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Abstract

In this paper we consider stochastic recursive equations of sum-
type X

d=
∑K

i=1 AiXi+b and of max-type X
d=max(AiXi+bi; 1 ≤ i ≤ k)

where Ai, bi, b are random and (Xi) are iid copies of X. Equations
of this type typically characterize limits in the probabilistic analysis
of algorithms, in combinatorial optimization problems as well as in
many other problems having a recursive structure. We develop some
new contraction properties of minimal Ls-metrics which allow to es-
tablish general existence and uniqueness results for solutions without
posing any moment conditons. As application we obtain a one to one
relationship between the set of solutions of the homogeneous equation
and the set of solutions of the inhomogeneous equation for sum- and
max-type equations. We also give a stochastic interpretation of a
recent transfer principle of Rösler (2003) from nonnegative solutions
of sum-type to those of max-type by means of random scaled Weibull
distributions.

1 Introduction

Stochastic recursive equations of the sum and max-type arise in a great vari-
ety of problems with a recursive stochastic component as in the probabilistic
analysis of algorithms or in combinatorial optimization problems. For a list of
examples in these areas see the recent survey of Aldous and Bandyopadhyay
(2004) on max-recursive equations and Neininger and Rüschendorf (2004a)
on additive equations. In particular the limiting distribution of parameters
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of algorithms of divide and conquer type leads typically for additive param-
eters like path length or insertion depth in random trees to equations of the
sum-type while parameters like worst case behaviour, height of random trees
and others lead typically to equations of max-type. The contraction method
is an effective tool for proving limit theorems and existence and uniqueness
results for recursive algorithms and in particular for recursive equations.
The method was introduced for the analysis of the Quicksort algorithm in
Rösler (1991) and then developed further independently in Rösler (1992)
and Rachev and Rüschendorf (1995) (this paper was submitted in 1990).
It was then used and extended to the analysis of a large variety of algo-
rithms in a series of papers; see in particular Rösler (2001) and Neininger
and Rüschendorf (2004a, 2004b, 2005) which give general and easy to apply
conditions for convergence results. The contraction method has also been
successfully applied to some nonlinear stochastic equations as e.g. for the
analysis of iterated function systems, random fractal measures and fractal
stochastic processes (see [24, 12, 13, 14]).
There has been an extensive literature on the characterization and existence
of additive equations of the sum-type (as for branching type processes) and
quite general existence results are known for the homogeneous nonnegative
case (see [2, 3, 4, 7, 17] and [18]). Contraction arguments based on suitable
probability metrics for this problem are given in [26, 24, 5].
In particular the minimal Ls-metric `s and the Zolotarev metric ζs have been
applied to stochastic equations. For sum recursions the metrics `2 and ζs are
particularly well suited. They yield good contraction factors for the distri-
butional operator T on the set Ms of distributions with finite s-th moments

T : Ms → Ms (s = 2 in case `2) (1.1)

TX
d
=

K∑
i=1

AiXi + b

where (Xi) are iid copies of X and (Ai, b),1≤i≤K are independent of (Xi) and
d
= denotes equality in distribution. One obtains:

`2
2(TX, TY ) ≤ E

(
K∑

i=1

A2
i

)
`2
2(X, Y ) (1.2)

if EX = EY and for all s > 0

ζs(TX, TY ) ≤ E

K∑
i=1

|Ai|s ζs(X, Y ) (1.3)

see [26, 23, 24]. For 0 < s ≤ 1, `s has the same good contraction factor
E

∑K
i=1 |Ai|s as the ζs−metric but for 1 < s < 2 one only obtains

`s(TX, TY ) ≤ Ks

(
E

K∑
i=1

|Ai|s
) 1

s

Ls(X, Y ) (1.4)
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for any coupling (X,Y ) with E(Y − X) = 0 with a constant Ks > 1
see Rachev and Rüschendorf (1992). Inequality (1.4) is based on Woy-
czynskis inequality. It is valid in general Banach spaces under a type
condition. For real random variables the type is 2 and Ks can be taken as
Ks = 18s

3
2 (s− 1)

1
2 for 1 < s ≤ 2.

For max-type recursions it has been established in Rachev and
Rüschendorf (1992, 1995) and Neininger and Rüschendorf (2005) that the
minimal Ls-metric `s is also well suited even not being an ideal metric in the
sense of Zolotarev. For the max operator

TX
d
=

K∨
i=1

(AiXi + bi) (1.5)

where again (Xi) are iid copies of X, independent of (Ai, bi),1≤i≤K, and
∨

denotes the maximum one obtains for any s > 0

`s(TX, TY ) ≤
(

E

K∑
i=1

|Ai|s
) 1

s
∧1

`s(X,Y ) (1.6)

The contraction properties in (1.3)–(1.6) can be extended to random K or to
K = ∞ as well as to Banach spaces but in this paper we restrict to the case
of distributions and random variables in IR1. If not necessary we will use
freely random variables or their distributions as arguments of the metrics.

For the application of contraction arguments to the problem of existence
and characterization of solutions in the sum case it is important to be
able to apply the `s-metrics also in domain 1 ≤ s ≤ 2 since they allow to
obtain much easier upper estimates for the sum-recursive equation in (1.1)
compared to the Zolotarev metric ζs. In section 2 we prove that in spite of
the bad contraction factor Ks in (1.4) one can get existence and uniqueness
results for sum recursions w.r.t. `s for any 1 < s ≤ 2 under the natural
contraction condition ηs = E

∑K
i=1 |Ai|s < 1. The proof of this result uses a

coupling construction based on weighted branching trees. We then extend
the existence results without using any moment conditions on the solutions.
To this aim we introduce a new variant of the minimal Ls-metric called
`0
s which allows to apply contraction arguments without involving moment

conditions. This extension of the applicability of `s metrics to the analysis
of sum equations is the main contribution of this paper.
As consequence of these developments we obtain an interesting equivalence
theorem which establishes a one to one relationship between the set of all
solutions of homogeneous and inhomogeneous additive recursive equations.
For max-recursive sequences the minimal Ls-metrics `s have been shown in
a recent paper of Neininger and Rüschendorf (2005) to be ideally suited for
existence and stability results. In section 4 we establish the corresponding
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one to one relationship for max-recursive sequences.

We also give an analogue of Guivarchs transformation method for sum
recursions (see [10]) to the case of max-recursive equations. This principle
allows to transfer nonnegative solutions of additive stochastic equations to
max-recursive equations. A central role in this transformation is taken by
the Weibull distribution and the solution set constructed this way can be
seen as set of random scaled Weibull distributions. In operator language
this transfer was detected recently by Rösler (2003).
A basic source for max equations arises from limits of max recursive se-
quences. We end the paper by an application of the recent limit theorem
for max-recursive algorithms in [21] to the limit for the worst case of FIND,
which is characterized by a max-recursive stochastic equation.

2 Additive recursive equations – analysis by

`s-metrics

For probability measures µ, ν ∈ M = M1(IR1,B1) we denote for s > 0 by
`s(µ, ν) the minimal Ls-metric

`s(µ, ν) = inf
{

(E|X − Y |s) 1
s
∧1; X

d
=µ, Y

d
=ν

}
(2.1)

We use synonymously also the notation `s(X, Y ) or `s(X,µ) for the distance
of the corresponding distributions. While `s(µ, ν) in (2.1) is defined for all
µ, ν ∈ M it will be finite only if ν is in the `s surrounding Ms(µ) of µ,

Ms(µ) := {ν ∈ M ; `s(µ, ν) < ∞} (2.2)

For any µ ∈ Ms – the class of all probability measures with finite s-th
moments – holds

Ms(µ) = Ms ; (2.3)

in particular Ms = Ms(ε0). For s ≥ 1 we will additionally have to consider
subsets of Ms(µ), where the first moment is fixed to have the value c,

Ms(µ, c) = {ν ∈ M1; `s(µ, ν) < ∞, Eν = c} (2.4)

Let T denote the operator on the set of probability measures corresponding

to (1.1), TX
d
=

∑K
i=1 AiXi + b. The `s-metrics have the following contraction

properties w.r.t. the operator T .

Lemma 2.1 Let µ0 ∈ M and µ, ν ∈ Ms(µ0) then
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a) For any s > 0 holds with r := min(s, 1)

`s(Tµ, Tν) ≤
K∑

i=1

E|Ai|r `s(µ, ν) (2.5)

b) For s = 2 and µ, ν ∈ M2(µ0, c) holds

`2(Tµ, Tν) ≤
(

E

K∑
i=1

A2
i

) 1
2

`2(µ, ν) (2.6)

c) For 1 ≤ s ≤ 2 and µ, ν ∈ Ms(µ0, c) holds

`s(Tµ, Tν) ≤ Ks

(
E

K∑
i=1

|Ai|s
) 1

s

`s(µ, ν) (2.7)

where K1 = 1, Ks = 18s
3
2 (s− 1)

1
2 , 1 < s ≤ 2.

For the proof of Lemma 2.1 see Rachev and Rüschendorf (1992, resp. 1995,
Prop. 2, 3) respectively Rösler (1992) for s = 2. The results are stated there
for the moment class Ms but can be extended to the generalized classes
Ms(µ0) resp. Ms(µ0, c) considered here. The cases s = 2 and 0 < s < 1 lead
to existence and uniqueness results for additive recursive stochastic equations
of the type

TX
d
=X (2.8)

under the natural contraction condition

ηs = E

K∑
i=1

|Ai|s < 1 (2.9)

in Ms(µ0) for 0 < s ≤ 1 resp. M2(µ0, c) for s = 2.

Theorem 2.2 Assume that ηs < 1 and consider the stochastic equation

X
d
=

K∑
i=1

AiXi + b (2.10)

a) If 0 < s ≤ 1 and µ0 ∈ M satisfies `s(µ0, Tµ0) < ∞, then (2.10) has a
unique solution in Ms(µ0).

b) If s = 2 and b ∈ L1 and if `2(µ0, Tµ0) < ∞ for some µ0 ∈ M and

b1) Eb = 0 and E

K∑
i=1

Ai = 1 or (2.11)

b2) E

K∑
i=1

Ai 6= 1 and let c∗ :=
Eb

1− E
∑K

i=1 Ai

(2.12)
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then (2.10) has a unique solution in M2(µ0, c) for any c ∈ IR1 under b1) and
in M2(µ0, c

∗) under b2).

Proof:

a) We have to establish that T : Ms(µ0) → Ms(µ0).

Let µ ∈ Ms(µ0), then there exist rv’s X
d
=µ0, Y

d
=µ with E|X − Y |s <

∞. Let (Xi, Yi) be iid couplings with (Xi, Yi)
d
=(X,Y ), then

W :=
K∑

i=1

AiYi + b
d
= Tµ and V :=

K∑
i=1

AiXi + b
d
= Tµ0

are couplings of Tµ, Tµ0 with

E|W − V |s ≤
K∑

i=1

E|Ai|s E |X − Y |s (2.13)

(cp. (2.5) for 0 < s ≤ 1). By assumption `s(µ0, Tµ0) < ∞. Thus there

exist couplings U, Ũ of µ0, Tµ0 with E|U − Ũ |s < ∞. Without loss of

generality we may assume that Ũ = V (otherwise we may use a suit-
able measure preserving transformation). Thus (U,W ) is a coupling of
(µ0, Tµ) with E|U−W |s ≤ E|U−V |s+E|V−W |s < ∞, i.e. Tµ ∈ Ms(µ0).
Completeness of (Ms(µ0), `s) is a consequence of completeness of Ls. If
(µn) ⊂ Ms(µ0) is a Cauchy sequence in Ms(µ0), then choosing optimal
couplings Xn = F−1

n (U), n ≥ 0, simultaneously for all µn, we obtain, that
(Xn − X0)n≥1 is a Cauchy sequence in Ls and thus has a limit Z ∈ Ls.

This implies `s(µn, τ) → 0 where τ
d
=X0 + Z. Now an application of Ba-

nachs fixed point theorem using the contraction property in (2.5) yields
existence and uniqueness of a fixed point in Ms(µ0).

b) As for the proof of a) we have to establish that T : M2(µ0, c) → M2(µ0, c).
This is similar to a) using conditions b1) resp. b2) to establish that
Eµ = c implies ET (µ) = c. 2

Remark 2.3 If µ0 ∈ Ms and b ∈ Ls, 1 ≤ s ≤ 2 then Ms(µ0, c) = Ms(c)
= {µ ∈ Ms; Eµ = c} ⊂ Ms,Ms(µ0) = Ms and the condition `s(µ0, Tµ0)
< ∞ is satisfied by the assumptions on Ai, b. The contraction and existence
uniqueness-result can be found in this case in Rösler (1992) for s = 2 resp.
in Rachev and Rüschendorf (1995). The extension to the classes Ms(µ0)
resp. M2(µ0, c) ⊂ M1 allows to consider more general stochastic equations
including e.g. characterizations of the Cauchy distribution by an equation of
the form

A1X1 + A2X2 + b
d
=X (2.14)
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where b = A3 C(0, 1), C(0, 1) a Cauchy distributed rv random variables - where
0 ≤ Ai, A1 + A2 + A3 = 1 and E(As

1 + As
2) < 1 for some s ≤ 1.

Theorem 2.2 a) then implies that the Cauchy distribution µ0 = C(µ, σ) is the
unique solution of (2.14) in Ms(µ0).

For the case of interest that 1 < s < 2 only the contraction property in (2.7)
with an additional contraction factor Ks > 1 is available. Our next aim is
to establish an existence and uniqueness result in M1 for this case under the
natural contraction condition ηs < 1 which extends the case s = 2 in part
b) of Theorem 2.2.

Theorem 2.4 (Existence and uniqueness in M1) Consider the

stochastic equation X
d
=

∑K
i=1 AiXi + b (as in (2.10)) and let 1 ≤ s ≤ 2.

Furthermore, let µ0 ∈ M1, b ∈ L1 and assume that ηs = E
∑K

i=1 |Ai|s < 1 as
well as condition (2.11) or (2.12).
If `s(µ0, Tµ0) < ∞, then the stochastic equation (2.10) has a unique solution
in Ms(µ0, c).

Proof: For the proof we establish in the first step that the m−th iterate
Tm of T is for all m ≥ m0 a contraction on Ms(µ0, c), i.e. `s(T

mµ, Tmτ) ≤
κs`s(µ, τ) for some 0 < κs < 1 and all τ, µ ∈ Ms(µ0, c).
For the proof we consider the random weighted K-ary branching tree TX

m

of depth m, where each node σ = σ1 . . . σr (including the root Ø) is sup-
plied with an independent copies Xσ and bσ of the random variables X, b

where X
d
=µ and the K edges e1, . . . , eK leading from σ to the successor

σσi of σ get an independent copies (Ae1 , . . . , AeK
) of (A1, . . . , AK) such that

(Ae1 , . . . , AeK
, bσ)

d
=(A1, . . . , AK , b) (see e.g. Rösler and Rüschendorf (2001)

for this construction). Further for each node ν = ν1 . . . νr at level r we define
the multiplicative weights L(ν) = Aν1 . . . Aνr along its path ν1 . . . νr in the
tree and we define the additively weighted size of the branching tree by

Zm :=
∑

|σ|=m

L(σ)Xσ +
m−1∑
i=1

∑

|ν|=i

L(ν)bν . (2.15)

Let τ, µ ∈ Ms(µ0, c) and X
d
=µ, Y

d
=τ with EX = EY, E|X − Y |s < ∞ and

let T Y
m be the induced random weighted branching tree with iid copies Yσ

in the nodes such that (Xσ, Yσ)
d
=(X, Y ) and with the same random weights

on the edges (Aσ, bσ) as in the tree TX
m . Denote the corresponding additively

weighted size by

Wm :=
∑

|σ|=m

L(σ)Yσ +
m−1∑
i=1

∑

|ν|=i

L(ν)bν (2.16)



8 On stochastic recursive equations of sum- and max-type

Then Zm,Wm satisfy the recursive structure

Zm
d
=

K∑
i=1

AiZ
(i)
m−1 + b, Wm

d
=

K∑
i=1

AiW
(i)
m−1 + b (2.17)

where
(
Z

(i)
m−1

)
,
(
W

(i)
m−1

)
are iid copies of Zm−1 resp. Wm−1. This recursive

structure is obtained by splitting the tree at the root. Zm, Wm are versions
of the m-th iterate of the distributional operator T

Zm
d
=TmX, Wm

d
=TmY. (2.18)

By the multiplicative structure and using the independence assumptions we
obtain from the Woyczynski inequality (see (2.7))

Ls
s(Zm,Wm) = E|

∑

|σ|=m

L(σ)(Xσ − Yσ)|s

≤ KsE
∑

|σ|=m

|L(σ)|sE|X − Y |s

= Ks

(
E

K∑
i=1

|Ai|s
)m

E|X − Y |s

= Ksη
m
s E|X − Y |s (2.19)

For this estimate equality of first moments is needed. Passing to the minimal
Ls-metric `s we obtain

`s(T
mX, TmY ) ≤ Ks ηm

s `s(µ, τ) (2.20)

For m ≥ m0, Ksη
m
s ≤ Ksη

m0
s =: κs < 1, i.e. the iterated operator Tm is a

contraction w.r.t. `s on Ms(µ0, c).
By assumption `s(µ0, Tµ0) < ∞ and thus as in the proof of part b)
of Theorem 2.2 for s = 2 we obtain that T : Ms(µ0, c) → Ms(µ0, c).
This implies by the triangle inequality that `s(µ0, T

mµ0) < ∞. Thus
µ0, T

mµ0, T
2mµ0, . . . is a Cauchy-sequence in Ms(µ0, c) and so converges to

some limit µ∗ ∈ Ms(µ0, c), `s(T
kmµ0, µ

∗) → 0. For any 1 ≤ r ≤ m we obtain

`s(T
kmµ0, T

km+rµ0) ≤ κk
s`s(µ0, T

rµ0) → 0 (2.21)

and thus the triangle inequality implies

`s(µ
∗, T rµ∗) = 0, 1 ≤ r ≤ m,

and T nµ0 converges to µ∗ and µ∗ is a fixed point of T in Ms(µ0, c).
Uniqueness of the fixed point follows from the estimate in (2.20) if applied
to two solutions X,Y of (2.10). 2
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Remark 2.5 As in the case s = 2 the additional assumption b ∈ Ls implies
the condition `s(µ0, Tµ0) < ∞ if µ0 ∈ Ms.

One can state a corresponding existence and uniqueness result with respect
to the Zolotarev metric ζs for any s > 0. ζs(µ, ν) is defined for s = m+α,m ∈
IN0, 0 < α ≤ 1 and X

d
=µ, Y

d
=ν by

ζs(µ, ν) = sup{E(f(X)− f(Y )); f ∈ Fs} where (2.22)

Fs = {f ∈ Cm(IR, IR); ||f (m)(x)− f (m)(y)|| ≤ |x− y|α}.
Finiteness of ζs(µ, ν) implies equality of the first m difference moments
E(Xr − Y r) = 0, 1 ≤ r ≤ m.

Proposition 2.6 Let s > 0, and µ0 ∈ M be a probability measure such that
ηs = E

∑K
i=1 |Ai|s < 1 and ζs(µ0, Tµ0) < ∞. Then the additive stochastic

equation (2.10) has a unique solution in M ζ
s (µ0) = {µ ∈ M ; ζs(µ, µ0) < ∞}.

Proof: For µ, ν ∈ M ζ
s (µ0) holds

ζs(Tµ, Tν) ≤
(

K∑
i=1

E|Ai|s
)

ζs(µ, ν). (2.23)

(e.g. [24, Prop.1]). The assumption ζs(Tµ0, µ0) < ∞ implies by the
triangle inequality that T : M ζ

s (µ0) → M ζ
s (µ0). Thus {T nµ0}n∈IN is a

Cauchy sequence in M ζ
s (µ0) which implies the existence of a fixed point

by completeness of (M ζ
s (µ0), ζs). The uniqueness part is as in Theorem 2.4. 2

Remark 2.7 In general the finiteness condition ζs(µ0, Tµ0) < ∞ of Propo-
sition 2.6 for the Zolotarev metric ζs is not easy to check. For s ∈ IN there
are upper bounds of ζs in terms of the pseudo difference moments

κs(X, Y ) = s

∫
|x|s−1|FX(x)− FY (x)|dx (2.24)

if the first s − 1 moments coincide but for s /∈ IN only estimates for the ζs-
metric including absolute pseudomoments are available. There have been de-
veloped several alternative probability metrics µs which allow estimates as in
(2.23) and simultaneously allow upper bounds by difference pseudomoments
(see e.g. [22]). The estimate of `s(µ0, Tµ0) w.r.t. the `s-metric is however in
comparison particularly simple and will be very useful in the following part.

As consequence of Proposition 2.6 we obtain that given the contraction con-
dition ηs < 1, the problem of existence of a fixed point is equivalent with
finding an element µ0 ∈ M such that ζs(µ0, Tµ0) < ∞. W.r.t. the `s-metrics
the same is true for 0 < s ≤ 1 in Ms(µ0). For the interesting case 1 ≤ s ≤ 2
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we get a characterization of fixed points in Ms(µ0, c) ⊂ M1. In the next step
we want to remove the first moment condition for the `s-metrics. To that
aim we introduce for any µ0 ∈ M

M 0

s (µ0) = {µ ∈ M ;∃ rv′s X
d
=µ, Y

d
=µ0 such that

E(X − Y ) = 0, E|X − Y |s < ∞}. (2.25)

On M 0
s (µ0) we define the modified `s-metric

`0

s(µ, ν) = inf{(E|X − Y |s) 1
s
∧1; X

d
=µ, Y

d
=ν,

E(X − Y ) = 0, E|X − Y |s < ∞} (2.26)

Since M 0
s (µ0) ⊂ Ms(µ0) we obtain `s(µ, ν) ≤ `0

s(µ, ν) and `0
s satisfies the

triangle inequality. Finiteness of `0
s(µ, ν) needs a more stringent coupling

than finiteness of `s(µ, ν). In the next theorem we will see that this finite-
ness is sufficient for a general existence result for solutions of the stochastic

recursive equation X
d
=

∑K
i=1 AiXi + b using `s-type estimates.

Theorem 2.8 (Existence and uniqueness in M) Let 1 ≤ s ≤ 2 let
µ0 ∈ M satisfy `0

s(µ0, Tµ0) < ∞ and assume ηs = E
∑K

i=1 |Ai|s < 1. Then
the stochastic equation (2.10) has a unique solution in M 0

s (µ0).

Proof: We first establish that T : M 0
s (µ0) → M 0

s (µ0). Let µ ∈ M 0
s (µ0) and

denote for rv’s X, Y by X ≈ Y that E(X −Y ) = 0 and E|X −Y |s < ∞. By

assumption there exist rv’s X
d
=µ0, Y

d
=Tµ0 such that X ≈ Y. Let (Xi, Yi) be

iid copies of (X, Y ). Furthermore, define couplings of Tµ, Tµ0 by

Z :=
K∑

i=1

AiYi + b
d
= Tµ and W :=

K∑
i=1

AiXi + b
d
= Tµ0. Then

E(Z −W ) =
K∑

i=1

EAiE(Y −X) = 0 and

E|Z −W |s ≤ Ks
sηsE|Y −X|s < ∞ i.e. Z ≈ W.

Since `0
s(µ0, Tµ0) < ∞ we obtain by the triangle inequality for `0

s

`0

s(µ0, Tµ) ≤ `0

s(µ0, Tµ0) + `0

s(Tµ0, Tµ) ≤ E|X − Y |s + E|Z −W |s < ∞

i.e. Tµ ∈ M 0
s (µ0). Now we can follow the proof of Theorem 2.4 using the

branching tree contruction with Zkm
d
=T kmµ0,Wkm+r

d
=T km+rµ0 (cp. (2.15),

(2.16), (2.18)) with iid couplings (Yσ, Xσ) of (µ0, T
rµ0) such that Yσ ≈ Xσ.

Then we obtain as in (2.19) for any r ≥ 1

Ls
s(Zkm,Wkm+r) ≤ Ks

s(η
m
s )kE|Y −X|s → 0 as k →∞ (2.27)
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where (X, Y )
d
=(Xσ, Yσ)

d
=(T rµ0, µ0). In particular, µ0, T

mµ0, T
2mµ0, . . . is

a Cauchy sequence in M 0
s (µ0) with corresponding couplings X0, X1 =

Zm, X2 = Z2m, . . .
The related differences Xk − X0 are a Cauchy sequence in Ls(0) (i.e. they
have mean zero) and thus converge to some limit Z ∈ Ls(0),

Xk − X0
Ls−→ Z. This implies that Xk

Ls−→ Z + X0 and thus with µ∗ d
=Z +

X0 we obtain

`0

s(T
kmµ0, µ

∗) ≤ E|Xk − (Z + X0)|s → 0. (2.28)

This argument yields completeness of (M 0
s (µ0), `

0
s). From (2.27) we conclude,

that
`0

s(µ
∗, T rµ∗) = 0, 1 ≤ r ≤ m (2.29)

and thus µ∗ is a fix point of T in M 0
s (µ0). Uniqueness follows from the

estimate (2.27) applied to two solutions µ, ν of the stochastic equation and
using the corresponding weighted branching tree construction Zn, Wn with

couplings X
d
=µ, Y

d
=ν such that X ≈ Y. 2

As consequence of Theorems 2.8 and 2.2 we obtain the following charac-
terization of the existence of solutions.

Corollary 2.9 Let 0 < s ≤ 2 and ηs = E
∑K

i=1 |Ai|s < 1. Then the stochas-
tic equation

X
d
=

K∑
i=1

AiXi + b (2.30)

has a solution if and only if there exists some µ0 ∈ M such that

`s (µ0, Tµ0) < ∞ if 0 < s ≤ 1

resp. `0
s (µ0, Tµ0) < ∞ if 1 < s ≤ 2. (2.31)

Remark 2.10 In particular the extended contraction results for the `s-
metrics allow to characterize stable distributions as unique solutions of the
associated stochastic equations in Ms(µ0) resp. M 0

s (µ0). Let 0 < α < 2, let

U be uniformly distributed on [0,1] and let X∗ d
=µ0 = S(α) be a symmetric

stable distribution with index α and scale factor c with characteristic function

ln ϕS(α)
(t) = −c|t|α. (2.32)

Then X∗ is the unique solution of the stochastic recursion

X
d
=U1/αX1 + (1− U)1/αX2 (2.33)

in Ms(µ0) if 0 < α < s ≤ 1, resp. in M 0
s (µ0) if 1 ≤ α < s ≤ 2.
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3 Homogeneous and inhomogeneous additive

recursive equations

In this section we obtain as application of the contraction results established
in section 2 a one to one relationship between solutions of homogeneous and
inhomogeneous linear stochastic equations. Consider the inhomogeneous
equation

X
d
=

K∑
i=1

AiXi + b (3.1)

with induced operator T on M and the corresponding homogeneous equation

X
d
=

K∑
i=1

AiXi (3.2)

with induced operator T0. To establish a one to one relationship we as-
sume that b ∈ Ls and further the natural contraction condition ηs =
E

∑K
i=1 |Ai|s < 1. In section 2 we have obtained various conditions on exis-

tence and uniqueness of solutions of (3.1), (3.2).

Theorem 3.1 (homogeneous and inhomogeneous equations) Let
0 < s ≤ 2 and Ai, b ∈ Ls such that ηs = E

∑K
i=1 |Ai|s < 1 and Eb = 0 in

case 1 < s ≤ 2. Then the following equivalence holds:

a) For any solution µ0 of the homogeneous equation T0 µ
d
=µ there exists ex-

actly one solution µ∗ of the inhomogeneous equation Tµ
d
=µ such that

µ∗ ∈




Ms(µ0) if 0 < s ≤ 1

M 0
s (µ0) if 1 < s ≤ 2

(3.3)

b) For any solution µ∗ of the inhomogeneous equation Tµ
d
=µ there exists

exactly one solution µ0 of the homogeneous equation T0µ
d
=µ such that

µ0 ∈




Ms(µ
∗) if 0 < s ≤ 1

M 0
s (µ0) if 1 < s ≤ 2.

Proof:

a) If µ0 is a solution of the homogeneous equation T0µ0
d
=µ then we obtain

a coupling of µ0, Tµ0 by Y0 :=
∑K

i=1 AiYi, where (Yi) are iid, Yi
d
=µ0, and

X∗ :=
∑K

i=1 AiYi + b = Y0 + b. This implies E|X∗−Y0|s = E|b|s < ∞ and
thus `s(µ0, Tµ0) < ∞ for 0 < s ≤ 1 and `0

s(µ0, Tµ0) < ∞ for 1 < s ≤ 2
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using the additional assumption Eb = 0 in this case. From Theorem 2.2

a) we obtain a unique solution µ∗ ∈ Ms(µ0) of Tµ
d
=µ in case 0 < s ≤ 1,

while Theorem 2.8 implies the existence of a unique solution µ∗ ∈ M 0
s (µ0)

of Tµ
d
=µ in case 1 < s ≤ 2.

b) The converse direction is similar. If µ∗ is a solution of the inhomogeneous

equation Tµ
d
=µ, then let(Xi) be iid random variables with Xi

d
=µ∗.

X∗ :=
∑K

i=1 AiXi + b and Y0 :=
∑K

i=1 AiXi define a coupling of µ∗ and
T0µ

∗ such that E|Y0 − X∗|s = E|b|s < ∞, `s(µ
∗, T0µ

∗) < ∞ for 0 < s ≤
1, and `0

s(µ
∗, T0µ

∗) ≤ E|Y0−X∗|s < ∞ for 1 < s ≤ 2 and further T0µ
∗ ∈

M 0
s (µ

∗). Thus again by Theorems 2.2 a) and Theorem 2.8 we obtain a
unique solution µ0 of the homogeneous equation T0µ = µ with

µ0 ∈ Ms(µ
∗) if 0 < s ≤ 1 and

µ0 ∈ M 0

s (µ
∗) if 1 < s ≤ 2. 2

Remark 3.2 a) Let L0, L denote the solution sets of the homogeneous resp.
inhomogeneous equations (either in terms of distributions or in terms of
random variables). If Y ∈ L0 ∩ L1, EY = c and 1 ≤ s ≤ 2, then with

µ0
d
= Y it holds that Ms(µ0) = Ms(µ0, c). We obtain as consequence from

Theorem 2.8 and Theorem 3.1 existence and uniqueness of solutions in
Ms(µ0, c) as in Theorem 2.4, where we have to specify the first moment
of solutions. The remarkable point of Theorem 3.1 is to establish a one
to one relationship between L0 and L without any assumptions on the
moments of the solutions µ0, µ

∗ in L0 resp. L. The existence result
based on the Zolotarev metric (Proposition 2.6) would not allow to draw a
conclusion as in Theorem 3.1 since the finiteness condition ζs(µ0, Tµ0) <
∞ for a fixed point µ0 of the homogeneous equation would in general need
further moment assumptions on µ0.

b) For the Quicksort recursion

X
d
= UX1 + (1− U)X2 + C(U), (3.4)

with C(U) = 2U log U + 2(1− U) log(1− U) + 1 Fill and Janson (2000)
characterized the set of all solutions of (3.4) by (⊕ denoting independent
sums)

L = X∗ ⊕ C, (3.5)

where X∗ is the unique solution of the inhomogeneous equation - the
Quicksort distribution - with finite 2. moment and C = {C(µ, σ2), µ ∈
IR1, σ2 ≥ 0} is the set of Cauchy distributions C(µ, σ2) with location pa-
rameter µ and scale parameter σ, C(µ, 0) = εµ. The method of proof [8]
applied to the homogeneous equation yields also that

C = L0 (3.6)
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is the set of all solutions of the homogeneous equation. In this case the
relation between homogeneous solutions and inhomogeneous solutions is
explicit and simple. By the explicit relationship in (3.5) the knowledge of
the solution set in the homogeneous case would yield by our equivalence
result in Theorem 3.1 the equality in (3.6) for the inhomogeneous case
directly.

Corollary 3.3 (Quicksort type equation) Let U be unif[0, 1], b ∈ Ls

with conditions (2.11) resp. (2.12) if 1 ≤ s ≤ 2 and consider the Quick-
sort type equation

X
d
= UX1 + (1− U)X2 + b. (3.7)

Then (3.7) has a unique solution X̃ in Ms(c) (resp. Ms(c
∗), see (2.12)) and

the set of all solutions of (3.7) is given by

L = X̃ ⊕ C
Proof: The proof follows using (3.6) from Theorems 2.2, 2.4, and Theorem
3.1. 2

4 Max-recursive sequences

In this section we consider max-recursive equations of the kind

X
d
=

K∨
r=1

(ArXr + br) (4.1)

where (Xi) are iid copies of X and Ai, bi are random coefficients independent
of (Xr). The r.h.s. of (4.1) induces an operator T : M → M defined for

Q ∈ M and X
d
= Q by

TQ = TX
d
= L

(
K∨

r=1

(ArXr + br)

)
. (4.2)

If Ar, br ∈ Ls and L(X) ∈ Ms, then also TX ∈ Ms and then T can be
considered as operator Ms → Ms. The following existence and uniqueness
result for max recursive equations was stated in Neininger and Rüschendorf
(2005) based on the contraction property in (1.6). Note that in the max case
any s > 0 is allowed.

Theorem 4.1 (Existence and uniqueness for max-recursive equa-
tions, see [21]) Let for some s > 0 the coefficients Ai, bi ∈ Ls and let
µ0 ∈ M be such that ηs := E

∑K
r=1 |Ar|s < 1 and `s(µ0, Tµ0) < ∞. Then

the stochastic max-recursive equation X
d
=

∨K
r=1(ArXr + br) has a unique

solution in Ms(µ0).
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Similarly to the sum case we obtain as consequence a one to one relation
between the set L of the solutions of the inhomogeneous equation

X
d
=

K∨
r=1

(ArXr + br) (4.3)

and the set L0 of solutions of the homogeneous equation

Y
d
=

K∨
r=1

ArXr (4.4)

We denote the corresponding distributional operators by T and T0.

Theorem 4.2 (Equivalence theorem) Let Ar, br ∈ Ls for some s > 0
and assume that ηs = E

∑K
r=1 |Ar|s < 1. Then

a) The inhomogeneous max-recursive equation (4.3) has a unique solution in
Ms.

b) For any solution Y0 ∈ L0 of the homogeneous max-recursive equation
(4.4), there exists exactly one solution X∗ of the inhomogeneous max-
recursive equation (4.3) such that `s(X

∗, Y0) < ∞, i.e. L(X∗) ∈ Ms(µ0),
where µ0 = L(Y0).

c) For any solution X∗ of the inhomogeneous equation (4.3) there exists ex-
actly one solution Y0 of the homogeneous equation (4.4) with `s(X

∗, Y0) <
∞.

Proof:

a) The proof follows from Theorem 4.1. Let µ0 = ε0; then

`s(µ0, Tµ0) ≤ E max
r
|br|s ≤

K∑
r=1

E|br|s < ∞.

Furthermore, Ms(µ0) = Ms and thus a) follows from Theorem 4.1.

b) If Y0 ∈ L0 and µ0 = L(Y0) then let (Xi) be independent r.v.s with Xi
d
= µ0

and consider the coupling X :=
∨K

r=1 ArXr and W :=
∨K

r=1(ArXr + br)
of µ0 and Tµ0. Then we obtain from Lemma 3.1 in [21] `s(µ0, Tµ0) ≤
(E|X − W |s)1/s∧1 ≤ (E

∑K
r=1 |br|s)1/s∧1 < ∞. Theorem 4.1 implies the

existence and uniqueness of a solution µ∗ of the inhomogeneous equation
(4.3) in Ms(µ0).
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c) Let conversely X∗ be a solution of (4.3) with X∗ d
= µ∗. Further, let

(Xi) be iid, Xi
d
= µ∗ and consider the coupling X :=

∨K
r=1 ArXr and

W :=
∨K

r=1(ArXr + br) of T0µ
∗ and µ∗ (as W

d
= µ∗). Then

`s(µ
∗, T0µ

∗) ≤ (E|X −W |s)1/s∧1

≤ (E
K∑

r=1

|br|s)1/s∧1 < ∞

and Theorem 4.1 implies the result. 2

By Theorem 4.2 there is a one-to-one relationship between the set L of
solutions of the inhomogeneous max-recursive equation and the set L0 of
solutions of the homogeneous max-recursive equation. In the case of non-
negative coefficients Aj ≥ 0, the homogeneous max-recursive equation

X
d
=

K∨
j=1

AjXj (4.5)

can be related to the homogeneous additive recursive equation

W (α) d
=

∑
Aα

j W
(α)
j , (4.6)

where α is chosen such that E
∑K

j=1 Aα
j = 1. This equation has been studied

in detail in the literature. By a result of Biggins (1977) equation (4.6) has a
solution if and only if

E

K∑
j=1

Aα
j ln Aj ≤ 0. (4.7)

Let KF (t) = E
∏

j

F

(
t

Aj

)
(4.8)

denote the operator on the distribution functions corresponding to (4.5).
Then Rösler (2003) showed that for any nonnegative solution W (α) of the
additive equation (4.6),

F0(t) := Ee−W (α)t−α

(4.9)

is a d.f. and

KF0 = F0, (4.10)

i.e. F0 is a solution of the max-recursive equation (4.6). We can interpret
Rösler’s analytic construction stochastically as an analogue of a transforma-
tion of Guivarch (1990) given there for the sum case.
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Proposition 4.3 (Additive and max-recursive equations) Let Aj≥0,

E
∑K

j=1 A
(α)
j = 1 and let W (α) be a nonnegatiave solution of the additive

stochastic equation (4.6). Further let Z(α) be Weibull-distributed with pa-
rameter α i.e. FZ(α)(x) = e−1/xα

, x > 0. Then the random scale Weibull
variable

X :=
(
W (α)

)1/α
Z(α) (4.11)

is a solution of the max-recursive equation (4.5).

Proof: We verify that the d.f. of X is identical to Rösler’s distribution F0

in (4.9).

FX(t) = P (X ≤ t) = P ((W (α))1/αZ(α) ≤ t)

= EFZ(α)

(
t

(W (α))1/α

)
= Ee−W (α)/tα = F0(t).

Alternatively, we may use the max-stability of the Weibull distribution. Let
Xj = (W

(α)
j )1/αZ

(α)
j , be iid copies of X, then

K∨
j=1

AjXj =
K∨

j=1

Aj(W
(α)
j )1/αZ

(α)
j

d
=

( K∑
j=1

Aα
j W

(α)
j

)1/α

Z(α)

d
= (W (α))1/αZ(α) = X,

i.e. X is a solution of (4.5). 2

Remark 4.4 The construction in (4.11) can also be extended to nonnegative
solutions W ≥ 0 of the additive inhomogeneous equation

K∑
j=1

Aα
j (W

(α)
j + bj)

d
= W (α) (4.12)

where (bj) are nonnegative iid r.v.s. independent of (Aj). Then with
X := (W (α) + b)1/αZ(α) holds

K∨
j=1

AjXj =
K∨

j=1

Aj(W
(α)
j + bj)

1/αZ
(α)
j

d
= (

K∑
j=1

Aα
j (W

(α)
j + bj))

1/αZ(α) d
= (W (α))1/αZ(α) (4.13)
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Example 4.5 (Worst case of FIND) The limiting distribution of the
worst case of the FIND algorithm was characterized in Grübel and Rösler
(1996) as the unique solution S0 in M2 of the fixed point equation

S
d
= US1 ∨ (1− U)S2 + 1, (4.14)

where U is uniform on [0, 1] and S1, S2 are iid copies of S. S0 moreover has
finite moments of any order and exponentially decreasing tail. In order to
study the solution set L of (4.14) we first note that the classW = {Qλ, λ ≥ 0}
of Weibull distributions with parameter α = 1, with d.f.s Fλ(x) = e−λ/x, x >
0 and with Q0 = ε0 are solutions of the homogeneous equation

S
d
= US1 ∨ (1− U)S2. (4.15)

Let Xλ
d
= Qλ, then for λ > 0, Xλ has no finite moments of any order > 1

and for s > 1 holds `s(Xλ, Xλ′) = ∞ for all λ 6= λ′. The existence Theorem
4.2 implies that ∀λ ≥ 0 there exists exactly one solution Sλ of the worst case
FIND equation (4.14) such that `s(Xλ, Sλ) < ∞, i.e.

L ⊃ {Sλ; λ ≥ 0}. (4.16)

Since there are no nonnegative solutions of the related homogenous additive

equation W
d
= UW1 + (1 − U)W2 Proposition 4.3 does not add to the set

of solutions in this case. It is an open problem whether there are further
solutions.

Max-recursive stochastic equations arise under quite general conditions as
limits of max-recursive algorithms as was shown recently in Neininger and
Rüschendorf (2005). We finish this paper by restating this limit result as a
interesting source of max-recursive equations. We then give an application
of this limit theorem to the worst case behaviour of FIND where the limiting
fixed point equation was stated in (4.14) and discussed above.

Consider a max-recursive algorithm (Yn) of divide and conquer type,

Yn
d
=

K∨
r=1

(Ar(n)Y
(r)

I
(n)
r

+ br(n)), n ≥ n0, (4.17)

where I
(n)
r are subgroup sizes, br(n) are random toll terms, Ar(n) are

random weights and (Y
(r)
n ) are iid copies of (Yn), independent also of

(Ar(n), br(n), I(n)). For a limiting result (after normalization) the follow-
ing conditions were given in [21]. Assume that the coefficients converge in
Ls:

(A
(n)
1 , . . . , A

(n)
K , b

(n)
1 , . . . , b

(n)
k )

Ls→ (A∗
1, . . . , a

∗
K , b∗1, . . . , b

∗
K). (4.18)
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Then as a formal limit of equation (4.17) one obtains as limiting equation

X
d
=

K∨
r=1

(A∗
rXr + b∗r). (4.19)

We need the contraction condition for the limit equation

E

K∑
r=1

|A∗
r|s < 1 for some s > 0 (4.20)

as well as a nondegeneracy condition: For any fixed ` holds:

E[1{I(n)
r ≤`}∪{I(n)

r =n}|A(n)
r |s] → 0. (4.21)

Theorem 4.6 (max-recursive limit theorem, see [21]) Let (Yn) be a
max-recursive algorithm of divide and conquer type as in (4.17) and assume
conditions (4.18), (4.20), (4.21). Then `s(Yn, Y ∗) → 0, where Y ∗ is the
unique solution of the limit equation (4.19) in Ms.

As application of Theorem 4.6 we next give a direct proof of the limiting
worst case behaviour of FIND. For an alternative stochastic process approach
see Grübel and Rösler (1996).

Example 4.7 Let Yn,` denote the number of comparisons of the FIND algo-
rithm for finding the `th order statistic. Then

Yn,`

n
d
=

V −1

n
1{V >`}

YV−1,`

V −1
+

n−V

n
1{V <`}

Y n−V,`−V

n−V −1
+

n−1

n
(4.22)

where V is uniform on {1, . . . , n} distributed. With V = dUe, U uniform on

[0, 1] and the normalization Xn,` :=
Yn,`

n
we obtain

Xn,`
d
=
dnUe−1

n
1(dnue

n
> `

n)Xdnue−1,`+
n−dnUe

n
1(dnUe

n
< `

n)Xn−dnUe,`−dnUe+
n−1

n
.

Defining the worst case
Mn := max

1≤`≤n
Xn,` (4.23)

we obtain the recursive equation

Mn
d
=

n− 1

n
+
dnUe − 1

n
MdnUe−1 ∨ n−dnUe

n
Mn−dnUe. (4.24)

This leads to the limit equation

S
d
= 1 + US ∨ (1− U)S, (4.25)

the worst case FIND equation. All conditions of Theorem 4.6 are satisfied
for any s > 1. We therefore obtain that for any s > 1

`s(Mn, S) → 0 (4.26)

where S is the unique solution of (4.25) in Ms. Thus uniqueness holds true
in

⋃
s>1 Ms.
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[24] S. T. Rachev and L. Rüschendorf. Probability metrics and recursive
algorithms. Advances Applied Probability, 27:770–799, 1995.

[25] U. Rösler. A limit theorem for Quicksort. RAIRO, Informatique
Théoriqué et Appl., 25:85–100, 1991.

[26] U. Rösler. A fixed point theorem for distributions. Stochastic Processes
Applications, 42:195–214, 1992.

[27] U. Rösler. On the analysis of stochastic divide and conquer algorithms.
Algorithmica, 29:238–261, 2001.



22 On stochastic recursive equations of sum- and max-type

[28] U. Rösler. Notes on fixed points of max recursive sequences. Preprint,
2003.
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