ON THE MINIMUM DISCRIMINATION INFORMATION THEOREM

L. Rischendorf

Abstract: A basic result in the information theoretic ap-
proach to statistics developped essentially by Kullback [7]
is the minimum discrimination information theorem, which
allows in many cases to determine the projection of a proba-
bility measure on a set of probability measures with given
linear constraints w.r.t. the Kullback-Leibler distance. A
partial converse of this result is due to Csiszar [3]. In
the present paper we prove analogical results for a large
class of divergence-type distances, thus opening the way to
extend the information theoretic approach to a larger class
of distances. It turns out, that the Kullback-Leibler dis-
tance has some properties, which allow specific simple cal-

culations.

1. Introduction

Let (X,A4) be a measurable space and let for P, RﬁEM1(X) -

the set of probability measures on (X,4) - I(P|R) denote the

Kullback-Leibler distance, i.e.
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fin g}—}; dp, if P<<R
(1 I(P|R) = { .
o , else

For Q65M1(X) and a vector subspace F < L1(Q) with 1€ F let
(2) M = {P€M1(X); FcL' (P) and JfdpP = jfdQ, fE€F}.

The minimum discrimination information theorem (MDIT), which
is due to Kullback [7], Kullback anQ Khairat [8] states: If
REM'(X), P €M and f€F satisfy g%- = exp f, then

(3) I(P*|R) = inf{I(P|R); PE M},
*
i.e. P is the I-projection of R on M.

A partial converse of (3) was found by Csiszar [3]: If P¥ is
the I-projection of R on M with I(P*|R)< «, then there exists
a ge L1(F,P*) - the closure of F in L1(P*) - such that

*
(4) g%— = exp g [P

*].
(Since each PEM with I(P|R) < » satisfies P << P' (cf. rela-
tion (14)) and, furthermore, we can in the definition of M
assume w.l.g. that F is a vector space, (4) is equivalent to

Csiszar's formulation).

A consequence of (3), (4) ist, that (4) gives a necessary and
sufficient condition for an I-projection if F is closed in
L1(P) for all PEM with I(P|R) < =, assuming the existence of
PEM with R<< P and I(P|R) < .

Consider now the functional
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I¢(%§) dr, if the integral exists

5 I (P|R) = .
(5) PR {
o , else
where ¢: (0,x) R is a convex function and @(0) = lim @(x),
@(x) = lim @(x). (We define %% = / N where P~«x§¢o R « A,

and use®”™ the convention O « o = O Note, that R {dR = o }=0.).
We will show in the following, that results similar to (3)

and (4) can be obtained also for many functionals Iw.

For convex functions ¢ as above Csiszér (21 introduced the

fo ( dR dr

@-divergence measures Jm(PlR) a d), using the

tp(u)

convention Ow(g) = 0, Ow(%) = a lim for O<ac<w. It

u~»>oo
has been shown by Csiszar [2] and in several further papers,

that J@ shares many of the useful statistical properties of
the Kullback-Leibler distance. The reason for the introduc-
tion of the modification I@ of Jw is of technical nature. It
turns out, that Im is more adapted to the considered minimi-
zation problem but, simultaneously, looses in the general
case some useful statistical properties of the divergence
measure Jm. But, as will become cleér from the following
discussion, the minimization results for I@ imply correspond-
ing results for J(p in many cases.

I@ and J@ are related by

_ . @(u) R _
(6) Jw(P[R) = Iw(P]R) + ii{: = Plgy = Ol

Therefore, for P « R we have Iw(PlR) = Jw(P]R). If 1lim Qégl=w
U0
*

then the Jw—projection P of R on M satisfies P*<« R and,

therefore, is identical with the Iw—projection of R on
(7) M(R) = {PEM; P <R} ;

examples for this situation are @(x) = x log x or @(x) =
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|x - 1|%, a>1, leading to the Kullback-Leibler distance,
resp.xa - distance. Also, as is immediate from (6), the case
lim el O implies equality of Iw— and J —pro;ectlons. An
gxample is @(x) = x ¢ -1,0> 0. Note that 1n this case

©(0) = », which implies, that a projection P* on M satisfies
R« P*. So a difference can only occur for O< lim @) o,
If e.g. @(u) = |u - 1|, then Jm(P|R) is the total variation
distance of P and R, while Iw(P]R) is the total variation
distance between P, - the continuous part of P w.r.t R -

" and R.

R

Since I(.p is a functional of g% it will be more adapted for
the problem of determining I -pro:ectlons to consider linear
constraints of the follow1ng form: For F < L (QR) define

(8) = (rem x); Fer' (py) and [fap, = jfdQ,, £EF}.

If Q< R, then MNM5M(R); if 1€F and Q<« R, then MM = ¢.
Let F1 = <1,F>, the vectorspace generated by 1 and F and let
M(p resp. ﬁ@ denote the elements P of M resp. M with I@(P|R)<w.
For the first reading one may like to concentrate on the most
important case of projection on M(R), where Q<« R and 1€ F.

In this case the notations will simplify considerably.

2. Optimization of linear functions and closedness properties

In this section we derive some results for the optimization
of linear functions, which are used in the subsequent sec-
tions for the determination of Iw—projections.

An interesting characterization of the extreme points of the
convex set M is due to Douglas [4]: If P*EEM, then P* € ex (M)

- the set of extreme points - iff

(9) F1 is dense in L1(P*).
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Since M(R) and M(R,s) = {P€M; P has a bounded density

w.r.t. R} are extremal subsets of M, we have ex (M(R)) cex (M),
ex (M(R,s)) cex(M), so that the same characterization of
extreme points is true in M(R) and M(R,s). The idea that
linear functions on M take their infima in extreme points
leads to.

Proposition 1. If P*€EM and ge.L1(P*) satisfies [gdP" =
inf {fgdp; PeM(P*,s)}, then

(10) ge€ L1(F1,P*) or, equivalently, [gdP = fgdP* for all
PeM(P",s).

Proof. The proof follows the lines of Csiszar [3], Theorem
3.1, and Douglas [4]. Let F; = {he L™ (P*); [hfar” = 0 for all
fe F1}, then

1

(11) fghar® = 0 for all heFy,

since, otherwise, there would exist a he€ F*, such that
fgth*< 0. Then P = (1 + h

. h * _ : .
dinsity 1+ TR w.r.t. P7, Ilhlfw~de?ot12g the norm in
L (P) - is an element of M. Now jgdP< JgdP leads to a

) P~ the measure which has

contradiction to our assuption. By Hahn - Banach's theorem
(11) implies, that g€ L' (F,,P*). The equivalenceof this
condition to the second condition of (10) is again immediate
from the Hahn-Banach theorem.

xs
Remark 1. a) If (X,4) is a topological space with Borel
o-algebra 4, if M is a closed subset of the set of tight
measures supplied with weak topology (i.e. the topology of
the convergence of integrals of bounded continuous func-
tions) and if g is a bounded universally measureable function,
then by an extension of the Choquet-Bishop-de Leeuw theorem

due to v. Weizsidcker [17] there exists an extremal solution
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P of the inf problem and, therefore, by Douglas theorem
g €L1(F1,§). Proposition 1 states this property for any
solution.

b) If P €M, gGL1 (Py) satisfies J'gdP; = inf {J'gdPR; PeM, P
has a bounded density w.r.t. P*}, then similarly to Proposi-
tion 1, g €L1(?1,P*), where § = g-1 {dP*< w) F = {f.1{ggj<m};
fEF}. For P. « R this is equivalent dReq g€;L1(F1,P*).dR

Proposition 1 can be sharpened under additional assumptions

on F.

Proposition 2. If F1 is a vectorlattice in L%(p ), 1<acgo,
if P eM, geL®(P*) and [gdP™ = inf {fgdP; PeM(P*,s)} then

(12) gEELa(F1,P*) - the closure of F1 in La(P*) - for

o< ® resp. w.r.t. weak *-topology for a = o.

Proof. We only consider the case a = «; the case 1<a<» is
similarly proved. By Proposition 1, g<§L1(F1,P*) and, there-

fore, there exists a sequence (fn)C:F1 with lim fn = g[P¥].
n->oo

If |g| <K [P"], then (£, AK) v (-K) €F; (a denoting the
infimum, v the supremum), and, therefore, w.l.g. [fn|§ K. So

for all hEEF# = {h'e€ L1(P*)7 ffh'dP* = O for all feF,} we

have by the theorem of majorized convergence O = lim jfnth*=

hdP , implying by Hahn-Banach's theorem that ge L (F.,P").
g Y Y 1
I

We now consider the following speciﬁl case. Let Ay <A be sub
o-algebras, 1< isk, and let F = {i§1fi; £, €B(X,4,),
1< i<k}, where B(X,Ai) are the bounded Ai—measurable

functions. Then M is the set of probability measures with

marginals Q; = Q/Ai, 1< i< k. (Equivalently, we can take
k

F=1{2 f.; £f,€1%(Q,4;) 1sisk}, 15as». We shall use
i=1

the following two assumptions:
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A1) (X,Ai,Qi), 1<ic<k, are compactly approximable, i.e.
there exist compact set-systems Eic:Ai with Qi(Ai) = sup
{Qi(Ei), EicAi, Eie Ei}, 1<icgk.

A2) (X,4) is a topological space with Borﬁl c—-algebra 4 and

k .
R = R(ig1Ai) - the algebra generated by 121 Ai - contains a

countable basis of the topology.

Let H denote the uniform closure of the set of finite linear

combinations of characteristic functions of sets in R.

Theorem 3. If g€ H and A1) holds or if g is bounded upper -
or lower - semicontinuous and A1), A2) hold, then

=}
Il

inf {gdp; pPe M}

(13) k

k
sup {i_§_1j'fiin; £,€B(X,4;), 1£isk, 'Z1fi§g}
=M 1=

Proof. The proof follows the lines of the proof of Theorem 5

in [13], observing the following facts:

1) Unter A1) each finitely additive set functﬁon P on (X,4)

with P/4; = Q 1< i<k, is o-additive on R(.U, 4.).
i

i’ i=1 1

2) Under the conditions A1), A2) each regular bounded
additive set function P on (X,4) with P/Ai = Q- 1<ic<k,
is o-additive (the regular bounded additive set functions are
the dual of the space generated by bounded semicontinuous
functions) .
hx(

For the existence of solutions of the dual problem in (13) we
need some fErther conditionﬁ allowing to bound a sequence

(n) _. (n) (n) *
£, with .2 £/7 <g and i£1ffi do; »m. Let P° be an

i=1
optimal solution of the inf-problem in Theorem 3, then we
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121 fin)IdP*->O and, therefore, (for a

clearly have Iig -
subsequence) i§1 fin e-g[P*]. The following lemma gives a

sufficient condition to imply that g€ F.

Lemma 4. Let 1sase, £ er® (P,4;), 1sisk, neN, and
ge 1% (P,4) such that I .(n)+g [P].

If Jlfin)l dP< K for 1<ac< o, ]f(n)["K for o = », and
{f(n)} uniformly P—lntegrable and bounded for o = 1, then
there exist fle L*(p, Al), 1<isk, with g = 121 fi [P].
Proof. 1) a = 1: Since {f( ), ne N}, 1s<isk, are uniformly
integrable and bounded, {f(n), ne IN} is weakly sequentially
compact in L1(P,A). Therefore, we can find subsequences and
£, € L1(P,A) such that fin)

Since the weak and the strong closure of convex sets are

> fi w.r.t. weak topology, 1< ic<k.

identical there exists a sequence g, € con {f(n), ne nu}
converging strongly to fl so we may assume that f € L (P,4

o . ih
1<1is k. Furthermore, J(, 21 £, - 21 £,)hdP~ O for all
heL (P A). Since by assumption .21 .n) converges to g in

1=
L1(P,A), we have g = ¢y £. [P].

i=1 1

2) 1< o< «: The proof is similar to the proof of 1) observing,
that bounded subsets of L%(P,4) are weakly sequentially

compact.

3) o = o {ffn); n€ N} are weakly compact subsets of L1(P,A)
and, therefore, by 1) g = 21 fi [P] with f € L1(P A. ) Since
9p of the proof of 1) are bounded by K, clearly also |f < K.
)1{
Remark 2. a) F = {ig fi; fiE L1(Qi'Ai)’ 1<ic< k} is gener-
ally not closed in L (Q,4) as is shown by an example due to
LindenstrauB [10] in the case X = [0,1]2, 4= an [0,1]2 and
Ai are the o-algebras generated by the projections L
i=1,2. So fi(x1,x2) = fi(xi) in this case. Therefore, the

proof of Corollaries 3.1, 3.2 of Csiszar [3] ( a generaliza-
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tion of a result of Sinkhorn [15] and Hobby, Pyke [6]) is
not correct in the general case. (A referee has pointed out
to the author, that a corrected proof of these results will
be published).

n
b) For (X,4) = ig (Xi’Bi)' a product of polish spaces, and

1
for J1,...,ch:{1,...,n} let Ai be the g-algebras induced by
® . . - .
5€ed, Bj in X, 1s1i <k, Qi QJi the marginals of Q on Ai
and F = {i§1 fi; fi<EB(X,Ai), 151isk}. Then assumptions A1),
A2) of Theorem 3 are fulfilled (with the compact systems
B, = {K, xT X.; K, compact in n X.1.
i i, j i .
If J1""'Jk are pairwise disjoint, then it has been proved
in [5] that in (13) we can restrict to fiEEBK(X,Ai), 1<ic<k,
- the elements of B(X,Ai), which are bounded by a suitable
constant K - and, therefore, by Lemma 4 there exist solu-

tions fT,...,f; of thekdual problem of Theorem 3 and are

characterized by g = i£1 fz [(p*]. 1f Jqyr+-.,J, are not pair-
wise disjoint but if there exists a subset Jc:Ji such that
Ji\J are pairwise disjoint, then the same argumegts yield
the possibility to restrict to BK(X,Ai) (arguing for the

X7 sections of fén) separately). If e.g. n =5, k = 4,

Jq {1,2,31}, J, = {2,3,4}, J; = {2,5} and Iy = {2,6}, we
can use J = {2,3} and, therefore, have the existence of so-

lutions also in this case.

3. Minimum discrimination w.r.t. @-type divergences

We now consider ¢-type divergence measures as defined
in (5). We consider at first the case of differentiable ¢,
then the case of xa—divergences, 1sa<eo, and finally remark

on certain similar distances.

3.1 The differentiable case

Let o (O,°°)-9-R1 be a continuous, strictly convex and dif-

ferentiable function and call an element P* of a convex
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subset M' of M a I(p—projection of R on M', if IQ(P*]R) =

inf {Iw(PlR); PeM'} (note that Iw-projections P* are unique-
ly determined, if Iw(P*lR) <® and M'<M(R). For certain
existence results on the corresponding J(p—projections cf.
Liese [9]. Remember the definition of ?"1 in Remark 1. b).

Theorem 5% Let M'cM be convex, let P*EM' satisfy Iw(P*|R) < o
, AP 1,.%
and ¢ (—-dR ) EL (PR) .

a) P* is the Iw—projection of R on M' iff

* *
dp dp dp
V(= _ - == ]
Jo (dR ) (dR : dR) dR< O for all PeM'NM .

b) If P* is the Iw—projection on M, then

*

. ap
©' (g 1{dP*
aR

c) If P* is the Im—projection on ﬁ, then

*

. dP 1 ,~ *
<p(———dR) 1{dP*<m}eL(F1’P)‘
drR N
* o~ , 4P * . .
d) If P €M and ¢ (c_l—R_) € F, then P is the Iw—prOJectlon

Proof. a) For PeM NM' and o€ [9,1] define
1 ap ©  ap ap
h= =3 (@(aaR— + (1-0) aﬁ) -(P(aﬁ—)) . For at 1, h converges

o1 ar*. ap* 'ap

monotonically nondecreasing to o' (dT) (ﬁ— - a'ﬁ) and, there-

fore, by,the monotone convergence*theorem (using *
dp dp 1 dp dp dp
haZ@(aﬁ‘—) (D(aﬁ)), =T I((D(OLER—' + (1-0L)ﬁ) -(D(dT)) dr

converges mopotonically nondecreasing to

Jor ) (& - & ar.

If P is the I(p—projection on M', then the left hand side is
< O for each o, which implies, that also the limit on the

right hand side is < 0. If, conversely, the right hand side is
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< 0, then by the nondecreasing property of ha we have that
* .
IhodR = - (Iw(P]R) - Iq)(P IR)) < [ (1lim h,) dR<0;

ice. I, (P|R) 2 Im(P*IR) ) atl
b) Since [o' (g%i)%%j dr = fo' (g—g—*—) 1{(22( w}dP* and for
dr
p« P {g—g<m} = {%IP—;<00} u {g—§= 0}, we have
fo' (gi—*)% dr = feo" (%gj) 1{(1_P< m}dP = [o' (-g%j) 1{dp*< w}dp'
dr dr

Therefore, b) follows from a) and from Proposition 1).

c) follows similarly from a modified version of a) and from
Remark 1, b).

*
d If P EM and o' (%%—) €F, then

* * * *
-, 4P ,dP _ , 4P * _ , (4P _ , (4P, dP
Jo' (g0 g 4R = Jo' (3g-) dpp = Jo' (Gg) dpp = Jo' (3g7) gg 9R-
Therefore, d) follows from a) (in the modified version for
subsets of M.

g

Remark 3. a) If ¢©(x) = x log x and M' = M(R), then Im(P|R)
is the Kullback-Leibler distance and condition a) says:
P*GEMw is the I-projection of R on M iff

* *
J log g%— ar* = inf {J log %%— dp; PEEMQ} or,
(14) equivalently

I(P|R) 2z 1(P|P¥) + I(PT|R), for all PEM,.
This geometric property of the Kullback-Leibler distance was
proved by Cziszar (3], Th. 2.2. Note that the MDIT (3) and
its converse (4), therefore, are consequences of Theorgm 5, d)

resp. Theorem 5, a) and Proposition 1 (with g = log %%—).
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b) A special case of part d) was proved by Perez [11],
Lemma 2.1.

c) Sufficient conditions for the Iw—projectign on M (and not

. , (dP
only on M(R)) are not easy to give. If ¢ (aﬁ_)1 ar* p
ar <~'ar <!
€F for all PEM@, then P* is a Iw—projection on M.

But this condition seems to be difficult to verify.

3.2 X?—divergences

We next consider an important class of not necessarily dif-
ferentiable functions, namely @(u) = l1—u]a, 1< a<», and
denote I (P|R) = Iw(PlR) = Il%% - 1|%aR. The I ~distances
have been introduced in literature under the name Xa—diver—
gences by Vajda [16], who investigated several interesting
properties of I,-

Consider at first the case a = 1; then I, is the variation

1

distance between PR and R. Define

1, if x2z 0

sgn(x) = { .
-1, if x<O

*
Theorem 6. Let M'c™ and P* € M' satisfy P*{%%~ = 1} = 0, then

a) P* is a I1-projection of R on M' iff

* *
[ sgn (1 - g% (g%— %%) dR2 0 for all PEM".

b) If P*GEM(R), then P* is a I -projection on M(R) iff

1

ar”
ar

c) A necessary (sufficient) condition for a I1—projection on

*
P*{%%—-§1}2P{ <1} for all PEM(R).
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* *
) 1 gpx eL'(F,,P)(sgn (1-SE)€F)
gr <!

dap

M is sgn (1 - ar_

d) A necessary (sufficient) condition for a I1—projection on

M(R) is 1 ,o% e’ (r,,P*) (eF).
€GBT 4y !
drR ~
Proof. a) Let E = %% ; PeM'}; then E is a convex subset of

L1(R). By Theorem 1.1 of Singer [14] (pg. 360, using the
equivalent conditions 1.2, 1.7, 1.8) P*eM' is a I1—projec—
tion of R on M' iff there exists a he L”(R) with

Q) Ihll, =1,

ar* ar”
2) f(1-d——-R)hdR=j|1-d—R |dR and
ar* ar ,
3) I(—dR - 3g) hdRz O for all PeM'.

Conditions 1), 2) are equivalent to |h| <1 [R]and
1 < 1

.. dp*

h(x) = { if ar_ [R] or,

-1 > 1
equivalently, using our assumption on P* to h(x) =

dp
sgn (1 - aﬁ— [R].

| ap*

b) Using the relation sgn (1 - ") < 2:1 gp* -1 the

proof of b) is similar to that of a).

¢), d4). The proof of c), d) is analogical to that of

Theorem 5.
I

Remark 4. The proof of the sgfficiency parts of Theorem 6 did

not use theassumptiong* ae_ _ 1} = 0. Furthermore, as in

dp dR 1 *
Theorem 5, sgn (1 - Fp=) 1 4p* €L (F,,P ) is a necessary

{gr <=}

condition for a 11—projection on M.
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A sufficient condition can also be given for the variation

. - dP dRrR
distance J, (P|R) = Hﬂ - d—)\ldk, where P <« )\, R<«< ).
Theorem 7. Let P' €M with 1 ar* € F, then P* is a J1-pro-
jection of R on M. {dR z 1} '
Proof. For PEM, J,(P|R) = 2(P(A) - R(A)), where A = {(§Ez 1},
If 1 ap >1}EF, then
drR =~ %
* _ * . dP _ dp |
J, (P [R) = 2(P {—dR > 1} R{—dR z21})
apr” ap”
= Z(P{dTg 11} — R{dR >1})
< 2 sup (P(A) - R(A)) = J, (P|R),

Ac

for all PEM.

For the case o> 1 let M, = {pewmM; IQ(PIR)< w},

M, = {pemM; I, (P(R) < o}, .

Theorem 8. If 1< a<w® and P* € M' where Ia(P*IR) <o and M' is

convex, then

a) P* is the Ia—projection of R on M', iff

* *
f sgn (1 - g%—)]dL - 1|°L_1 g—g - %) drR=> 0, for

dRr
all peM' nMa'

b) A necessary (sufficient) condition for a Iq—projection

on M is
a
dp dp a-1 1 *
1{dP*<m} sgn (1 —dR)I———dR - 1] €L (F1,P)
dR * *
dp dp a=-1
(sgn (1 - aw )l———dR - 1] EF)
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c) A necessary (sufficient) condition for a Iu;projection on
M(R) is for PeeeM(R), |g§— - 1|°‘_1 sgn (1 - QELJ eL1(F1,P*)

dr
(€ F).

Proof. The proof of Theorem 8 follows from that of Theorem 5.
Alternatively, we can also use Theorem 1.1 of Singer [14],

*
pg. 360 implying, that P €M' is the Ia-projection of R on M',

iff there exists a h ELB(R), % + % = 1, such that
1) bl =1,
* *
2) f - $ har = |1 - $-||  ana
*
¢, dP

e _ dP ' = (9B,
J(dR dR) hdRz O foz all PeM nM, (we use E = {dR’
PEM', I (P |R) < »} =L (R) in this case).

3)

Observing, that the only element he LB(R) with 1) and 2) is
given by '

ap*

dp* ap*
dR a

sgn (1 - =) /(]| 1 -

_ dP*’a—1
ar

dR

a=1

h = |1 )

we obtain a).
hu
Remark 5. Similar results as in Theorem's 5, 6, 7, 8 can also

be given for certain related distances.

'
Let e.g. D(P|P') = fw(%% - gg—) dR, where ¢: R' + R is con-
vex, differentiable or o¢(u) = |u|? 1 €a <, and the integral
is assumed to exist. Necessary (sufficient) conditions for a

D-projection of B’ on M are in the case of a convex, giffer—

- . @B _ et TE %) (o (GBS _ 4B’
entiable ©,® (dR 3R ) 1{dP*< m}e L' (F;,P) (o0 (dR iR )
dR
€ F), while for ¢(u) % Iulu the corresponding conditions are
_ dp dp _ dp',a-1 1~ *
1{ sgn (1 N )IdR IR | eL (F,,P¥)

o}

*
ar *_
dr
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- dap' o-1
(sgn (1 - 3R )|dR ar |

EF).

4. Remarks and examples

1) We did not use essentially the assumption, that R is a

probability measure. So e.g. with R = )-the Lebesgue-measure

on (R1,B1) - our results allow to determine distributions in

dap
a dP. The

results of section 3 also hold true for projections on % -

M with maximum value of the entropy H(P) = -[log

the set of all signed measures P on (X,4) with [f 3g 9R =
ff dR, f € F. For general dlvergence type dlstances it is
ea51er to find projections in #° than in M. The Kullback-
Leibler dlqtance is an. exceptlon, since the necessary condi-
tion 1n g%— =g [P 1, g€ L (F1,P ) leads automatically to a
nonnegative density exp(g). The same is true for differenti-
able ¢ with (0') ' (£) 20 for all f€F.

Note that our results give lower bounds for the considered
distances, even if there does not exist a nonnegative density

satisfying the conditions of our Theorem's.

2) Let F = < f1""’fn > CIJ(Q), where f1""'fn are not
linearly dependent w.r.t. Q, then F is closed w.r.t. L (P)
for all Pe M. M is the set of all probability measures with
given moments Ifde = ay = ffde, 1< j<n.

a) If X = R", R=N (a,Z) - the normal distribution with
n

nxn

mean a€ IR° and covariance I € IR - and F = < 1,Xx.,X.X.

3%y’
1€ i, jsn > and if Q has mean b and covariance VY, ;hen the
dp
ar € F-
Similarly, N (b,0) is the distribution in M (with mean b and

I-projection of R on M is P¥ = N (b,), since 1n
p

covariance V) with maximum value of the entropy H(P) =
fin &

measure.

5 dp, Pe M, where A is the n-dimensional Lebesgue-

b) Let R be the restriction of A" on [0,«)™ and F = < 1,x.;
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1sisn> cL (Q, B [0,°°)n) . Let Q have first moment vector
b >0, then p* = 1?1 Pb._ where Pb. is the exponential dis-
tribution with mean + bi-—is the® I-projection on M, i.e.
P* has under all distributions on IR? with mean b >0 the
maximum value of the entropy.
c) If R is the restriction of )\1 on [-M' /M'],6 M'E€ IR1 , and
F s © 1,x >, then tlrlle I—projectior'x on M'is g;;Lven by
g_g_ (x) = (M'—a)e(M —a)x( M'-a)M'_ -(M'-a)M )y,

fxdQ (|a| <M'). If we use a Xz—dlstance I,(P|R) =
J'(dR - 1) dR, P€M2, we obtain from Theorem 8 the projection
dap*

a 1 3a . M' .
IR (x) = ot ~—— %, on M(R) (assuming |a]| s < in order
to obtain a nonnégative density) and have the relation
MI
* _ * r 3a 2 * . s s
I, (P IR) = I,(P_|R) +_NJI.(2M'3 x) “dx 2 I, (P_|R), which is in

tuitively obvious.

3) Let Ayc A be a sub o-algebra of 4 and let Q/A <«< R/A and
F = L (Q Aq ). Then M is the set of all exten51ons of Q/Ao to
the larger o-algebra 4. In this case F is a closed subset of
1(P,A) for each Pe M. Clearly, M is closed w.r.t variation

distance. Therefore, a I1—projection and the J(D—projections

exist, if lim %—u) = o (cf. Liese [9]). Let
% _4dQ/4g %
(15) P (A) J dR, A€ 4, then P € M(R) and
a 9R/4,

by Thegorems 5, 6, 7, 8, p* is the I-projection on M (since

dp
ln arn
p" €M, (since sgn (1 - )I

€F), the I —prOJecglon gn M(R) for 1< a< o with
1 Te (g, 4) = F). It
is also the projection on M w.r.t variation dlstance J

1
(since 1 ap* € F) and, finally, it is the projection on

M(R) £or all dlfferentlable divergences J‘O with M* @ (since
o' (dR ) EF). So P is 'universally' the best approximation

w.r.t all considered distances. Some related results and the
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statistical consequences were developped by Plachky, Riischen-
dorf [12].

n n
4) Let (X,4) = I, (X;,4;), let F = {.151 fi(xi);fieL1 (Q;, 40},
where Q are marginals of Q. Then M is the set of probability
measures with given marginals Q1,...,Q If e.g. R 3 191 i
R, eMm’ (X;,4;), then the I-projection on M is p* = 189

A 51mple dlrect argument shows for Pe M with I(P|R)< = (cf.
also (14)).

n 1'1
(16) I(P|;8 Rz I(P], @ Q) + I(8 oy @ R,),

i.e. w.r.t. Kullback-Leibler distance for a given measure P
the closest product measure is the product of its marginals,
a property which is ueually not true w.r.t. dlvergence type

measures. If we use a Y —dlstance (with ©(u) = (1-u) ) and if
we assume, that there exist oy 20, 121 oy = 1 with Qi = (uifi +
jii u.)Ri, then the Iz—prOJectlon is given by the mixturg

p¥ = i£1 o, Ry 8 ... ®fiRi® ...n® R . Therefore, w.r.t. X -dis-

tgnce the measure closest to i§1 Ri with marginals Qi is not
i81 9

If n =2, X, = 1,...,m}, X, = {1,...,2} and R = (Wij) and

if Q = (q ) with q; = p;. 9.5 = 5
following condltlons for projections p 3 on M.

’ then we obtain the

*

a) rFor I-projections: {ﬂ . s 0} 1:] = ay b. is necessary and

sufficient (only an 1terat1ve solution of this equation is

generally known) .

*
P, -
. . . N s
b) I,-projection on MR) = T 5o} 7o a, + bJ is
sufficient, where ai'bj are soiatlons o% Py = @ ﬂl +

i
§ bjﬂij' d4y = % a;mi; + bjﬂ.j’ 1si<m, 1s3<q.

c) For J1—projection a sufficient condition is that {(i,3j) :



L. Riischendorf 281

*

pijznij}e{lxxz, Xy xJ; IcX,, chz}.

5) For A1,...,An€ A, n< o, let M be the set gf al% distribu-
. . _ _ . dp _

tions P with P(Ai) =4q; = Q(Ai)’ isn. If I® - iﬁ1ai1A. +ag

and P*GEM, then P* is the X —projection on M(R) and the’
projection w.r.t. total variation distance on M. The condition
P*(Ai) = qi,T £ 1i<n, can be solved explicite%y in several
c%ﬂ?s - e.?. for disjoint Ai,1 £i<n, with i21Ai_= X.,ai = ‘
RGAT while for several further cases one can give iterative
solitions.
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ful consideration of the relation between I- and J-projections.
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