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Summary 

We make some remarks on the problem how to construct prob- 
ability measures with given marginals. Questions of this kind arise if 
one wants to build a stochastic model in a situation where one has 
some idea of the kind of dependence and knows exactly certain mar- 
ginal distributions. 

1. Introduction 

For modelling stochastic dependence e.g. for the description of 
alternatives in problems of testing stochastic independence, a lot of 
classes of multivariate distributions have been proposed. The most 
famous are the Farlie-Gumbel-Morgenstern (FGM) distributions and 
their generalizations (cf. Johnson, Kotz [9], Mardia [18], Kimeldorf and 
Sampson [13]), the translation families (cf. Mardia [17]) and the Plackett  
[19] distributions (we clearly cannot mention all particular, parametric 
families of distributions as e.g. exponential families). A special prom- 
inent role, when considering dependence properties, always play the 
product measure (the independent case) and the ' coun te rpa r t '  (in di- 
mension two) the Fr~chet distributions 

H+(x, y )=min  {F(x), G(y)} 
( 1 )  

H_(x, y) = max {F(~) + G(y)- 1, 0} , 

where F and G are marginal distribution functions. 
A basic problem of modelling is, to find parametric families of 

distributions with high degree of dependence as measured by correla- 
tion or other dependence measures (cf. Farlie [6], Johnson and Kotz 
[9], [10], Schucany, Parr  and Boyer [20], Barnett  [1], Cook and Johnson 
[4]). A simple special advice in this direction is to consider convex 
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combinations of the  product measure and the  Fr@chet-distributions. 
In the following we consider this problem for the  case of uniform 

marginals on [0, 1] only, The reason for this restriction is tha t  our 
method involves only consideration of densities which generalizes im- 
mediately to general product spaces. Also for many dependence aspects 
of real random variables which are ' representa t ion  invar ian t '  it is 
sufficient to consider the  uniform maginals. This aspect is worked out 
in Kimeldorf and Sampson [14]. 

2. Multivariate distributions with one dimensional marginals 

Let M, be the set of all signed measures on [0, 1]" with uniform 
marginals and let M~ + denote the probability measures in M~. We 
shall concentrate in the following on those elements of M, which are 
continuous w.r . t .  2% the Lebesgue-measure on [0, 1]". The reason for 
this restriction is that  on one hand these distributions are easier to 
handle, on the  other  hand this class is in a s t rong sense dense in M,. 

For an integrable function f e L~(2 ") on [0, 1]" and T c  [ 1 , - . - ,  n} 
define 

( 2 )  f r= f f ~rdy~ ; 

i.e. we integrate  out  the  components in T. We can consider formally 
f r  as real function on [0, 1]" which is constant in the T-components. 
The following linear operator S: L~(2")---~Ll(2 ") turns  out to be im- 
por tant  : 

( 3 )  S f = f -  Z fr+(n-1)fc~,....,~. 
rl~L~_~ "~ } 

f2" denotes in the  following the measure with density f w.r . t .  2". 
For measures /~ and , we define /~<<, if Z is continuous w.r . t .  , .  

THEOREM 1. All distributions on [0, 1]" with uni form marginals 
and which are continuous w.r.t. 2" are of  the form ( l+Sf )~"  where 
f e LI(2 ~) ; more precisely : 

{Pc M,; P<<~"} = {( l+Sf}2" ;  f e L'(2")}, 
( a )  

{PeM~+; P<<2"}--{(1+Sf)2"; f ell(2"),  S f > _ - l } .  

PROOF. By definition of M, and the Radon-Nikodym theorem 

{P e M.; P((2"} = {(1-k f)2"; f e L'(2"), and 
(5) 

f~=O for all Tc{1 ,  . . . , n } ,  ]Tl>=n-1}. 
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If now P = ( I + f ) ~ 6 M ~ ,  then f r = 0  for all IT[>=n-1 and, therefore, 
S f = f ,  i.e. P = ( I + S f ) 2  ~. 

If, conversely, f ~ LI(~), P = ( I + S f ) ~ L  and T0c {1, . . . ,  n}, ITol= 
n - l ,  then for T o { l ,  . . . , n } ,  ] T l = n - 1 ,  TCTo we have (fr)ro=fcl,...~j 
and, therefore, 

( S f ) r o = ( f - f r o  - ~ fr+(n-1)fcl, . . . ,~)ro 
T # T  O, [ T l = n - - 1  

=fro--fr0--  ~' (fr)ro+(n--1)f~,,....~, =0" 
T @ T  O, ITl=n--1 

Therefore, ( l + S f ) 2  ~ 6 M~. The second part of relation ( 4 ) is immediate. 

By Theorem 1 we are led to propose the following method to con- 
struct parametric families of distributions with uniform marginals:  
Let f s ,  J 6 0, be a parametric fami ly  of functions in LI(~ ~) such that 
S f j >= - l , J 6 O, and consider iP=  [P j ;  J e O}, where P s = ( I + S f j ) i ~. 

The idea of this method is that  the functions f j  describe the de- 
pendence structure of an underlying situation and that  our fit P j  to 
the given marginals does not disturb too much this feature. The fol- 
lowing examples indicate that  this idea works well. 

Example 1. a) Let f ~ L~(I"), a0=inf [(Sf)(x); x ~ [0, 1] ~} > - o o  and 

consider f j ( x ) = J f ( x ) ,  xe[O, 1p, 5eO=[O, I~-~]" 
1) If f(x)=~v~(x~), where vi(x~)dx~=0, l ~ i < n ,  then S f = f  and 

t = l  

~ gives a generalized FGM-family (cf. Johnson, Kotz [9], Kimel- 
dorf, Sampson [14]). 

2) If f (x)=l-[x?i ,  then 

n ) 
Sf(x)  = ~I x ~ -  ~. 1 ~ 1 ~ xr '  + ( n - -  1) ]-[ , 

,:i ~:I m~+l ,:i m~+l 

which gives a new family. 

3) If n = 2  and f ( x , y ) =  1 ix_y111~, then 

Sf(x ,  y)=  1 _2(x~/2+(l_x)m+ym+(l_y)V~)+8/3 ; 
I x - y l  v2 

~P gives a family of distributions which is like f highly con- 
centrated near the diagonal. 

b) Let 8=[0,  1], n = 2  and f j ( x ,  y ) = - l ( I x - y l > J  ) (I(A) denoting the 
indicator function of A). Defining g j ( x ) = ( l - 2 J ) l ( J ~ x < _ l - J ) + ( 1 - x  

- J ) l ( O ~ x < J ) - ( x - J ) l ( x > l - J )  for 0 < 5 <  1 ,  
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1 
while gd(x )=(x -d ) l ( x>d)+(d-x ) l ( x<l -d ) ,  2<,5<1,  we obtain 

(Sf  d)(x, y)= f d(x, y)+gd(x)+gd(y)--(1--d) ~. Pd=(I + S f  d)2 ~ approaches 
for d - - . l  the  product measure, while for small ~ (neglecting small and 
large x values) l+(Sfd)(x, y ) = 2 - - 2 d  for ]x--yJ<d and = l - 2 d  for 
lx-yJ>d.  In order to introduce stronger dependence one can consider 
an additional parameter  and s tar t  with fd,,(x, y)=afd(x, y), which for 

small and a large centers the  distribution near  the  diagonal. 

3. Distributions with given independence structure 

Let T , . . . , T ~ c { 1 , . . . , n }  and C = [ T , . . . , T ~ } .  The question we 
consider in this section is to construct  distributions on [0, 1] ~ with 
given uniform marginals, such tha t  the  T~-subset of the components is 
independent,  l<i<_k, more precisely we deal with 

( 6 )  M~(C)={P~M,; P<<~ and ~r~(P)=2Lrd, l~_i<=k}, 

where =** denotes the projection on the  T~-components. 
For this problem we need a second linear operator V: L~(~ ~) --*L~(~). 

Define Re= T~= { 1 , . . . ,  n}\T, and define for f 6 L~(2 ") inductively 

fi~)=f--fR, and for re<k, 
(7) 

f ,,~+t,= f r ,,~,)R,~+~ ; 

finally define : V(f)=fik. 

THEOREM 2. 

M~(C)= {(1+ VoSf)~; f ~ L~(~)}. 

PROOF. By Theorem 1, M,(C)={(I+Sf)I~; (Sf)R,=0, l<i<k}. If  
( l + S f ) 1 " ~  M,(C), then by definition VoSf=Sf ,  implying the inclusion 
M,(C)c {(1+ VoSf)I"; f ~ Lt(1")}. 

For the  converse inclusion define D~= {S f; f e Lt(t")}. For g e Dt 
we prove by induction tha t  g(~)e D~ and (gc~))~,=0, l<i<m,  l<m<k.  
If re=l, then  clearly (g, OR~=O and for ]TI=n--1, TCT:=Rt we have 
(g,Or---gr--g~=O since g E DI. This implies tha t  g , )e  Dr. For the  in- 
duction step observe tha t  by definition 

(g~.,,+~,)R=(g~,,,~)R--(gc..,)R--(gc.,,~)R,U~,,,+=O for l < A i ~ n + l  

and as for the  case m = l  we see tha t  g~+,  ~ D~. Therefore, for f 
L~(t ~) we get  tha t  VoSf=(Sf)(~) e D, i.e. (1+ VoSf)~ ~ e M,(C). 

Some special at traction has attained the problem of this section in 
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the case that  C = { T c { 1 ,  . . . , n } ;  ITl=k} (cf. Joffe [7], [8], Biihler and 
Mieschke [3]). In this case the following more compact representation 
of the solutions is possible. 

Define for f e LI(~ ~) and l~_k<n inductively linear operators V1, 
�9 .-,  V~ by :  

( 8 ) V,f-=f,  V~+,f= V ~ f -  Z (V , f ) r .  
IT]=n-k+l 

Call a signed measure P k-independent if the projection of P on 
any k components equals the product ~,  2~_k~n. 

THEOREM 3. The set of all k-independent elements of M~, which 
are continuous w.r.t. ~ is given by {(1+ V~oSf)~; f ~ L~(~)}. 

PROOF. If P = ( l + f ) ~  ~ e M~ is k-independent, then f ~ DI= (Sg; g 
e L~(~)} and, therefore, f =  V~f= V~f . . . . .  Vkf; i.e. f is a fixpoint of 

V~ implying that  the k-independent 2"-continuous distributions are of 
the form (1+ V~oSf)~ ~, f ~ L~(~). For the other inclusion observe that  
f ~ D1 implies that  V~f ~ D~. Furthermore, for I T01=n-k  we have 

(VJ)ro=(V~-ff)ro-(V~-if)ro - ~ (V~-ff)ruro=O 
Irl=n-~ 
T~T 0 

since ITU T01>=n-k+l. 

For the construction of k-independent distributions we need the 
additional condition V~oSf>=-i ; this condition is easily satisfied if one 
uses bounded functions f. Note that the k-independent distributions 
not being k-hi-independent are given by the additional condition that  
~{(V~oSf)rr >0 for all I T ] = n - k + t .  

f If, especially, k =  n -  1 and f(x) = ~ v~(x~), v~(x~)dx~= 0, then f = S f  

and (1+f)2  ~ is a generalized FGM-distribution (cf. Section 2). If ~ { f  
=0} <1,  then V~f= V~f= . - . - - l , r~_f f=f ,  which ironies that  ( l + f ) 2  ~ is 
(n--1)-independent but not n-independent. This observation strongly 
indicates the lack of strong dependence in higher dimensional FGM- 
families and, simultaneously, gives some very natural examples of 
(n-1)-independent distributions, which are not n-independent. Similar- 
ly, ( l + f ) ~  ~ is k-independent but not k+l- independent ,  where f ( x ) =  
a 52, ~ vj(x~), a being a factor such that  l + f ~ 0 .  

I r l=~ j e t  

A different method of construction of k-independent families is the 
following: Let X , - . . ,  X~ be k-independent random variables on a 
small set {1, . . . ,  p} as e.g. given by the construction of Joffe [8] or 
by ad hoc methods. Assume that  Y , - . . ,  Y, are independent random 
variables such that  Z~=h~(X~, Y~) are uniformly distributed on [0, 1], 
then Z ,  . . . ,  Z, are k-independent and uniformly distributed. 
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c 1 7  
If  e.g. Y, are uniformly distributed on Lo, ~_j, l~i.<n, and h,(j, y) 

[ 11 then we get  Z~= Yt+--i (X~-I),  l ~ i ~ n ,  =y-6 j-lp , l~_]~_p, y6 0 , p  , P 

are k-independent, uniformly distributed and not k-kl-independent,  if 
X ,  . . . ,  X. are not  k+l - independent .  This method to t ransfer  depend- 
ence properties from distributions on small sets to any distributions 
was introduced in the  case of normal distributions by Biihler and 
Mieschke [3]. 

4. Multivariate marginals 

A well known and difficult problem of mult ivariate distribution 
theory is to construct  a probability measure with prescribed multi- 
variate marginals ;  i.e. let C={TI, . . . ,  T~} be a family of subsets of 
{ 1 , . . . ,  n} and {Pr; T~ C} be a consistent family of distributions, P r  
being the  distribution of the T-components. The problem is whe ther  
there  exists a distribution P on [0, 1] ~ with marginals Pr ,  T ~ C, and 
how to construct  it. 

Some aspects of this problem are discussed by Dall'Aglio [5]. The 
problem of existence was solved by Kellerer [11], Satz 4.2, but  the  
solution is essentially of theoretical kind and does not allow to decide 
the  existence problem in most of the  practical situations. The cases, 
which always allow a simple construction, are classified by Kellerer [12], 
Satz 3.5. A typical example is the  case C={{i,i+l}; l ~ i _ n - 1 } ,  
where a common distribution can be constructed as a distribution of 
a Markov chain. The simplest unsolved case is for n=3 and C= {{1, 2}, 
{2, 3}, {1, 3} }. Some necessary conditions have been given in this case 
by Bass [2] and Dall'Aglio [5]. 

An interest ing observation in this context  is due to Kellerer [11], 
Satz 1.1, who constructed a signed measure with marginals Pr ,  T e C ;  
i.e. the  consistency is a necessary and sufficient condition for the  ex- 
istence of a signed measure with given multivariate marginals. We 
shall follow this line of approach and assume tha t  Pr  are continuous 
w.r . t .  ~Er~, T~C, and tha t  U T={1, . . . ,n} .  Define 

2"GC 

( 9 )  W,(C)={P~M,; P<<2", ~ r ( P ) = P r ,  TEC}. 

Note tha t  by our assumption the  one dimensional marginals are uni- 
form and tha t  P r - -g r2  Irl, T~ C. 

If T e C and T'cT ,  define gr'2KT'l to be the  projection of P r  on 
the  T'-components. For the subset J c  {1, . . . ,  k} define Tj= N Tj and 

for the  empty  set q~, g ~ = l ;  we consider as in Section 2 the  functions 
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gr formally as functions on [0, 1] ~ and introduce 

k 

(10) h(x) = E ( - i F  -~ E g~'.(x), x e [0, ip .  
m=i J cli,...,k},l Jl=m 

Remember  the  linear operator V defined in (7 ) .  

THEOREM 4. The set of  all distributions on [0, 1] ~ with marginals 
Pr,  T ~ C, which are continuous w.r.t. 2 ~ is 

(II) W,(C)= {(h+ VoSf)2"; f 6 LI(1")}. 

PROOF. In the first step we prove that hR"6 W,(C) or, equivalent- 
ly, that hR=gr,, where R~=T{, l~_i~_k. Without loss of generality 
we consider the case i=i. By definition of h we get 

k 
h = g r ' +  E (--1) '~-~ E g rz 

m = t  IJ1=~a,d~D} 

:.o.,+ : ' /  
m = l  \ l J l = m , l e  J , J ~ { 1 }  IJl=m,l~-J / 

\ 

m=*  k l  J'l = m - 1 , 1 ~  J ,  J=~,/, IJ'l=m,l~J / 

=gTl -~=l  \ l . / ] =m,z~ . ] "  I./I = m , l ~ . /  / ' 

from the relation ( g r j u i , } ) R : ( g r j ) R  ` we obtain the assertion h r [ : g  r ' .  

Let  now P=g2"6 W,(C), then g = h + ( g - h ) = h + V o S ( g - h ) ,  since 
g - h  is by the  first par t  of this proof a fixpoint of VoS. Conversely, 
for f~L~(2  ~) and T e C :  (h+VoSf ) ro=h:+(VoSf ) rc=hrc=g  r by de- 
finition of V, i.e. (h+ VoSf)2"~ W,(C). 

Theorem 6 allows in certain cases even to construct  probability 
measures with given multivariate marginals. The idea is to find a 
function f ~ L*(~"), such tha t  VoS f  is balancing the  negative parts  of 
h. Some natural  candidates for f are functions which allow an ex- 
plicit and simple determination of VoSf ,  such as e.g. linear combina- 

tions of functions of the type ~=1 f l  Vi(Xi) where I v,(x,)dx~=O, l~_i~_n. 

Example 2. Let n=3,  C={{1,2} ,  {2,3}, {1,3}}. 
a) When the  marginal densities are 

A~(x. x,) = i, 

f,,(:, x,)= + (x~ (x,- il 
\ " 2 / \  2 / '  
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b) 

then  

LUDGER ROSCHENDORF 

h(x. x2, x3)=3 +xlx~+x2x~--x3 xl+x~2 

is already a nonnegative density with the  given marginals. 
If  

f,2(x,, x=)= 1 + 3(x,-- ] ~ (x~-- 1 / 
\ 2 / \  21'  

Z / \  Z /  

and 

then  

and 

L~(x~, x,) = 1,  

h(x,, x~, x3)= f13(x,, x,)+fl~(xl, x~)--I 

rain {h(x. x2, x3)} = - - ! = h ( 1 ,  0, 1)=h(0, 1, 0). 
2 

A function balancing these negative parts is given by 

f(x,, x3)=--6 x , - - l l  x 1 

so tha t  

I l k /  X/ X 1 1 

1 1 
\ 2 / \  2 /  

gives a nonnegative density with the  given marginals as can easi- 

ly be seen discussing the  cases xl, x ~  ~--, x3>= 2 ,  e t c .  Instead o f  

the  factor 6 in the balancing funtion, one can use a factor a in 
an interval around 6, in this way obtaining a parametr ic  class of 
distributions with given multivariate marginals. 
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