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Summary

We make some remarks on the problem how to construet prob-
ability measures with given marginals. Questions of this kind arise if
one wants to build a stochastic model in a situation where one has
some idea of the kind of dependence and knows exactly certain mar-
ginal distributions.

1. Introduction

For modelling stochastic dependence e.g. for the desecription of
alternatives in problems of testing stochastic independence, a lot of
classes of multivariate distributions have been proposed. The most
famous are the Farlie-Gumbel-Morgenstern (FGM) distributions and
their generalizations (cf. Johnson, Kotz [9], Mardia [18], Kimeldorf and
Sampson [13]), the translation families (cf. Mardia [17]) and the Plackett
[19] distributions (we clearly cannot mention all particular, parametric
families of distributions as e.g. exponential families). A special prom-
inent role, when considering dependence properties, always play the
product measure (the independent case) and the ‘counterpart’ (in di-
mension two) the Fréchet distributions

H.(x, y)=min {F(x), G(y)}

(1)
H_(z, y)=max {F(x)+G(y)—1, 0} ,

where F and G are marginal distribution functions.

A basie problem of modelling is, to find parametric families of
distributions with high degree of dependence as measured by correla-
tion or other dependence measures (cf. Farlie [6], Johnson and Kotz
[9], [10], Schuecany, Parr and Boyer [20], Barnett [1], Cook and Johnson
[4]). A simple special advice in this direction is to consider convex
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combinations of the product measure and the Fréchet-distributions.

In the following we consider this problem for the case of uniform
marginals on [0, 1] only, The reason for this restriction is that our
method involves only consideration of densities which generalizes im-
mediately to general product spaces. Also for many dependence aspects
of real random variables which are ‘representation invariant’ it is
sufficient to consider the uniform maginals. This aspect is worked out
in Kimeldorf and Sampson [14].

2. Multivariate distributions with one dimensional marginals

Let M, be the set of all signed measures on [0, 1]* with uniform
marginals and let M, denote the probability measures in M,. We
shall concentrate in the following on those elements of M, which are
continuous w.r.t. 1%, the Lebesgue-measure on [0, 1]*. The reason for
this restriction is that on one hand these distributions are easier to
handle, on the other hand this class is in a strong sense dense in M,.

For an integrable function f ¢ LY4*) on [0,1]* and TC{l, -.-, n}
define

(2) fo={ 7 Tawe;

i.e. we integrate out the components in T. We can consider formally
fr as real function on [0, 1]* which is constant in the T-components.
The following linear operator S: LY(i*)— L!(A") turns out to be im-
portant :

(3) Sf=f—_ >3 fr+—Dfuem-

fa* denotes in the following the measure with density f w.r.t. 2~
For measures g and v we define < if g is continuous w.r.t. ».

THEOREM 1. Al distributions on [0, 11* with wuniform marginals
and which are continuous w.r.t. A* are of the form (1+Sf)A* where
f e L}(a%) ; more precisely :

{PeM,; PL2}={(1+Sf}2"; feL(aM},
{PeM;; P&iry={(1+8f); fe L), Sfz—1}.

(4)

PrROOF. By definition of M, and the Radon-Nikodym theorem
{PeM,; P&} ={1+1)1"; feL(a), and

(5)
fr=0 for all Tc{1, .-+, n}, |T|zn—1}.
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If now P=(1+f)A"e¢ M,, then f,=0 for all |T|=n—1 and, therefore,
Sf=f, i.e. P=(1+Sf)a

If, conversely, feL'(a"), P=(1+Sf)A", and Ty {l, ---,n}, |T|=
n—1, then for Tc{l, .-, n}, |T|=n—1, T#T, we have (fz)r,=fu,...n
and, therefore,

SPr=(f~Fr=, 5} Frt0=Df o,

1

=fry—Fr,— > 1(f1')1'0+(n"‘1)f(1,~-~,n)=0 .

T%Tg |T|=n—
Therefore, (1+Sf)A* € M,. The second part of relation (4) is immediate.

By Theorem 1 we are led to propose the following method to con-
struct parametric families of distributions with uniform marginals:
Let fq, J€8O, be a parametric family of functions in LA™ such that
Sfgz—1, J€0, and consider P={Pg; J € 8}, where Pg=(1+Sfq)a"

The idea of this method is that the functions f4 describe the de-
pendence structure of an underlying situation and that our fit Py to
the given marginals does not disturb too much this feature. The fol-
lowing examples indicate that this idea works well.

Example 1. a) Let f e L"), ap=inf {(Sf)(x); x € [0, 1]"} > — o0 and
consider fy(x)=JIf(x), x€[0,1]*, Jeb= [0, _]__1_[] .
L7
n I f(x)=f[ v,(x,), where Svi(xt)dxFO, 1<i<n, then Sf=f and
P gives a generalized FGM-family (cf. Johnson, Kotz [9], Kimel-
dorf, Sampson [14]).

2) If f (x):ﬁ a7, then

sf@)=]] a3} (T L Jarer =1 JT 2

=t \sx my+ =t m;+1

?

which gives a new family.

3) If n=2 and f(z, y)=Tx———1ﬂ‘/_2’ then

SF @ 9)= T 2 (L= (L= 0) ) 488
P gives a family of distributions which is like f highly con-
centrated near the diagonal.
b) Let 6=[0,1], n=2 and fg4(=, ¥)=~1(z—y|>JI) (1(4) denoting the
indicator function of A). Defining gy(x)=(1—-2N(I=2=1—-I)+(1—=x

—INO0=8<I)—(@—I)l(z>1—J) for ogﬂg%,
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while g4(2)=(@—I)1(@>I)+(I—2)l(<1—J), %<Jg1, we obtain

(Sf)@, v)=F (@, ¥)+94®)+945y)—1—I). Pg=(1+Sf4)4* approaches
for J—1 the product measure, while for small J (neglecting small and
large z values) 1+(Sfg)(x, y)=2—29 for |z—y|<J and =~1-29 for
le—y]|>J. In order to introduce stronger dependence one can consider
an additional parameter and start with fg.(z, ¥)=af g, y), which for
J small and a large centers the distribution near the diagonal.

3. Distributions with given independence structure

Let Ty, ---, T.c{l, ---,n} and C={Ty, ---, T\}. The question we
consider in this section is to construct distributions on [0, 1]* with
given uniform marginals, such that the 7T.-subset of the components is
independent, 1=<4=<k, more precisely we deal with

(6) MA(C)={PeM,; PL2* and 7, (P)=2"", 1=i<k},

where 7, denotes the projection on the T-components.
For this problem we need a second linear operator V: LY{(a™) —L'(2").
Define R,=T{={1, :--, n}\T; and define for f ¢ L'(2") inductively

fo=F—fr, and for m<k,

f(m+l)=f(m)_(f(m))ﬂm+l )
finally define: V(f)=fw.

(7)

THEOREM 2.
M(O)={Q+VeSf)ar; feL{(am}.

ProOF. By Theorem 1, M, (C)={(1+S81)2"; (Sf)z,=0, 1=i=k}. I
A+Sf)2" e M, (C), then by definition VoSf=Sf, implying the inclusion
M(C)c {1+ VeSf)a*; feL'(AM}.

For the converse inclusion define D;={Sf; f ¢ L'(2")}. For ge D,
we prove by induction that gu. € D; and (9em)z, =0, 1Si=m, 1=m=k.
If m=1, then clearly (9u)s,=0 and for |T|=n~1, T#Ti=R, we have
(9w)r=gr—gr,=0 since g€ D,. This implies that gy € D,. For the in-
duction step observe that by definition

(g(m+1))R,’ = (g(m))Ri— (g(m))RL'— (g<m))1ztu3m+l =0 for 1=is=m+1

and as for the case m=1 we see that g.,.,, € D;. Therefore, for f¢
L'(a*) we get that VoSf=(Sf)w € Dy, i.e. 1+ VoSf)a* e M (C).

Some special attraction has attained the problem of this section in
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the case that C={Tc{1, ---,n}; |T|=k} (cf. Joffe [7], [8], Biihler and
Mieschke [3]). In this case the following more compact representation
of the solutions is possible.

Define for f e LY2") and 1£k<n inductively linear operators V,,
s, Vn by M
(8) V1f=f: Vk+1f= ka_lTlgk“(ka)T .

Call a signed measure P k-independent if the projection of P on
any k components equals the product 2%, 2=k n.

THEOREM 3. The set of all k-independent elements of M,, which
are continuous w.r.t. 1* is given by {(1+ V,oSH*; f e L(a"}.

Proor. If P=(1+f)A"€ M, is k-independent, then f e D;={Sg; ¢
€ L'(2"} and, therefore, f=V,f=V,f=-..=V,f; i.e. f is a fixpoint of
V. implying that the k-independent a*-continuous distributions are of
the form (14 V,oSf)a*, f e L*(a"). For the other inclusion observe that
f € D, implies that V.f € D,. Furthermore, for |Ti\|=n—k we have

(ka)f'oz(Vk—lf)To—(Vk—lf)To— lTE_:l_k( Vk—lf)rf’u!’o:()

since |TUT)|=zn—k+1.

For the construction of k-independent distributions we need the
additional condition V,oSf=—1; this condition is easily satisfied if one
uses bounded functions f. Note that the k-independent distributions
not being k+1-independent are given by the additional condition that
(VoS #0} >0 for all |T|=n—k+1.

If, especially, k=n—1 and f(x) ='_[_nT1 v(w,), S v (x;)dz;=0, then f=Sf

and (1+f)2" is a generalized FGM-distribution (cf. Section 2). If A*{f
=0}<1, then Vi f=V,f=.--=V,_.f=f, which implies that (1+ )" is
(n—1)-independent but not n-independent. This observation strongly
indicates the lack of strong dependence in higher dimensional FGM-
families and, simultaneously, gives some very natural examples of
(n—1)-independent distributions, which are not n-independent. Similar-
ly, 1+f)a* is k-independent but not k+1-independent, where f(x)=
a > Tl v/%;), @ being a factor such that 1+ f=0.

|T =k jeT

A different method of construction of k-independent families is the
following: Let X, -.., X, be k-independent random variables on a
small set {1, ---,p} as e.g. given by the construction of Joffe [8] or
by ad hoc methods. Assume that Y}, ---,Y, are independent random
variables such that Z;=h(X,, Y, are uniformly distributed on [0, 1},
then Z, .-, Z, are k-independent and uniformly distributed.
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If e.g. Y, are uniformly distributed on {0, %], 1<i<n, and 2(4, %)

=y+’—;—1—, 15ip ye o, %] then we get Z;= m%(xi—l), 1<izn,
are k-independent, uniformly distributed and not k+1-independent, if
X, -+, X, are not k+1-independent. This method to transfer depend-
ence properties from distributions on small sets to any distributions
was introduced in the case of normal distributions by Biihler and
Mieschke [3].

4. Multivariate marginals

A well known and difficult problem of multivariate distribution
theory is to construct a probability measure with prescribed multi-
variate marginals; i.e. let C={T, ---, T:} be a family of subsets of
{1, ---,n} and {P;; T€C} be a consistent family of distributions, P,
being the distribution of the T-components. The problem is whether
there exists a distribution P on [0, 1]* with marginals P,, T€¢C, and
how to construct it.

Some aspects of this problem are discussed by Dall’Aglio [6]. The
problem of existence was solved by Kellerer [11], Satz 4.2, but the
solution is essentially of theoretical kind and does not allow to decide
the existence problem in most of the practical situations. The cases,
which always allow a simple construction, are classified by Kellerer [12],
Satz 3.5. A typical example is the case C={{i,t+1}; 1Si=n—1},
where a common distribution can be constructed as a distribution of
a Markov chain. The simplest unsolved case is for =38 and C={{1, 2},
{2, 8}, {1,3}}. Some necessary conditions have been given in this case
by Bass [2] and Dall’Aglio [5].

An interesting observation in this context is due to Kellerer [11],
Satz 1.1, who constructed a signed measure with marginals P, T€C;
i.e. the consistency is a necessary and sufficient condition for the ex-
istence of a signed measure with given multivariate marginals. We
shall follow this line of approach and assume that P, are continuous
w.r.t. 217!, TeC, and that UCT={1, -++,m}. Define

Te

(9) W.(C)={PeM,; PLX, n(P)=Pr, T€C}.

Note that by our assumption the one dimensional marginals are uni-
form and that P,=g"2'7, Te(C.

If TeC and T'cT, define g7'2'7"! to be the projection of P, on
the T’-components. For the subset JC {1, ---, k} define T’szJT’ and

for the empty set ¢, g*=1; we consider as in Section 2 the functions
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g% formally as functions on [0, 1J* and introduce

(10) Ma=3 (- S v, weld 1T

Lees, kLT l=m

Remember the linear operator V defined in (7).

THEOREM 4. The set of all distributions on [0, 1]* with marginals
P,, TeC, which are continuous w.r.t. A" 1s

(11) W(C)={(h+VoSH)2*; f e LH(a")}.

PrROOF. In the first step we prove that hi* e W, (C) or, equivalent-
ly, that hz =g":, where R,;=T;, 1=i<k. Without loss of generality
we consider the case t=1. By definition of 2 we get

k
h=ghi+ S (=)~ 5 gV

[ {=m, J %{1}

=+ DY R gt 8 gv)

|Jl=m,1eJ,J %({1} |J|=m,1&J
\

:ng-{_Z:I(_l)m“( = glrumn4+ gTJ)

|J|=m—1,1&J,J ¢ [T |=m,1EJ

=gT1+i‘j(—-1)"‘< 3 glvm— X gTJ):
=1 |71 e |7 |=m, 16
from the relation (g"rum)z =(9")z, We obtain the assertion hpc=g".

Let now P=gi*ec W, (C), then g=h+(g—h)=h+ V-S(g—h), since
g—h is by the first part of this proof a fixpoint of VoS. Conversely,
for feL'a") and TecC: (h+VoSf)re=hpet+(VoSf)re=hre=g" by de-
finition of V, i.e. (h+ VoSf)A1" e W,(C).

Theorem 6 allows in certain cases even to construct probability
measures with given multivariate marginals. The idea is to find a
funetion f € L'(2"), such that VoSf is balancing the negative parts of
. Some natural candidates for f are functions which allow an ex-
plicit and simple determination of V.Sf, such as e.g. linear combina-

tions of functions of the type ﬁvi(xi) where Svi(a;,-)da;i-——o, 150,
i=1

Example 2. Let n=3, C={{1, 2}, {2, 8}, {1, 3}}.
a) When the marginal densities are

S, 22)=1,

Fau(z, 2)=1+ (xz—_g

H
S
S

&
|
o[
N

Su(x, 25)=14+ (901—‘-2—

[y
S
TN
&8
|
ro|—
S———
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then

L1+ %,

h(zy, ,, xs)=—g—+x1x2+xzfvs—-ws— 5

is already a nonnegative density with the given marginals.
If

Sy, wz)=1+3<x1—%

S——
TN
Ry
|
o]~
Se——”

Sis(@4, xs)=1—3<x1——-]2;

S
T
&8
|
SIS
S

and
Sl 2)=1,
then
{2y, %qy )= J1s(%y T3}t froy, %) —1
and

min (A, T #3)} = —%=h(1, 0, 1)=h(0, 1, 0) .

A function balancing these negative parts is given by

]

so that

h(y, 2 @)+ f (@0 2, xa)=1_6<x1_._%_> (mam 1 ) (s L >

o)) s )l

)

gives a nonnegative density with the given marginals as can easi-

1

ly be seen discussing the cases zi, ng—;—, xagE, ete. Instead of

the factor 6 in the balancing funtion, one can use a factor a in
an interval around 6, in this way obtaining a parametric class of

distributions with given multivariate marginals.
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