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ON THE MULTIDIMENSIONAL ASSIGNMENT PROBLEM

Ludger Riischendorf, Freiburg

Abstract: The aim of the present paper is to show the importance of

the concept of majorization to the solution of multidimensional assign-
ment problems.

1. Introduction.

Let (z,

5 be a (m+1)-dimensional matrix. As

yeeosd )1§i.§n
o jul 3

m-dimensional (axial) assignment problem we consider the following

problem:
(1) Find V1""’Vh1€sn’ such that
n
= 1 t
5121 v, (1),...,v (i) min! , where
en are the permutations of {1,...,n} and the minimum is over all
permutations.

A related problem is the m-dimensional bottleneck-problem:
(2) Find V1""’Vh1€6n such that

max z, = min!

i,v, (1),...,v (i)

Problems (1), (2) were treated e.g. by Pierskalla (1968), Burkard
(1979) and Burkard, Frdhlich (1979). There are a lot of modifi-
cations and generalizations of these assignment problems as e.9.
the corresponding (hyper-) plane assignmentand bottleneck problems
or the quadratic assignment and bottleneck problems, but we shall
mainly deal in the following with (1) and (2).

In the ample literature on this subject one can find explicit

simple solutions only in certain cases for m=1 (e.g. Gilmore's
solution to the assignment problem with cost coefficients zij =
oy B ) and for certain cases of the gquadratic assignment problem,

whlch are based on two rearrangement results of Hardy, Littlewood
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and Polya (cf. e.g. Pratt (1972)). We want to show, that by means
of (weak) majorization one can get explicit solutions in several

further cases.

Weak majorization is defined for a, b ERn by

i i
(3) a-~__b if I ar.qs £ I b
w 3=1 (31 j=

where a[j], b[j] are the j-largest components of a,b. Majorization
is defined for a,b€ R" by

(4) a -~ b if a “ b and

e 3
o
]
e~ 3
o

i

2. Optimal assignments and majorization.

In the following we shall deal explicitely with the case m=2
(and sometimes with m=1). The results for m=2 are easily ex-

tended to the general case m= 2.

Assume that a,b,c e R" such that

. 3 1
(5) zi,j,k =@ nh(ai,bj,ck), 1 = 1i,j,k £ n, where h : R° > R
and ¢ : R1 - R1. Define for 7, u Esn
hig,u) = (h(::xi,bﬂ(i),cu(i)))1€i§n and

(6) H(M) = {h{m,wW;m,u een}.

Let, furthermore, Mw(h)(M(h)) be the set of all maximal elements
of H(h) w.r.t ~%(<) and mw(h)(m(h)) be the set of all minimal ele-

ments of H(h) w.r.t. (w(J).

Proposition 1.

a) If ¢ is (increasing and convex) convex, then (mw(h))m(h) con-
tains a solution of (1), (2).

b) If ¢ is (decreasing and concave) concave then (Mw(h))(M(h)

contains a solution of (1).

Proof. For all x € H(h) there exists an element y €m(h) such that
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y < x. If ¢ is convex this implies that (w(y1),...,w(yn)) <
(m(x1),...,wéxn)) (cf. Marshall, 0Olkin (1979), pg. 115) and,

n

therefore, ¥ w(yi) = L o(x;) and max @(y.) =max ¢(x;). The
i=1 i=1 izn R *

remaining cases of Proposition 1 are treated similarly. o

Proposition 1 shows that it is interesting to determine the sets
M(h), m(h) or Mw(h),mw(h). There are some general results concerning
this question of minimal and maximal elements (cf. Marshall, Olkin
(1979), pg. 132 -137). The general idea is that minimal elements
have nearly equal components, while maximal elements have a large
variation in the components. By Proposition 1 we have already found
a solution of (1), (2) if there is even a smallest or a largest

element w.r.t. <(<w)

We shall now discuss some examples to show the applicability of
this idea. Let in the following w(u) resp. 7(u) denote the per-
mutation which arranges b{(c) in decreasing resp. increasing order.
For a large class of functions the determination of Mw(h) is
simple by the following proposition essentially due to Lorentz
(1953) and Day (1972).

Proposition 2.

If a, 2 a,z...za ., if h is montonically nondecreasing (or non-

increasing) and L-superadditive, then
(7) h(w,u) is a greatest element of H(h) w.r.t. <w . a

Ifm=1 (i.e. h(ai’bj’ck) = h(ai’bj) is independent of ck)

there is also a smallest element.

Proposition 3.

Ifm=1, ajz...;an, h is monotonically nondecreasing (nonin-

creasing) and L-superadditive, then

(8) h(m)is a smallest element of H(h) w.r.t. < . =©

For definition of L-superadditive functions cf. Marshall, Olkin
(1979), pg. 146. Interesting examples are f(x1-kx2-+x3) for convex f, ij
for xj =« O and min x.. For the solution of (1) the monotonicity

assumption on h is by Lorentz's theorem not necessary if @(x) =x.
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Let h1(x1,xyx3) = max x., then h1 is L~ subadditive (i.e. =~ h1 is
=

1£3=3
and, therefore, by (7) for a.z a

L-superadditive 4E 28y

(9) h1(§,ﬁ) is a least element of H(h)) w.r.t. <

To determine a largest element of H(h1) let 7* be the permutation
which rearranges b in opposite order to a and u* be the permutation
which arranges ¢ in opposite order to the vector
(max(a1,bv*(1)),...,max(an,bn*(n))). Then it is not difficult to

prove:

Proposition 4.

h1(w*,u*) is a largest element of H(hy) w.r.t. < . @

Example 1. Ifn =5, a, = b, =c, =1, 1 =i = 5, then

a 54321
* 12345
C % 13542

A largest element of H(h1) w.r.t. <w is (5,4,5,4,5), a smallest
element is (1,2,3,4,5). o

3
Let hz(x1,x2,x3) = ¥ x. and assume that the minimal difference

Ql,[bl"b erl
of a,b,c is d > 0. Thenthe following proposition holds.

of la,-a | ]=1|c.—c i 44, between different components
I 1 Q/ 14 l

Proposition 5.

* *
If there exist c¢ eR1 and 7 , u Csn with

. * ok
(10) hz(ai’bn*(i)’cp*(i)) € {c,c+d}, 1 s1i < n, then h2(n U )
is a smallest element of H(hz) w.r.t. <. o

Note that condition (10) corresponds to our general idea for mini-
mal elements of H(hz). It is possible to prove similar results for
a,b,c which do not satisfy (10) exactly.

Example 2. Let a; = bi =cy = i, 1 i sn. If n = 2k take

a; = i, 1 £1i < n,



k+i, isk
Paxy T {
oL ©i-k, izk+1
n-2(i-1), i=
cux(i) T !
L n=2(i=-k)+1, i=zk+1
n+k+2, i<k

Then a, +b
i

n (i) T OSu*(d)

n+k+1, izk+1

If n = 2k+1 take a, = i, 1 £ 1 £ n,
i
b i+k,  isk+1
r*¥(i) = { . X
i-k-1, k+2=i=n
. n-=2(i-1), isk+1
Cu*(i) T { n+1+2 (k-i+1) , k+2si=n.
Then a; + b_”* (i) + Cu*(i) = n+k+2, 1 si=n,

Therefore, by Proposition 5

elementsof F(h) w.r.t. <. o

Note that Proposition 5 can

element of H(h3), where h3(x1,x2,x3) = 7 Xy

observing that h3(x1,x2,x3)

in both cases we have found smallest

also be appl%ed to find a smallest

2,20, w.r.t. <,
i \4

P=1
= exp{h2 (lﬁ'x1,lr1x2,2n x3)}

3. A procedure for the determination ofminimal elements.

W§ consider the special case of (1), (2), where h(x1,x2,x3)

m Xy
i=1

Xy z0. For x,yERn define x° y =

(x1 y1,...,xnyn) and x 1y

to mean that x,y are oppositely ordered. Then with O(h) =

{h(m,u); m,u Esn such that a.L(bTr° cu), bﬂJ.(a° cu) and cU

where bTT = (b b

(1)

Proposition 6 m_{(h) < O(h)

TT(n.)),
derived from the Hardy, Littlewood, Polya

L(a° b))},
the following result can be

rearrangement theorem.

. =)
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Therefore, by Proposition 1, for the solution of (1), (2) with
increasing and convex ¢ we can find solutions in O(h) ((0(h)
contains even all solutions of (1)). To find elements of O(h)

the follewing procedure is useful.

Start with any rearrangement of a,b,c. Define V'Esn such that

a, L(b »c), then let ﬂ'ESn be such that bTr _L(av oc) and let
u € Sn be such that cU .L(aV °bﬂ). Now repeat these operations

with new initial values ag» bﬂ, cu. In each step we obtain new
rearrangementssuch that a, °bTT °cu gets strictly smaller w.r.t. <w

until we have found an element of O(h).

LIS

Example 3. Let a; = bi =c; = i, 1s$is=n, then for k = 4

for k = 6 a 123456

are optimal (i.e. minimal w.r.t. <w) rearrangements obtained

by our procedure. For k = 8 an optimal rearrangement is

a 12345 78
b 8 537 16
c 75623 8 1

with vectors of products h1 = (56, 50, 54, 56, 60, 48, 56, 48) .

The following rearrangement is also in O (h)

a 123456738
b 74536812
c 76452182

with vector of products h2 = (49, 48, 60, 60, 60, 48, 56, 48) and

hz is strictly larger than h1 w.r.t. <w. Therefore, the inclusion
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in Proposition 6 can be strict. Concerning problem (1) the
values of h1,h2 are 428, 429;concerning problem (2) the values
are both 60 (for ¢(x) = x). o

The experience of many examples shows this behaviour which in-

dicates that in many cases elements of 0(h) give good approximations
to the optimal solution. We want to remark that a similar procedure
works for several similar problems as e.g. hi(x,y,z) = f(x+y+z) for

convex £ (in this case arrance a l(b+c) etc.)

Remark. The author wishes to thank the referee for several helpful

suggestions.
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