m([0.A]).
hi(ti) = m(Vi). 1<i<n, then:

n
(81 cp(t1.....tn)s ;§1hl(tl)'
Proof. The proof follows from the inclusion V=[O,A]Cll’31 Vl

{cf. [65]). a

With m= A", the Lebesgue measure, we have from (91)
n n filt) _ n Y
Df)< £ f Mf((sHds= X [ (O f(u)df(u), the Oppenheim
=y R M =L S 2 B A i1 0 JF i

inequality. a

For finite measures m we can extend (91) to R".

be a finite measure on R" with
generating function F and define: @(11....,tn)==F(f1(t1)....,fn(tn)).

(U
Theorem 24. Let m=P
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t £ (U
h (t): =P(U, < (t), U f of (U).j#D = [ PWU < (W), j#i U|=f'(u))dP' ),
then

n
(92) olt ot ) T h(t).

P[QQLQ(t ot )‘—-P(U Sf(t) 1Sisn)=P(f|‘(Ul)stl. 1<i<n) <

ZP(f (U)st a (U) 1$jsn)s ): P(f Uy <t, f_(U)Sf'(U), Vi#zi)s

f|(t|)
.E (u <f(t), U sfof T), v,#.)— ): f P(U sfof, “(s).Vj#ilU =s)dP Yigs) :

‘);. I P(Ul<fj(u),j#i|U|=f|(u))dP Y (w

1 - : a

4. Some Statistical Apglications and Problems
4.1. Marginal Sufficiency

Let P be a dominated set of product measures on (E.A) = '£I1 (E'.u')
and define T: (E, %) » (Y,B) to be marginally sufficient for P,ifforall1<i<n
and ¢ € B(E,A), ¢ = @(x)), there exists ¢ € B(E,o(T)) with
(93) $=EP(9|T) {Pl, VPED.

Huzurbazar proposed the following conjecture.
Huzurbazar conjecture:

(94) Marginal sufficiency of T implies sufficiency
(i.e. (93) is true for any ep=q>(x1....,xn)e B(E,A)).

The first published proof of (94) was given by Sudakov (1979) in the
case of equivalent measures (cf. also £{531). The idea of Sudakov's proof is
related to some marginal problems. The idea is the following (cf. (1053, p. 154
- 160). Let for P =® P, Q=®Q ¢ P.f=If,g-= Ilg, be densities w.r.t.

a dominating measure u. =@y, Let h, =g, /f. cp(x) =(fnh (x )o....knh (x ))
and let P Q denote the conditional d|str|but|ons of P,Q glven T y. lf T is

margmally suffncuent then P -P“"T""(P )® and Q 'Q"'T""(Q )P yeEY,

are probablllty measures on R with |dent|cal margma!s Using

——’— (x) = (y) Mh,(x) -—T(Y) exp (£ £nh (x))) one concludes:
(95) "—51-(z) = 9P (y) exp (£2)
dF aQT P e

y
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Let U, V be orthogonal, nonnegative measures with Py - Qy sU-V,

then
1. U,V have identical marginals,
T
2. U(Zx, <2)=0, V(Zx_22)=0 for some £ (namely £=-2n %(y)).
3. flkudU<oo. 1<k<n.

To establish 3. is the most involved part of Sudakov's proof. It is easy to
see that

(96) 1., 2., 3. implies that U=V =0.

As consequence: Sy = 5): and, therefore, a standard argument from
sufficiency theory implies that T is sufficient for {P,Q}. Since this holds for
any pair P, Q, T is sufficient for 9.

The following interesting example of Sudakov shows that the difficult
moment condition 3. cannot be omitted.

Example. Let ¢: z3 - Z3. ¢(x) = -x and define probability measures

P,Q by
_ 1 = 1

(97) p= 585(1.1."1) * k:.z-:2 Fz_ Se(zk_1'1—2k_1,1-2k—1)

32
r
Q::Pq’

)

where SE“"'_” TEa-1 TR~ T Een . Ex the one point measure in x.

Then the marginals of P, Q are identical and equal to

1 4 T ,-(k+2) 3, T .
3 (e_,+re)+3 k§2 2 (Ezk_1+s(1_2k)) and P{x€Z7; Ix =1} =1, while
Q{Zx =-1}=1. =]

Let more generally ‘2[1 C ... C?ln C A be an increasing sequence of

dQ
o-algebras and P, Q € M'(E,u). Let Q << P, Pk = P/'Ik, Qk = ka, Lk=—k

dPy
and f :=L /L _,.
Theorem 25. (Generalized Huzurbazar conjecture, cf. [95])
If T: (E.U) » (Y,B) is partially sufficient for o(f ), 1 < k < n, then T is suf-
ficient for {Pn.Qn}.
The proof uses the following two lemmas:
Lemma 1. (cf. [781, Prop. 6)
If P.eM'(RY, 1<i<n, P,QE M(P_,..,P ), then:

(98) PsstQ implies P=Q. a
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Lemma 2. {(cf. Simons (1980))

For any sub-c-algebra B3 C X and P.Q € M'(E,N) the conditional distributions
of L = (L1....,Ln) w.r.t. B satisfy:

(99) pui® . Li® a

st

(f (fy,....Fn)
If T is partially sufficient for o(f ), 1<k <n, then P’ freeein

have the same marginals, where P:B' th are the conditional distributions.
Then by a generalization of the a.s. representation theorem of stochastic
orders to Markov kernels, one obtains versions XS, Y, of the distribution

k.
in (99) such that X3 < Ys a.s. From these versions one can construct

. . . . (fy,..., fn) (F1,..- fn)
versions 513. ?z of the distributions of Pz

X < Yo @S- Therefore, from (98) one obtains P:B1
implies that B is sufficient, B =c(T).

4.2. Qptimal Combination of Tests of Marginals

Let P, Q € M’(E'J['). 1 <i < n, and consider the testproblem with
hypothesis 8 _ = M(P1.....Pn) and alternative 8, = M(Q1.....Qn). In a practi-
cal problem this means e.g. that one measures n components and has for
each components the simple alternatives {P'}. {QI) but does not know any-
thing about the dependence structure of the measurements. The question
then is the following: Is it possible to achieve a better test 60,‘91 then to
take the test for that component which allows for a certain test level a the
highest power? What is the optimal combination of the marginal tests?

The answer to this problem was given in [85] w.r.t. the maximin criterioi
We consider the tests of level a

(100) (’a(eo) ={pe®:Ep<a, VPeEMP,,....P )=9°)

n
and the maximinrisk

(101) (a,8 ,8,)= inf E_o.
Bla.©,.9, .pesgﬂ(eo) 9'291 p?®

Let for two finite measures P,Q on (E.A)
(102) dv(P.Q) =sup {P(A) - Q(A); A€}
d (9.8 =inf {d_(P.Q); Pe®. Qe A}
for subsets P.8 C M(E,A) and define
(103) ha(x)==ax+1;r}2§ dv(Ql,xP|), xz0.
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Theorem 26. (cf. [851])
Let x€ (0,1) and let x be a minimum point of hu, then:

a) Bla,® .8 )=h (x*).
o 1 -3
b) If Pe®_, Q€ 6, satisfy
(104) d (Q, x*P)=d (8,x" 8 ),
v v 1 (=]
then there exists a LQ-test ¢" for {({P}, {Q}) with critical value x*
such that :p‘ is a maximin level a-test, i.e.
- . - _
(105) @© Ed’a(eo) and p'2f91EP‘p -B(a,6°.91). o
The proof uses the following lemma.
Lemma 3. Vx20 holds:
(106) d (M(Q,.....Q ). xM(P ,....,P )) = max d (Q.xP). a
Minimal pairs can explicitely be determined. Furthermore, the proof
uses a characterization of maximintests given by Baumann (1968).

One can not improve the best test of single marginals if e.g.
(107) dv(Q1,xP1)=mJax dv(QJ,xPJ), ¥xz20.

But in other cases one obtains a considerable improvement. Some related
results with additional restrictions on the hypotheses have been discussed
in [931.

An alternative interpretation of Theorem 26 is in terms of robust-
ness. If M(P1,....Pn) is considered as a neighbourhood of P1 ] ...® Pn, then
for a test o, Me(tp) is its robust level and Theorem 26 constructs an opti-
mal robust test.

4.3. Optimal Estimators In Marginal Models

We consider the construction of minimum variance unbiased estima-
tors (MVU) in the model P = M(P1,...,Pk) for certain functions g: P - R
The general question is the following: How can one use the knowledge of
the marginals in order to construct better estimators than those in the
model without this knowledge?

B
Let D_ be the set of all unbiased estimators of zero, let P==‘@1 P

and let Dg denote the unbiased estimators of g.
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Theorem 27. (cf. [891)
k
a) D =F:={% fix): fe®P), [fdP.=0, 1sisk}.
o 1 =1 1 1 i i i |
b) If PEP and d€ DgﬂLZ(P), then
. _ _ =P
(108) d*:=d-E_(dIF])
is MVU for g in P, where E: denotes the closure of F2={£f|(x‘);
fIEQZ(Pi), [ £,dP =0} in 82(P).
c) If de Dg. then
k —
(109) d*:=d- X fdd®P +kJddP
i=1 J#io)
is MVU for g in P.

The projections occuring in Theorem 27 can be calculated in some
cases while in the general case an approximative solution based on the al-
ternating projection theorem is known (cf. [84] ).

In the case of n independent observations the underiying model is
P"={P"; PeP} and the corresponding optimal estimator is given by

(110) d%(x ,0x Y=L T d%(x).

n 1 n n =1 i
An estimator sequence for a differentiable functional g, which is asymptoti-
cally optimal on the whole model or a subset ‘Do €P. should have the sto-

chastic expansion

- n
a1 in (dn(x1,...,xn)-g(P))=% I go(x)+o_n(, PED

where g lies in the tangent cone T(P,P), the set of all derivatives (tangent
vectors) of L2-differentiable path's in P through P. T(P,9) can be shown to
be identical to

ip
(12) T(P,P) = (F2) .

the orthogonal complement of F in L2(P) (cf. [901, [921). The stochastic

expansion in (111) implies that g, is a gradient of g and since g € TP.P),
it is the canonical gradient.

In a recent paper Bickel, Ritov and Weliner (1988) succeeded to construct
an estimator sequence with this property on the subset ‘Da cCP,a>0, k=2,
consisting of ‘positive dependent’ measures P with

(113) P(AxB)zaP1(A)P2(B), YAB.
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