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1. I ction

The classical Black-Scholes option pricing formula deals with a
continuous market model with two assets; one risky asset, the stocks
with a stock price 3(1 modelled by a geometric Brownian motion, and one
non-risky asset - the bonds with price Xf = Xg exp(rt), r a discounting
factor. A trading stategy {(portfolio) of an investor is given by
<I>t = ((ID(:, @i), @S describing the amount of bonds held at time t, (I)t the
amount of stocks. The value of the portfolio at time t is given by
V, =2X0+ o X].

The value of a (European) call option B = (X_lr—K) . (T is the ex-
piration time, and K is the striking price) is derived in the Black-
Scholes model in the following way. There exists a "hedging” strategy
® with constant cost Ct = n, in other words, thetcorresponcling value
process satisfies V_= (X_ll_—K)+= B. and with It:=g <I>gdxg +cf) @i‘dXL,
describing the investment until time t, the cost process Cr. = Vt - It =
is constant over time t. Then m is the Black-Scholes value of the call

B. © can be explicitely calculated (using simple stochastic calculus),
(1.1) m=f(X],T),

where f(x,t):= x ®(g(x,t)) - K e ™" ®(g(x,t) -6¢yT) and g(x,t): = [log % +

(r + -;— s2)t] /ov/t, ® is the standard normal distribution function, and

62 is the diffusion parameter in the geometric Brownian motion. For this
derivation of the Black-Scholes formula we refer to Merton (1973), Cox
and Ross (1976), Smith (1976) and for some extensions see Fdllmer

and Sondermann (1986).

Cox, Ross and Rubinstein (1979) introduced a simple discrete bi-
nomial pricing model for the price of the stock. The time interval
[0,T1 is divided into n steps, T = nh. In each step the price S moves up to
u S with probability q down to dS with probability 1-q; here the up’s,
the down's and the interest rate r are constants, d < r < u. A suitable
choice of the four parameters u, d, q, n leads in the limit to a log normal
price model. The binomial pricing formula for a call B = (Sn - K)_ is now

based on the same hedging (arbitrage) idea as in the Black-Scholes



model. For the Cox, Ross, Rubinstein derivation of this formula assume

in the first step that n = 1, that is, there is only one time period. The

value of the call C at the end of the period is either Cn or Cd,

(1.2) 5 C,=(uS-K), with probability q

1.2 C .
\‘Cd=(dS—K)+ with probability 1-q

Consider a hedging strategy (A,B), that is, the value of the portfolio

changes as

/7AuS+rB-!‘-Cu with probability g

(1.3) AS+B ' ;
\>AdS+rB'=Cd with probability 1-q

S is the initial price. This equivalent portfolio determines the value of

the call
(1.4) C=AS+B.

It is easy to see that any other call value leads to riskless arbitrage

opportunities. From (1.3) we obtain

_ Cu-Cda _ qu—dCu
(1.5) a= (u-d)s ’ =~ (u-d)r
and
. -d
(1.6) C=—1;(pCu+(1-p)Cd) with p:= ;_d .

Note that p describes a risk-neutral world
1.7) pnS+(1-p)dS=rS

and (1.6) has the interpretation that the value of the call C is, in fact,
the expectation of the call B w.r.t. the risk-neutral measure (a mar-

tingale measure) p, discounted by r,
(1.8) C=C,=E_(S -K)_ /r; E_ is the expectation w.r.t. p.
This argument can be extended to n-periods of price-movements

until T arguing for each step (starting from (n-1)h to nh = T) as above.

This results in the binomial pricing formula

(1.9) C_=E|(S_- K), /r"=S®(a.n,p’)-Kr "®(a,n,p),

log

e - d, _ r-d f_u _ sd”
Q(a,n,p)-_P(Xn_p-_a), Xn’p- Bn,p), p= wa’ P =7 P a_[—lng_]*'




(€1, stands for the positive Gauss bracket.)

From (1.9) - which is a useful pricing formula in its own right - Cox,
Ross and Rubinstein (1979) derived (with their particular choice of pa-
rameters) the approximating Black-Scholes formula (1.1) in the limit.
For a special second choice of the parameters they also obtained the
Cox and Ross (1975) option pricing formula for the Poisson price pro-

cess.

In the first part of this paper we characterize all possible limits
of the Cox-Ross-Rubinstein model and the corresponding approximate
pricing formulas. In the second part we consider an extension of the
binomial model based on a randomization of the number n of price
movements until the terminal time T. This leads to a richer class of
possible price models including, in particular, the stable (Paretian)
distributions with index 0 < « < 2 and the geometric stable laws. This
is an important extension since it has become evident from empirical
work of Mandelbrot (1963, 1977), Fama (1965), Teichmoeller (1971), Of-
ficer (1972), Hagerman (1978), du Mouchel (1971, 1983) and Mittnik and
Rachev (1989) that stock return distributions with fatter (than the
normal law ) tails lead to better fits of the stock price data, see also the
example at the end of this paper. For this extension we determine a
pricing formula based on similar ideas as described above and we cal-

culate explicitely several examples.

In the third part we propose a second modification of the bino-
mial model which is based on a randomization of the up's and down's
in the binomial model. This modification allows to deal e.g. with Wei-
bull distributions providing a very satisfactory fit to return data - cf.
Mittnik and Rachev (1989). A more detailed analysis of the pricing
formula in this model is given in a subsequent paper by Rachev and
Samorodnitsky (1992). We remark that some of the results of this pa-
per have been announced (without proofs and examples) in Rachev and

Riischendorf (1991).



2. Limits of the Binomial Option Pricing Model

Let S = SO be the known stock price at moment t = 0, let t be
the length of calender time representing the expiration of a call. In
the binomial option pricing model t is divided into n periods of length h,

t = nh; at the end of each period (k, k + 1) the value S, . is equal to uS,

1
with probability p and to dSk with probability q =1 - p, 0 < d <1 < u.

Therefore, with U = log u, D = log d

n
(2.1) log (Sn/S) = k§1 Xn.k’
where
(2.2) Xn,k=Cn'kU+ (1- Cn'k)D

and ( are iid Bernoulli with success probability p.
n,k

We assume that u, d, p are functions of n (resp. h) and consider
the class of possible limits of (2.1) in the class of all infinite divisible

distributions (ID), assuming that

(2.3) lim U=2%, lim D=-y, Xz20, pz20,.
n-» <o

n- o
(We omit the index n in U = U(n), D = D(n), p = p(n), if it is not ambigous.)
Cox, Ross and Rubinstein (1979) considered the special case U=06Yt/n =67h,
D = -6/h to obtain normal limits and U = U(0), D = -ch to obtain
Poisson limits for (2.1). The following different cases arise in this way:
Case (1): A=u=0;

Case (2): 0<A <, u=0;

Case (3): 0<A<, 0<yu<w;

Case (4): A =0, 0<yu<w;

Case (5): 0<A<ow, U=oo;

Case (6): A=w, 0<t<wm;

Case (7): A=0, u=w;

Case (8): A=, u=0;

Case (9): A=, U= .

To investigate the limit distributions of (2.1), we assume that the

Xn k's satisfy the uniform asymptotic negligibility (UAN) condition: as

n- o (i.e. h=% 5 0)
n



(C.1) max P(}X j2e)>0 for all €>0.
1<k=n n.,k

*

In Case (1) (A = u = 0) (C.1) is satisfied. This follows from the follow-

ing equivalent form of (C.1)

2
x
(2.4) ,max f1+x2 an'k(x)—a 0,
where F is the df of X .
nk n,k

In Cases (2) and (8) (0<)A <, £t=0)
(2.5) (C.1) ® p-0.
In Cases (4) and (7) (A =0, 0<y < w)
(2.6) (C1) & q- 0.

In the other cases (0 ¢ A £ ®, 0 < g £ ») (C.1) does not hold. This can

be seen from (2.4) or, equivalently, from

2 2
u D

. 0 .
(2.7) p Tus +q o7 - as n - o

So from now on we shall investigate only the cases 1, 2, 4, 7, 8.

Our main result of this section shows that the only possible in-
finitely divisible (ID) limits of the binomial model (2.1) are the normal,
the Poisson, and the degenerate case. This "characterization” theorem
confirms the completeness of the results in the classical paper of
Cox, Ross, and Rubinstein (1975) who obtained these limits for very
particular choices of the sequences U, D, p. Moreover, we additionally

determine all possible choices of U, D, p leading to ID-limits.

Theorem 2.1. a) Case (1) (A = u = 0). The only possible ID limit

distribution of log Sn/S in this case is the normal distribution. We

have:
(2.8) 2 (log (S_/S)) N(a,02)

if and only if

_ _pPaR pqR
(2.9) n{(qD + pU 1+ p2RE + T oPR? ) «
and
2 2 2 2
(2.10) n(g—RR=_ . pRa” ), 42,

p
l+R2p2 1-'-qu2



b) Case (2) (0 < A < ®, u = 0). The only possible ID limit distribution of
log Sn/S in this case is the scaled and shifted Poisson distribution.

We have:

(2.11) £(log S_/S)—=— b+ ) Poisson (a)
if and only if

(2.12) a=lim np, b=limnD, p-0.

c) Case (8) (A = =, n = 0). The only possible ID limit distribution of

log Sn/S in this case is the degenerate distribution. We have:
(2.13) 2(log Sn/S)—"—"——e o
if and only if

(2.14) o=lim(nD+ 9—3—), p- 0.

d) Case (4) (A = 0, 0 <y < »). The only possible ID limit is the scaled

and shifted Poisson distribution. We have:
(2.15) 2(log (Sn/S))L) b- u Poisson(a)
if and only if

(2.16) a=limng, b=limnU, q-0.

e) Case (7) (O =0, u =
tribution. We have:

). The only possible limit is the degenerate dis-

(2.17) 2 (log (Sn/S))-———“i—a o
if and only if

(2.18) limnU=«, limng=0, q-0.

Proof. The proof of Theorem 2.1 is based on the CLT for trian-
gular arrays of independent r.v.'s subject to the UAN condition (cf.
Loeve (1977), section 23) which formulation we invoke here only as a

reference.

Lemma 2.1. Suppose that (Xn k) is any independent triangular

array of UAN r.v.'s.



a) The family of weak limits of Sl(kg1 Xn ), neN, coincides with

.k
the family of infinitely divisible (ID) laws or, equivalently, with

the family of laws of r.v.'s X with ch.f.

(2.19) (W =Ee™X zexp (iu a+ [ (X -1-IuX 102 g4 (y)),

1+x 2 x
where « €R and ¢ is a df up to a multiplicative constant.

n

b) X X converges to X with ch.f. (2.19) iff
k=1 n.k
(C.2) o -
n
and

(C.3) q;nl) ¢ (convergence in distribution)

where

n p—
. - xX
(2.20) o« := kgl {an,k + f 3 an'k(x)},

. 2 F y2 o=
@2 g 0= B T dF, L O),

a . :=fxI{|lx|<1}dF _ (x), F the df of X
n,k n n.k n

K Kk’ ank(x) =

Fn,k(x + an’k) and ©>1>0 arbitrary fixed. a
For the proof of Theorem 2.1 we have to check that the conditi-

ons stated in our theorem are equivalent to the conditions (C.1), (C.2),
(C.3).

a) Case (1) (A=p=0): For n large enough

(2.22) an,k=pUI{IUl<t}+qDI{lD|<T}=pU+qD=EXn,k
and
X =y = -pR gR
d o (¥ =a 1+p2RZ P 1eqZRZ

which implies (2.9). Furthermore, by (2.21)

(x/R)+p 2 2
(x)=n RGP 4F  (y)
(pn -ofo 1+R2(y-p)2 1Y
~

0 if x<-pR
2,2
=9 nq—RL if -pR=sx<qR
2,2
1+R<p

R2p2 . quz

ngqg —;— np —————— if xz2qR
L 1+R2p2 1+qu2




Since A=uy=0 and, thus R=U-D- 0, we obtain

0 if x<O

2,2 252
limn (q R%p +p R7q ) if x=20
n-co 1+RZ2p2 1+R2q2

(2.23) ¢ _(x)->¢(x) =

iff the limit in the R.H.S. exists.

b) Case (2) (0<A <, u=0): For 1<) and n large enough a_ k=qD
and
(2.24) x 4F =q —kP _, ,_U-aD
f 1+x2 nk 1 1+p2D2 1-'-((,[—qD)2
Therefore
(2.25) (C.2) = n(qD+ —RID_ U-ab ), 4.
= nd 1+p2D2 P 1+(U-gD)2 ”
Similarly,
x-pD
R 2
(2.26) (x)=n _GR+pDI®_ 4E  (y)
q)n —<{o 1+(yR+pD)?2 n1Y
and, thus
( 0 if x<O0
2p2
(2.27) (C.3) = (.]J(X) =4 lim ngq P if 0sx<A
n- co 1+p2D2
lim [nq —R2RZ ., W—gDZ . .
n- o 1+p2D2 1+(U-qD)2

Since 1+p2D2->1 it follows that lim npqu2 exists. Furthermore,

—ap)2
lim np —4792)° - 1im np and, thus lim npZqDZ2=
n- oo 1+(U-gD)2 n- o 1+32 n-co
2p2
= lim ngq —B"D~ - 0, Together, we obtain
n— co 1+p2D2

0 if x<Xx
(2.28) tbn(x)l) P(x) = {

102 rll-i->"olo (np) if x=22Xx

c) Case (8) (A = », u = 0): In this case we obtain for the limiting func-

tion after some calculations
o if x<O

(2.29) Px) = I{Lrgo q)n(x) ={ ,‘,LF‘;O“QPZDZ x>0

d) Case (4) is quite similar to the Case (2). We obtain
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o if x<-u
- 2
(2.30) $ () §(x) =4 lim nq —2-RWT_ if —u<x<0
n n-co 1+(D-pw)2
- 2 2¢12
lim [ng (D-pU) + np q-u 1 if x>0
| > 1+(D-pu) 2 1+q2u?
(D-pu)2 g2
Since lim nq ———=——— = lim ngq , we obtain
n-co 1+(D-—pu)2 n-—co 1+u2
22
lim np —9“%~_ =0 and thus
n-» o 1+q2u2
w o if x<-u
(2.31) (x)— ¢P(x) = { 2
¢n v lim nq —E X = -u
n- co 2

1+u

e) In Case (7) (A = 0, ¢ = o) it is easily seen that

(2.32) (C.2) (pu+-kad__, D-pU ) .
= np 1+q2u? ql+(D-—pU)2 -

Furthermore, (C.3) is equivalent to q;n(x) —2 ¢(x) = lim nq for all x.

Since ¢ is a df of a nonnegative measure, {(x) = 0. o

By Theorem 2.1 we can derive the limiting distribution of the bi-
nomial model. In the next example we shall examine the choice of ap-
propriate parameters U, D, p as in Cox, Ross and Rubinstein (1979),

resp. Cox and Ross (1975).

Example 2.1. a) Let U=6Yh, D=-6yh=-6Yt/n, p=p(n) =

S -, then
(2.33)p%—12— +1 2 70 and E(log S_/S)=n(qD+pU)- a=(logr - L 52,
2 & n o 2

Since we are in Case (1) we must check conditions (2.9), (2.10).

3
(2.34) lim n(gD + pU - qp(q - p) R
d P apla-p (1+p2R2)(1+q2R2)
i -L 52 -
= lim nf(L -1 22 ‘"g Z° _)/n(-6h)
log r -152 ~
+(15+.;_ ° 2 )Yh (5 7h)]
a
= t(log r —1532)=oc.
Furthermore,
~2h 2 152ha2
(2.35) lim(nq 2212 4+ pp 22129 )
a 1445 2hp? p 1+45%2hqg?

432t+-}3- 45%t=52t=02.

i
8
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So by (2.8) we obtain f(log Sn/S)-—-‘—"—-—) N(o,02).

b)LetU=)\,D=—Eh=-Et/n,)\>O,—u—>0,andp=vh.Nowwe are in

— A
= -ut + vt .
1+22 " 1+22

Thus by (2.11) we obtain the shifted and scaled Poissonian case

Case (2). By (2.12) a= limnp = vt, « = lim nD + a

Q(log Sn/S)l) -t + X Poisson (vt).

So in Case (2) there are instantaneous up turns of the stock price (cf.

Cox and Ross (1975), Cox and Rubinstein (1985)).

c) Let Us A=w, D=-vL, v>0, 2 =c-% then by (2.14)
n u n

(-v+c)t
. (|

S —* 5 8Se
n

In the next step we establish the functional CLT's corresponding
to Theorem 2.1. The motivation for the functional convergence result
follows the following general "continuity” approach. If the (discrete)

price process X = (Xn(u))OSu is approximated by a limiting price

=t

process X = (X(u))OSu then under some regularity conditions also

=t’
the pricing formulas for Xn should approximate the pricing formulas
for the limiting process X. This “"continuity” argument is underlined in
e.g. the development in Cox, Ross and Rubinstein, where it is shown
that the pricing formula for the binomial process converges to the
Black Scholes pricing formula for the geometric Brownian motion. A
general result of this type seems still to be missing in the literature.
We shall not elaborate on this question in this paper, but concentrate on
asymptotic approximations for the valuation formulas. We use the

limiting price model to argue that our results might be relevant also

to the limiting (continuous) models.

Recall that Xn = cn_ku + (1 - Cn,k)D’ where (Cn,k) is an iid se-

.k
quence of binomials B(1,p). Define the centered random variables

— d
{(2.36) Xn,k=xn,k—an,k = Xn,l—an,l’

where a_ | = FxI{ix]< 1} dF_ | (x) for 1> 0 suitably chosen and define

(2.37) Sn'k=Xn'l+...+Xn’k.
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Consider the DI[0,t] valued random process

(2.38) X (=S  for XL cv ¢k qck<n, X 0)=S
n n t

n,k n n n,n

where t is the fixed expiration time.

Theorem 2.2. (Case (1) (\=u=0). If v=1lim npqR? P_q
- 1_2—. u L.—E__- n Pq (l+p2R2)(1+q2R2)
and oZ=1lim npqR exist, then X_n—""—) X, a Wiener process

n  (1+p2R2)(1+q2R2)
with
E X(u) =v% , Var X(u) =02% .

If additionally na > a, then the non-centered process Xn(u) =

n,l1
X (u)+[ Yla 1L> X, a Wiener process with

(2.39) EX(u)=<x‘—:— , a=v+a, Var X(u)=52u.

Proof. We introduce for the general process X_n as in (2.38) the

following notations

(2.40) v.-nf’r" dF_ (x),F_ (x)=F_ (x+a_ )
n n,l n n

—oo 1+Xx . » ,1 .1

and

dF ().

(2.41) b (0=n ] L

e 1+y2

and consider the conditions:

(C.2) v >V
and
(C.3) (l)n—lv———a ¢.

The proof is based on the following functional central limit the-
orem (cf. Gikhman and Skorohod (1969), Th. 2, p. 480) corresponding

to Lemma 2.1 after centering.

Lemma 2.2 Under conditions (C.1), (C.2), (C.3) the process Kn
converges weakly in D[0,t] to a homogeneous process X with indepen-

dent increments and characteristic function

(2.42) E el#X W) =exp (2 [idv+ T (e1®% - _i8x ) 1ex? “'" d¢(x)1),

- 1+x2 x
O<ucx<t. a

Our next step is to check the conditions in the above lemma.

By (2.22) a =pU +qD =E Xn * for n large enough. Furthermore, as

n,k
in Example 2.1. a)
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x g 3 -
V. =n dF  _(x)=npgqR P-4 >V,
n=nd 1+%2 n.1 P (1+p2R2) (1+q2R2)

and by (2.23)
q)( ) = { o if x<O
X1= 62 if x=0 ’

where
p2R2 . q2R2 ) = nquZ _ 2.

im
1+p2R2 p 1+q2R2 n  (1+p2R2)(1+q2R2)

lim n(q
n
Thus by the functional CLT, Lemma 2.2, fn —*, X, X a Wiener pro-
cess with
EX(w=v2, Var X(u)=o? 2
as desired. o

Note that Xn is a non-centered partial sum process

k k-1 u
L Xnj TH TS

(2.43) X (u)= {F‘
n log S,7/S, us=t

In the Cox, Ross and Rubinstein model U=6Yt/n, D=-6Yt/n, a _=

k
~2 n,
= n X = -2 _ m.!_ .!.. x
EXn'k-qD+pu~n,oc (logro > )t, we have p Y3 = t/n,
v=0, 62=52t. By Theorem 2.2, therefore,
(2.44) X, - 5 X,

where X is a Wiener process with
(2.45) EX(u)=2%  Var X(u)=52u.

We next examine the cases (2) and (8) in the following remarks.

Remarks. a) Case (2) (0 <X <w, ¢ = 0) In this case (for 1<) a = qD,
v :nq_E_D_ +np.___.‘:l‘_:32__...._) a

=v, where a= lim np, and

n 1+p2D2 1+(U-qD)2 1+22 n-co
o, if x<Xx
(l)n(x)—> P(x) = { 32 . Thus,
——, if x> X
1+22
(2.46) X X

a homogeneous Poisson process with

(2.47) log Ee® XM =B i5, 2 Lae™-1n1.
t 1+>2
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In the Cox and Ross (1975) model U =), D=—E{'—l , pP=V t;, we have
a_ = qD =~ -u % and a=lim (np) =vt. Thus X has the characteristic

function

(2.48) log Ee@XM™ = yyuripg 2 + (" - D1,
1+>2

b) Case (8) (A=w, u=0) a_, =qD and

2.49) X (W-oXw $al,
n t

where « = lim [nD + % ] (see (2.14)). Consider again example 2.1.¢). Then

U- A=, =c%,D=-v% and a=-vt+ct and so

clo

(2.50) X(uw) =(c-v)u, O<ust
(degenerate case).

c) Let W= (W(u), 0 < u < t) be a standard Wiener process. Then in Case

n
(1) (A = u = 0) suppose that k§1 a =mna —>a(am1 = EXn‘l). Then

(2.51) X (=X (W+—t"— na Y% Xuw=a2 +57yZ W(u
n n n n,1 t t

:au+oWlu),

where a = ?a, 6= o-/%. In other words the limiting stock price at time u

Xplu)
—_—

(252 S _(w=Se S(u)=§eX W & 5durdWw,

By Ito's formula S(u) satisfies the stochastic differential equation
(.53 dS(w = S LG +Z2)du+§ dW(w).

In the Cox, Ross and Rubinstein (1979) model a =log r_- :12— 52,5 =o0,

and thus in this case

(2.54) dS(u) =S(u) [(log ro)du+5dW(u)]. o
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3. Convergence of the Binomial Pricing Formula
In the binomial option pricing model (2.1) the value Cn of a call

B = (Sn - K), is given by the option pricing formula (cf. [6] and (1.9))
- "y -n
(3.1) C_ =S9o (a_.n.p )-Kr 7O (an.n,p).

n n
~ iy - r log (Kzd™s)
where ®(a_,n,p) = P(k§1 Cpk =2y (&, ) are iid B(,p), a =1 Tog (/D 1.,

[ 1, the positive Gauss bracket, r is one plus the riskless interest rate

over one period of the length h, riskless meaning that

(3.2) pu+(l-p)ld=r, or "equivalently”
- r-d v u
(3.3) PE4—q"’ and p'=_p.

Ifa >n, C=0.
n

If r denotes one plus the interest rate over the full time period

t, then there is the relation
(3.4) r = rz, equivalently, r= r:.

Formula (3.3) can be interpreted as transition to a new "riskless”
measure P* in the sense that (r'kSk) becomes a martingale sequence.

The option pricing formula is then given by
(3.5) C =E*Br 9 =E"Br ™™,
n o

with E* being the expectation w.r.t. the measure P*. The martingale
property of (rk Sk) is equivalent to (3.2), since, if for example k = 1,
E(—S-;I—IS0 =s) =1; (pus + (1-p)ds), which equals s if and only if pu + (1-p)d=r.
In other words, given r, P* is the unique measure such that (Sk/rk) is
a martingale and Sk+1 is either uSk or d_Sk. This property has an obvious
equilibrium interpretation and thus justifies the valuation formula in
(3.1). Cox, Ross and Rubinstein (1979) show that for any pair (r,p) not
satisfying (3.2) there are arbitrage possibilities. They also give a re-
cursive algorithm (based on the knowledge of u,d,n and p resp. r) for
riskless hedging strategies.

Cox, Ross and Rubinstein (1979) obtained the Black-Scholes formula

for the normal case as limiting case of (3.1) (cf. our discussion before

Theorem 2.2) choosing U=5+7h.D=-6+h as in Example 2.1, i.e.

-3 h 1 ~2
o)  permd o r8eT u oy losrenz T g
) u-d eSVh_ -G v 2 2 o )

e o]
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Then in the limit they obtained the Black-Scholes formula

(3.7) c=s<1>(x)—1<r;t<1>(x-8ﬁ),
where
-t
(3.8) x= —2887Kve) 1 5 5
c vt <~

and ®(x) = P(N0 ) Z x), N a standard normal rv. This limiting Black-

0,1
Scholes formula is considered in our context as approximation to the

binomial pricing formula.

Based on Section 2 we next determine all possible limiting cases
for the binomial option pricing formula, assuming again generally that

U-> XA, D> -u. We replace (3.4) by the somewhat weaker assumption

(3.9) lim r®=rt.
[e]

n—> co
Theorem 3.1. (Case (1) (A=p=0))

Suppose the existence of the following limits:

paR_, _paR ,
1+p2R2  1+q2RZ '

(3.10) o= lim n{(gD+p U-
n—» co

o' the similar limit with p, q in (3.10) replaced by

. _ u . . _ d

(3.11) P’=p - q=1-p'=q -,

2p2 2r2
3.12 2= 1y —p"R% ., p R

(3.12) o7 = lim nlq 1wp2rRZ P v qZRZ

and ¢'? the similar limit with the choice in (3.11). Then

(3.13) C_-C:=5d(x)-K r;t’CID(x),

where

(3'14‘) X = log (S/K)"‘O( , Xv= los (S/K)"‘CX' .
a o’

Proof. With log (Sn/S) = (k'z; Cn.k)R+ nD we have ®(a,n,p) =
= P(log (Sn/S) aR+nD). From Theorem 2.1.a), we obtain

2(log (S_/8)) N(o,02).

For somesE(O.l),anR+ nD=log(K/Sd™ +cR+nD=1log (K/S)+¢R- log (K/S).

So by the uniform convergence above we arrive at @(an,n,p)—a P(N0 .2

S —!-9—5—(—121—5:3‘—) = & (x); Ny, 2 N(0,1)-distributed rv'e. The same arguments

apply to get: @(an,n,p')e d(x'). a



- 17 -

We note that by Theorem 2.1 conditions (3.10), (3.12) are also ne-
cessary to obtain normal limits.

r—d

Example 3.1. In the case U=5 Yh, D=-6 /h, p= —5 Wwe have
x=t(log ro—%gz) (cf. Example 2.1.a)), 62=52t and from (3.11)
a'=t(log ro+ 12—52), 6'2=52%¢ and so (3.13) coincides with the Black-

Scholes formula (3.7) in the limit. But note that Theorem 3.1 allows us

to obtain also corresponding formulas for different choices of (U,D,p). o

We next describe the cases leading to a Poissonian Black-Scholes
formula.
Theorem 3.2. (Case (2), (0< X<, u=0))
u

Under the assumptions of Theorem 2.1.b) for U, D, p and p'=p, <1, ie.
a=lim np, b=1limnD and a'=lim np' holds:
(3.15) C »C=SP'(x)-Kr_P(x),
n o
where
P(x) =P (Poisson (a) = x),
(3.16) P'(x) =P (Poisson (a') =z x),
N | (K/S)-b
x:= [~R2B 242770 < 1,,

log (K/S)-b

provided N

is not an integer.
. - _ _ n -
Proof. With R=U-D, a_=[log(K/Sd")/R], ¢(a_,n,p) = P(E Cn,k >a )

= P(log (Sn/S) 3 anR+ nD) = P(log (Sn/S) 2 log (K/8S) + snR), where
€ =a - % log (K/Sd™) 20. From Theorem 2.1.b), log (Sn/S)—‘L) b+ \ Poisson (a),

n n
1 ($,/78)-b 1 (K/S)+e ,R~-b

and thus @(an,n,p) =p (28 ;‘ > 28 X ‘n )> P (Poisson (a) > x)
= P(x) if x= [wh is not an integer. In a similar way one can
consider <I>(an,n,p') and thus obtains (3.15) from (3.1). o

Remarks.
a) If x is an integer and R> 0, z—:n>0 for all n, then in the limit one

obtains
(3.17) C=SP' (x+1) -Kr_"Plx+1).

If R<0, then (3.16) remains valid.
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b) Suppose U =X, D =-yh, p=vh (as in Example 2.1.b)) and suppose

vie*-1) -u>0, then r"= (peu+qu)n - r:, where log r =

vie*-1) -u >0. Moreover,
(3.18) a=limnp=vt, b=limnD=-ut, a'=vte’.
So from (3.15)

(3.19) C=SP'(x)-K r *P(x)

o
with a, a’, b as in (3.18). (3.19) is given in Cox and Rubinstein
(1985), p. 366 (the assumption x ¢ N is missing in this work,

which seems to be a technical gap).

c) Note that in (3.1) C=0 if a_>n. Equivalently, log (K/5) - nD (ﬁst)_“D >n
resp. log (K/S)>nU implies C=0. Therefore, for the analogue of

Theorem 3.2 in Case (4) (A=0, 0<u<w) one should require
(3.20) log (K/S) <b:=1limnU
to avoid the degenerate case.

d) If f is a convex, nondecreasing function on R!, then f has a re-

presentation of the form
(3.21) f(x)=] (x-K), du(K) with a measure y¢ on RY.

This implies that a call of the form B = f(St) has the options

value

(3.22) C(f) = [ C(K)du(K),

where C(K) is the value of the call (Sn - K),. For y bounded one

can approximate C (f) - C(f) by the binomial pricing model. o
n

4. A Random Number of Price Changes

Several recent papers on the distribution of stock price changes
show a large variety of alternative (to the normal) distributions which
fit better the stock price changes data (see Hagerman (1978), Du Mou-
chel (1983), Mittnik and Rachev (1989)). The subject of this section is
to give a simple extension of the binomial stock price model which

gives a large class of alternative distributions for log (S*/S), where
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S* is the price at time t. Let (Nn) be a sequence of integer valued

random times independent of the underlying r.v.'s

d
(4.1) X = cn'ku +(1- Cn.k) D, T = B1,p)
with typically ENn=n and let
» W Nn
(4.2) S =SNn resp. log (S /S)=k‘=z:1 Xn,k'

So we consider a random number of jumps in [0,t], each jump
being of the simple Bernoulli type. For the placement of the jumps we
may think in a first step on a uniform placement in [0,t], so that we
obtain random intervals of constant lenght h = t/Nn. In a second step
we may model the placements (more realistically) by a point process
on [0,t] with Nn points, such that we can identify our price change
model with a marked point process (with independent marks). For the
options pricing formula both models lead to the same result only in
the case of r = 1. In this paper we shall concentrate on the simpler
case with constant inter arrival times h = t/Nn. The idea of randomizing
the time in evaluating stock price change distributions goes back to

Clark (1973) and Mandelbrot and Taylor (1967).

In the same way as in Section 2 we consider the limit behaviour
of log (S, /S), where the constants U = U(n) = log u, D = D(n) = log d
n

are dependent on n and

(4.3) lim U{n)=2X, lim D(n)=-yu.

n-» oo n— oo

In each case we shall assume (4.2), (4.3).

N n
Theorem 4.1. Suppose that T"-——“'——) Y and that X X kL) X.

a) In Case (1) (A\=y=0) holds

(4.4) log (SN /S) % 7,
n
where the distribution of Z is a mixture of normals
_°° loczu-iz—z-uzdp ( )
(4.5) cpz(u) —(J)' e (2

o, 6° as determined in (2.9). (2.10).

b) In Case (2) (0<A<w, t=0) holds (4.4), where Z is a mixture of

Poisson distributions,
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(4.6) o, =(}:°exp (iubz + za(e'™> - 1)dF,,(2)
and a=lim(np), b=lim (nD), a=b+a > _
1+22
c) In Case (8) (A=w, =0} (4.4) holds with
(4.7) cpz(u) = foemuz dFY(z) and o= lim nD.
0 n- co

Proof. The proof of Theorem 4.1 follows from Theorem 2.1 and
the following simple lemma, the so-called "transfer theorem"” which is
well-known from the early works of Robbins (1948), Reyni (1967), Gne-
denko (1970), (1983).

Lemma 4.1. Let (Xn k)kelN be an iid sequence of real rv's and let

N be an integer valued rv independent of Xn o hEN. If as n » ©

n
(4.8) X XX, and

k=1 n.k
(4.9) N /n 5 Y,
then

Nn
(4.10) X -5 Z,

k=1 nk

where the ch.f. of Z is given by

— r z
(4.11) cpz(u)—g (cpx(u)) dFY(z),
Py the ch.f. of X and FY the d.f. of Y.

If Y is ID, then by a remark of Feller (1966) also Z is ID.

Example 4.1.

a) Geometric case. Let Nn be a geometric r.v. with mean n, i.e.
(4.12) PIN =k)=L a-L)kt k=12, . .
n n n

Then Y is exponential with mean 1 and

- 1
(4.13) Pz W) = gt

Since by (4.2) X is ID, the distribution of Z is a geometric infinite di-
visible distribution (cf. Klebanov, Manija and Melamed (1984)).

In Case (1) (A=¢=0) we have
(4.14) 2%z -z,

where (Zi) are independent exponentials with mean a,



2 2 _ 5
(4.15) a = wrdaZazo? o, MW,

o, 62 as in (2.9), (2.10).

For the proof note that by (4.13)

_ 1 - 1 - 1 1
(4.16) <Pz(u) = T-Tog o x (W) o iwas 62;2 1-iuay 1+iuag

= ‘le(“)‘Pzz(‘“)-

The Laplace distribution plays the role of the normal distribution
in the class of geometric stable distributions. Recall that X is stable

with parameters a €(0,2), 6 2 0, -1 <p <1, ¢ €R, if

—c"‘lul"‘(1—1[3(sign«‘})t:::nlIt—zE +igu if a1l

(4.17) lo (u) = {
& qu -clul (1+i[3% (signu) 2njul+ipgu if «=1

1
1-log ¢y (u)

Then Z with <pz(u) = is called geometric stable. The
family of geometric stable distributions seems to fit well the empiri-

cal distribution of log (§*/S) (see Mittnik and Rachev (1989)).

In Case (2) (0<A<w, £=0) the limiting distribution has a ch.f.

1

(4.18) (Pz(u) - 1-iub - (eluXr_-1)a

In Case (8) (A =w, p=0) the limiting distribution is exponential

with parameter o (cf. 4.7).

b) If Nn is uniformly distributed on {1,...,2n-1}

(4.19) P(N =k)=—=t—, 1<k<2n-1,
n 2n-1
then
_1 ¢ z g 1 2
(4.20) (PZ(U) =3 ({ (<PZ(U)) dz = m ((PX(U) 1).

c) If Nn is Poisson distributed with mean n, then Nn/n - 1 a.s. and,

therefore, P, = Py

d) If X is normal distributed, then by a result of Gnedenko (1983), Z

again is normal if and only if FY is a one-point measure. o

Remarks.

a) Note that (4.5) is equivalent to

d
(4.21) Z=aY+N Y,

.G
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where NO o2 is a normal rv with zero mean and variance 62 inde-
pendent of Y. So the density of Z is given by

_ (x-ay)?

< 2
(4.22) f(x)= ——te [ e 2¥°
Z Y2n o2 0

b) Differentiating (4.11) one gets easily

-1/2
y dFY(y).

_ VarZ _ Var X Var Y
(4.23) EZ=EX EY, EZ = EX + EX —EY
provided EX # 0 and EX2<oo, EY?<» (see Keilson and Steutel
(1979)). a

We next establish the functional CLT in the randomized model

corresponding to Theorem 2.2 in the binomial model. Define

(4.24) Xn,k= X X =Cn,ku+ (I—Cn,k)D

n,k - an,k’ n,k

and as in Section 2, assume that

. - x T
(4.25) v iTn f =z an’l(x) -V
and

x 2 —
(4.26) t[)n(x)=n_f°o T*.ydeFn.l(y)—) $(x);
so by Theorem 2.2
_ _ _ [%n] _

(4.27) X ¥, X, where X (W= T X

n n j=1 n,j

and X(u) is a homogenous process with independent increments and

ch.f.

gy 0O + 2
(4.28) Ee!®XM o oyp (B [igv+ [ (e!®*-1-18%X ) 1*X% 44(x)1), 0<u<oo
t -0 1+x2 Xz

(For convergence in D[0,») cf. e.g. Resnick (1987), section 4.4.) Define

for an integer valued random sequence (Nn) the randomized process
_ [Npgd_

(4.29) Z (u):= ¥ X _ ,,0<ust.
n j=1 |

n

N
Theorem 4.2. Assume (4.25), (4.26) and assume that Tn 5,

then the sequence of processes Zn converges weakly to
(4.30) Z(w)=X(Yu), O<uc<t.

If additionally na ., -a, then

1
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(4.31) Zn—w——>Z on DI[0,x),

(N, %3

where Z (W= % X and Z(uw)=X(Yu)+al Y.
n j=1 n,j t

o

— — N
Proof. Note that Z (u) = X (—2 u),0su<t, ie.Z is a random
n n n n

time transformation of —)Zn. Since (Nn) is independent of ()_(n) we have

N — —

the weak convergence of the joint process ( I:' ,Xn) W, (Y,X) (assum-
ing w.l.g. that Y, X also are independent). By Skorohod's a.s. represen-
tation theorem, there exist {on a possibly different probability space)

versions (Kn,un), (K,U) of the processes converging a.s., i.e.
d N - d -
(K ,u ) = (2,X), (K,U0) = (Y,X) and (K_,U )- (K,U) a.s. Since
n n n n n n
Un(w) € DI[0,») and (Kn(w)u)uzOED[O’oo) is non-decreasing for nz= 0 and

(K(co)u)n is continuous, we obtain (cf. Resnick (1987), p. 221)

=20
(4.32) d(Un(K-),U(K'))ao a.s.,

where d is the Skorohod metric on DI0,x), and thus
— — N —_  —
(4.33) Z =X (-2 )X Z=X(Y").
n n n
The proof of the second part is similar. o

We apply Theorem 4.2 to the normal case. Then by (2.33) X | >, X,

d
where X(u) = o % + % W(u), « = v + a, W(u) a standard Wiener process.

Therefore, Zn—‘f—> Z, where
d
(4.34) Z(u) = a/t Yu + 7%:— Y W(u),

d
in the last line using that (W(Yu) = (YY W(u)) . So we obtain:
O=<su Osu

N
Theorem 4.3. (Case (1), A =y =0) Assume that T“ ¥ .Y and

2p2 R2q2 2
na =n(pU+qgqD)-a, n{ __B___Q__..-q' .__.__.3__)_.)5 , and
n.1 P 4 q 1+R2p2 p 1+R2g2

3 p-q
n R - v, then
pa (1+p2R2) (1+q2R2)

(4.35) ZnL) z,

d o
= (& Yu+ = ’/—Y—W(u))osu

W a Wiener process independent of Y. o

where (Z(u))oSu

<o <o’
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Remark. Inthe Cox, Ross, Rubinstein model U=6 Yt/n,D=-6 Yt/n,

n_ _t — _1 ~2 S _x
ro=r, a/t = log r,-3 9%, = =0 and thus
d ~ ~
(4.36) (Z(w) = (logr_-13%uY+5/Y W(u.

Applying Ito's formula it is seen that the price process satisfies the

stochastic differential equation
(4.37) dS(u) = S(W s YY dW(u) + (log ro)Y dul,
where Z(u) =log (S(u)/S or

= _1 ~2
a logro 50 -

(4.38) S(u) =§ ° 7Y Ww+raYu
In fact, S(u) = f(u,l(u)), where f(u,x) =S e* and {(u) =YY W(u) + aYu =
B W(u) + A(u). Thus dS(u) = [fl'l(u,C(u)) + f;c(u,C(u))A(u) + % f;'(x(u,C(u))Bz(u)]du +

f: (u,0(u)B(w)dW(u) = (S(wa Yu + ‘5 S(w)s?Y)du + S YY dW(u) =

S(u) (6 YY dW(u) + log r_Ydu. o
5. Yaluation formulas for Models with a Random Number of Price
Changes

As in Section 4 we consider now a random number Nn of price
changes in [Oﬁt] , Nn independent of the jumps (Xn,k) of the price process
log (§8*/8) = kg: Xn'k. In order to determine a valuation formula for a
call B = (8" - K), we use similar to Section 3 an equilibrium argument.

The equilibrium measure P* should satisfy the following conditions:

* . _ _

1. P" is equivalent to P on the c-algebra 3k—o(Nn,Xn'1,...,Xn,k),
keN , where § =0o(N ).

o (o] n

2. W.r.t. P*, Nn and the price process (Xn k) are independent.

3. The distribution of Nn w.r.t. P* is the same as w.r.t. P.

4. The price process (r—kSk) is a martingale and Sk+1 is either uSk
or dSk.

These conditions correspond to the situation that the random
number Nn of price movements in the interval [0,t] is known at the
beginning of the period (in the classical case it is assumed to be

known and equal to a fixed number n). So we allow some variation of
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the intrinsic time of the jumps in the market. The motivation for this
time change goes back to Mandelbrot and Taylor (1967) and Clark
{(1973). An alternative and interesting assumption to the assumed inde-
pendence of Nn, (Xn'k) would be to assume that Nn is a stopping time
w.r.t. ;gi = 0(51””'Sk)’ but we shall concentrate in this paper on the

independence case.

From the consideration in Section 4 we can conclude that there

exists a unique equilibrium measure P* (unique on o (kl_Jo {Sk) =

NL.(8y)) _ *Nn N (Sg)

( (Sy)
o(N_,X_ ,X_,..)) satisfying (P*) P ® (P*) "k =p g (P*) ,

n,1’" "n,2

(Sy)
where (P*) ¥’ is identical to the riskless martingale measure determined
in Section 4. So if p=p(n) denotes the probability of an up turn q=1-p,

then with the riskless discounting factor plus 1
(5.1) r =pu+qd
(assuming u>r>1>d>0) we have

(5.2) r =rt,
(o]

N, /7t
iie.r =r © is random and the valuation formula in our model is the

expected value of the discounted call w.r.t. the unique riskless measure
P*

= - — 5 - * = = 5 =
(5.3) C(Nn) _E*(SNH K), = k§1 E*(Sk K), P (Nn k) k§1 C, P(Nn k).
So C(N ) is the average of the valuations with fixed number of price

steps in [0,t].

Remark. An alternative derivation of a pricing formula is obtained

by considering r to be a fixed discount rate per time unit, implying

t/N .
that r = r, M=ry is the random discount rate per unit period and,
n

therefore, the risk neutral probabilities p= T:%c—:l— =py 2also are random.
n

One obtains from (3.1) by conditioning on N

- - . -t
(5.4) C(Nn) =EC =SE cI>(aNn,Nn,pNn) - Kro E@(aNn,Nn,pNn)

n

with p'=5:—p. =}

We next derive some asymptotic formulas for the pricing formula

(5.3). With this in mind let
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(5.5) pi=pr.q=1-p'=p
(5.6) Q :=Er ™

and define rv's N: independent of (Cn i) with distributions

(5.7) PIN* =k)=-L_ " Kp(N =k).
n Qn n

From (3.1) we obtain the representation
(5.8) C(N)=SE®(ay N .p)-KQ Ed(ay+. N} .p),

= log (K/S)-nD 1, neN.

an R

If ay >Nn, i.e. if UNn<log (K/S), then C(Nn)=0. For the following we
n

assume that

(5.9) lim lI(n)Nn>log(K/S) a.s.
n-> oco
lim U(n)N™ > log (K/S) a.s.,
n— oo n

and as before U(n)-> X, D(n)- -u.

N
Lemma 5.1. Assume that —nLL) Y with Laplace-transform
k3

- _— N
¢, (3 =Ee %Y and r- r:;, then I:‘ — 5 Y* with Laplace-transform

——tYe-Y9
(5.10) by (8) = 0
’ > E_r"g*Y
N*
n k
-9 © -5 -
Proof. Ee = ™ = Y e RPN =kr *¥-1 =
k=1 n On
k
= - — (8+t logTy+ep) -N
=1 _ ¥ PN =kle B "B Lith e 50. Since Er "=
Er_Nn k=1 n n
cn Nn
=Er n - E?'o_tY. we obtain from the continuity of Laplace-trans-

-Y(8+t logT,)
Ee o
forms QJN* (¥ - —

n Yo o
n

Theorem 5.1. (Case (1), A= =0)
Assume the existence of the limits o, o', 02, o' as in (3.10), (3.12) and

assume that
Nn w n —t
(5.11) —_ Y and r —T_,

then
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(5.12) C(N)»C:=5d_(x)-KEF *e__ (x),
n z o Z»
where x = log (K/S), @z,.,(x) =P(Z* 2 x), Z" has ch.f. of a mixture of normals
s mczu—cj—zzu2
(5.13) P (1) =({ e 2 dF . (z),

Y* as in (5.10), and <I>Z, is similarly defined with o', ¢', Y instead of «,
s, Y in (5.13).

Proof. Recall that
(5.14) E® (aNn,Nn,p') =P(log (SNn/S) - aNnR - NnD 20),

where p’' = p % With Xni = CmR + D, the characteristic function of the

random variable on the RHS of (5.14) equals

-{apR+kD)iu

(5.15) PN =k)e
n

-{ayR+xD)iu

N E exp {iu log (Sk/S)}

(px, (D™ dP" ()

-{apzR+nzD)iu

N, 7
e (p%  (un=dp """

(z)

Omg Owmg .'-'-M8
®

« -log (K/S)iu z Y
—>6I' e (<px(u)) dP " (z),

q .

where X = N(a',6'?). For the last step we use that by Theorem 2.1 .a)

<p')‘< 1(u)—a cpx(u) and, furthermore, since R=R(n)- 0, aan+ nzD- log (K/S).
n,

From (5.15) log (S, /S)-a,, R-N D5 Z'-log (K/S), which implies
Nn Nn n

(5.16) Ed(a, ,N ,p)= P(Z'=log (K/S)).
Nn n

By Lemma 5.1 and Theorem 4.1.a), a similar argument applies to

E@(aN*,N:,p); so from (5.8) we obtain (5.12), observing that by (5.11)
n

(5.17) 0 - ET_ Y. a
n o
Example 5.1. Let U=5Yt/n, D=-5 /t/n, r=r;/n, (ro=?°),
1 ~2
_ logro- 50
p== ?1 vl 1 oz Yt/n as in Example 3.1 and consider
u- 2 2 o

the geometric case (cf. Example 4.1.a) P(Nn=k)= %1- (1- -:;)kq, k=>1. The

"random” Black- Scholes type formula (5.12) has the form:

- _ K
(5.18) C=S <I>z,(x) Ttlosry @Z*(x) ,
d
where Z' = Z'l-Z’z, Z'i are independent exponentials with means
—— d
a; , = 15(! '+ Ya'2+26'2 ) and Z* = Z:—Z;, where Z: are independent

exponentials with means
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1 (& 4% Jo*2 * 2 * _ o *2 o2
— (% + + = S —— S ——, :
1,2 ) (t o o 20 ), o el — c Tocl - In fact

-tY _ 1 -tY -Y9 _ 1
Er " =47 fos ro and Er ""e Ts 5+t Tog 1o, and thus by

1+t logr 4 1

Lemma 5.1, ka,,(%}) = 1rs+iiog e = ” 5 . Furthermore, by

i+t logrg
o2 o -

ixzu - —5-zu
2 -
dFY/l-M; log ro(u) (')f €

*2

io* wu - 02 2

wu
dFY(w).

(5.13), cpz*(t) =2° e

1 ~2, 2_~2 . _ 1~
3 ), 6°=0 t,oc—t(logro+20
_1 1~2 2 1 ~2,2, ,~2

=5 Gtllogr_+507%)+ Yt%(log r +50 )7+257t),

By Example 3.1, a=t (logr_- 3 2y,

2=52¢. Further, a!

.
° 1,2

1
(1 - =

1 52) . ]/ tz(logro—;—gz)z 2
1,2 2 1+tlogro

+o__ot )
(1+t log ro)z 1+t logry)

and thus

®,,.(x)=P(Z"2x)=P(Z] -Z; 2x), ®,.(x)=P(Z'2x) =P(Z, - Z), > x), where

€e

* ’ . . s [}
Zi, Zi are independent exponentials with means a, resp. a’. o

i i

We next consider the case of mixtures of Poisson and degenerate

distributions.

Theorem 5.2.
a) (Case (2), 0< A<, u=0)

Assume the existence of the following limits
(5.19) a=limnp, b=limnD, a'=limnp’, p'=% <1

and suppose that

(5.20) Nn ¥ ,Y and r*->Tt,
n (o]
then
- _ ——tY
(5.21) C(Nn)-—> C:= S@Z,(O) K(E r. )(DZ*(O)'

where 2(Z') is a Poisson mixture with ch.f.

. —[log (K/S)~-zb’ ] )\iu-i-a'z(ei)\u—l)
(5.22) fpz,(u)=g e A * dPY(2),

and where Z” is similarly defined with a',b’,Y in (5.22) replaced by
a, b, Y* from (5.19).

b) (Case (8), A=, p=0)

Suppose that the following limits exist
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- -1 np Ve 1 np’ v _ pu
(5.23) b-limnD,c—llm——l—I—,c—llm P e

and, furthermore, let
N -
(5.24) B WY, r®sFE,
n (o]
then

(5.25)  C(N )>C:=S_.(0)-K(ET *V)a_,(0),

where

- [-——————-—-—log (K{S) ~zb 1, diu+zc'iu

(5.26) @ 5. () =§° e dPY(2)

and
log (K/S)-zb
L >

<O

(5.27) (pz,,(u) =6f e

]+ Adu+zciu

dPY (2),

Y" from (5.10), [ 1_ the positive Gauss-bracket.

Proof. a) By definition E® (ay ,Nn,p) =Pllog (S /8) -ay R—NnDZ 0).
n n n

The characteristic function of the RHS equals
Nn

(S J- i —_—y
(‘g e (2nzR+nz D)‘“(@“ (u))* dP ™ (z) and it converges to
.1

X!’\

o -plom (K}\/S)—zb ]+Xlu+az(ei)‘u-—1) v
cpz(u)=£ e dP " (z). In fact, by

iub+a( i)\u—l)
Theorem 2.1.b), o3 1(u)—> ¢y (1) = gt ate . On the other hand,
n,

since R-> A, nD-> b, np- a,

a_R+nzD = [19—5—(—5ﬁ/s‘1—)]R+nzD [log (K/S)-2zb 1 5 , .,

n—» co PN

for any z such that 1K(log (K/S) ~zb) is not an integer. Thus

log (S, /8) -ay R—NnD——V—V——>Z and ®(ay .N_,p) > P(Z=0). From
n

this one can infer formula (5.21).

The proof of b) is similar. o
Remarks.
a) If the empirical data of the stock price changes suggest a mixture

of the normals of the type aY + 6¥YY N, where N is a standard
normal then by Theorem 5.1 resp. Theorem 4.1 we can model these

changes by a model with a random number Nn of changes, where

N
—;:—‘— —¥ Y and calculate the generalized Black-Scholes option price.
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Since location and scale mixtures of normals are generally not
N
identifiable, there are possibly different sequences —;:L - Y', but

leading by (5.13) to the same approximative valuation formula.

b) In contrast to the "non random" case NnE n, where the Case (8),
A=c, u=0, leads to degenerate convergence log (Sn/S)—> o=

= lim [nD+—nT‘I’—] one obtains in the "random case"” log (Sy 78) > aY.
n— oo n

c) Restriction to the case r=12

The valuation formulas simplify if r = r(n) = 1. Recall from 5.1

that r(n) = p(n)u(n) + q(n)d(n), u(n) > r(n) > 1 > d(n). Defining d(n):

=dn) 1, u(n) = uln) , 1, the riskless rate is now r(n) = 1. In several
r{n) r(n)

papers it is argued for this reason that one can assume w.l.g.

that r(n) = 1.

We demonstrate the effect of this substitution considering again

Example 5.1. with U(n) =5+/t/n, D(n) = -6 /t/n, r = r*/®, p=t-d 15 +

o u-d

log ro—%az - "
Yyt/n . Define U:=logu=1log - =U-logr=

+ L
2 3 r

Y

¢ Yt/n - t; logr_, D = log d=logd/r=D-logr=-6+t/n - % log r_ and
let X = lim U(n), g = -lim D (n). In our case X = U = 0 and the characteristics

o, ¢ in this new model (cf. Example 3.1) can be seen by some calcula-

tions as
o= -—.1_~2 - :—.t_'\‘2 —'=£~2
(5.28) a =t(log r, -0 ) (logro)t 50 » W=506",
c6=6=6/t=06"=0" (p=p2 =pu)
For the proof note that R=U-D=U-D=R and
— A4 ~o N3
a=limniqD+pU+qpl(q-p) ,,NR — =
n (1+p2R2) (1+q2R?2)
1 ~2
log ro-%5© -
= lim n[(1 -1 ° .2 )Yh (-6vh -hlog r )+
n 2 2 o o
1 ~2
log rgo-%5o0 ~
(3 +1 2 2 )Yh(5/h -hlog r )]
o o
1 1 log ro—é—gz -~ 1 1 logrg, 2~2 ~
= lim nl(% - & — )7/h (-6 Yh) + (& + = — )Yh ¢ vhl
n 2 2 o 2 2 o
1 ~2 1 ~2
log ro-5 0 logr,-5o0
- 1i 1 _1 °© 2 1 1 °c 2
hrrln (log r())n[2 > ~ t ot g = 1h
= -1 52y - =-t£32
= t(log r. -390 ) - (log ro)t 5 0 -
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The other cases are similar. It is interesting that r, cancels in the

formulas for o, «', 6, 6. Formula (3.13) becomes in this case

log (S/K)——;— 52

(5.29) C=S®(x')-Kd(x), where x= ,
3t

log (S/K) + % 52

x' = ’
gVt

which coincides with the Black-Scholes formula with r = 1 but not with

the pricing formula in the riskless model and it is not clear how to
obtain by a transformation from the case r = 1 the valuation formula
for the case r # 1. For this reason the suggestion to assume w.l.g. r = 1

seems not to be justified.

In the random binomial model with r = 1 the calculations simplify.

N
If -—;n— —* .Y, then (5.12) becomes

(5.30) C=8§ in(x) - KQE*(X)’ where x=1log (K/S),

D [

©® -Stziu--—5 tzu o -2 2 (tu+ru?)
(5.31) oz W= e * 2 dF .z)=] e * (2
and ,
(5.32) @i,(u)=2° egz—m"”"z)dFY(u).
In the special case P(N_=k)= 1; (1- lﬁ)k-l, keN, holds: Y 5 Exp (1),

v d vy ~ ~ ~ Jed o~
y A= 1_Z2’ Zi independent exponentials, a1=EZI=%-(oc+ ’/cx2+202)
.t ~2. 3 [t252 ~ ~_ te™2 o ft B2 -
=-70 *5 V3 +2,a2-E22——‘L——+-;,_—‘/—4——— +2 and, similarly,
~ d ~ ~ ~ oy ~ ~
VAR Z‘1 - Z'z, Z'i independent exponentials with EZI= a'1 =% 52+

5 237 7 .o 252 .
+ 2 257 Lor  EZ =al=-L 52+ {2 L o

2 4 ’ 2 2 4 4 :
6 Examples

We shall consider examples for the random pricing model lead-
ing in particular to heavy tailed distributions in Theorem 4.1.a) resp.

Theorem 5.1. (normal case).

6.1. Paretian Stable Y

Let Y be a positive Paretian stable rv with Laplace transform

/2
(6.1) 4 () =Ee®Y=e""" 5,0, 0cacz.
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If for example

(6.2) P(Nn=k)==P(k-1<nYSk), k€N, then

N
P(—>>x)=P(N_>xn)=P(N_>Ixnl) =P(nY>[xnl)

= P(Y>%) > P(Y>x), Vx=20, i.e.

N
(6.3) n w, vy,

Mandelbrot and Taylor (1967) suggested for the pricing process the
continuous subordinated process log S(t) = X(T(t)), where (X(t)) is a
Wiener process and (T(t)) is a positive a/2-stable, 0 < « < 2 process
independent of X. So the resulting process is symmetric a-stable.
Clark (1973) proposed for (T(t)) a lognormal process with independent
increments implying that log S(t) has independent increments and

thinner tails, e.g. finite variance.

In order to obtain by our mixing model the symmetric a-stable

distribution proposed in Mandelbrot and Taylor (1967), we have to

- ~2
stick to the special situation with p= 1; {(implying r =e 17207y

If U=-D=0¢ v/t/n, 6>0, then r=r(n)= %— (e VE/m | ¢ 't/n) and
s e? , i.e. ro=e2 . By Theorem 4.1
(6.4) log (S, /S)—Y> Z=log(5"/S),
n
where
d ~
(6.5) Z=N_ , /Y, 0%=52%,
O,Cc
and, therefore,
- 82y02 _ (%o )oz
(6.6) Ee®Z = [ e 2 dP¥(y)=e 72
Z has a symmetric a-stable distribution with scale parameter f? .
The valuation formula is given by Theorem 5.1
_ _ -tY
(6.7) C—S<I>Z,(x) K(E r, )@z*(X)’
where by (5.13) 2 2
—2——-zu2 ___G__uZY*

(6.8) pgetw =l e Z 4P @=Ee ?
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By Lemma S5.1.

Y —Ys ~(£52em)Y ~(£5240)%7?
(6.9) byel®) = —2 2 -Ee ° S
Ergt g Z32Y -(582)
e e
Therefore, .
—(—;’—8’2+ uz)a/2+(t 82)0(/2
(6.10) <pz,.,(u) =e

= exp {- (7‘;—)“ t* 211+ u®)*72 - 11).

It follows that EZ*=0; but Z* does not have a second moment if
1<a< 2.

Concerning Z' in (6.7), it holds that

d
(6.11) Z'= o’'Y+N_ 7Y  resp.
2
S o::z‘ziu-—i%——zu2 Y
(u) = dP " (2),
¢,.(u ({ e z

g¥Yt/n
e

where by Theorem 3.1, oc'=nl_i_)m n(p'-qlcyt/n, p'= p% =

e&’ t/n,__-35Yt/n
-t/ n

e

' g - e
and q'=q ¢ ST, o o Thus
o'=lim n 12— (eCVE/m _ eTo Yt/ Ny A Th
n
N - ~2 ~3
= limLlGo/tnl1+67/t/n + 2 £ + 2 (£)372
n 2 2 n 3¢ n
~ 52 53 - ~
-1+0Yt/n ——"‘—’2—— L2 _(£)37240(n"%)1= 5%t and from Theorem 3.1,
n 3¢ n
6'2=6%2=52%¢, i.e
(6.12) w=52t, 6'%2=02=52%¢
and
0 d "*’2
(6.13) Z' = c°tY +N o Y .
o,0“t
_(38'2)01/2
Since Er;tY=e 2 , we finally obtain
_(igZ)o‘/z

(6.14) C=S¢,.(x)-Ke 2 @ . (x),

with x=log (K/S) and Z'. Z* from (6.10), (6.13).

6.2. Finite Normal Mixtures
Boness et al. (1979) suggest that the observed kurtosis in the distri-

bution of stock price changes may be caused by the fact that returns

follow a finite mixture of normal distributions, i.e. for Z = log (8*/S),
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o 2
k --——j—- 2 o czziu—c—z—u2
(6.15) o )= 2 b e e =] e 2 " dF (2),
2
°"zy _ 02, 1<j<k, assuming that

wherezz P2(Y=z )=1‘}j, O(Zj=aj and > ;
ﬂ = b | i=
- = ] 1,....k.

Consider k Poxsson rv's, N(j) = Poisson (an) and define N by the

n

N
mixture P(N =i) = Z 9 P(N(j) =i), then — -* 5, Y and by Theorem 4.1

log (S /78— Z w1th ch.f. (6.15), o, o determined by (2.9), (2.10).
n

For the option pricing formula (5.12) we have

k -
(6.16) Er’tY = 3 9.r %,
(o] j=1 j o
o2 o 2 o
@  jo'zu-—f/—zu k iot'z;u - zi;u
= 2 - z j 2 }
(6.17) tpz,(u) 6f e dF (z) 5 %je ,
a', ¢' as in (3.10), (3.12), and
k
(6.18) @Z‘(x) = j-§1 31 PN 2).0 zzj)(x)
Furthermore, by Lemma 5.1
_ Er;tYe—Yu _ n *_zju - _ &jr;t—Zj
(6.19) d)Y*(u)— ErotY = jgl &j , &j._W,
Y* is a discrete distribution and by (5.13)
k L3
(6.20) CDZ*(X) = j=Zl SJ @N(azj'czzj)(x), x=log (K/S).
6.3. Mixtures of Gamma Distributions
Define for meIN the generalized geometric distribution
(L)l/m for k=0
(6.21) PIN™ = j4km) = 4 k-1
n I (— +j)
—’—’——i—!————— LHm -k gor k=1.2...

(cf. Melamed (1990)). For m=1, N:) is geometrically distributed with

mean n. It holds

N(m)
(6.22) 2 2 ,Y

a Gamma (—}n—, m) distributed rv with Laplace transform

(623) LlJY('[‘) = E e_TY - ( 1 )l/m

1+mTt
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and density

0 for x<O
6.24)  f (x) =

(I’(—:‘—l-) mi/m-1  1/m-1 -x/m for x>0

Given N := Nm and P(N* = k) =———--—1 r—k P(N = k)’ where r= rt/n, by
n n n Qn n o
N .
1 , and —————n“ - 5 Y™ with

Lemma 5.1, Q - Er 'Y = ( y1/m
n (o]

1+mt log rg

-(3+tlogry)yY

_Ee - m -1/m
(6.25) tlJY* (9) = E r(—)t_Y =+ 1+mt log rg %) )

That is, Y* has again a Gamma distribution with density

1 (1/m)-1_-x/mA
if x>0
(1/m)+1 €
. T(1/m)(mA)
(6.26)  f_.(x) = :
0 if x<O

- d d
where A= (1+ mt log ro) 1, i,e. Y= AY = Gamma (Lm, mA). Therefore,

the ch.f. of Z* (cf. (5.13)) is given by

»2
oo aziu—%——zuz o a*ziu—oz zu?

(6.27) @ (1) =g e dF . (z) = ({ e dF  (2),

where o« = Ax, 6*%=A0% and a, 62 are given by (3.10), (3.12). (In the

classical case U(n)=5 Yt/n, D(n)=-5 Yt/n, r=r;/n, «=t(logr_- 52)

2=52

I

L
2

o} t).

Observe that for 6c2=0 (as in Case (8), A=, £=0)
(6.28) (f) e Ziu dF (z) = (-o*ium) /™

. t 3
and in case a = 0,

2
_ 02 zu2

(6.29) T e dF_(z) = (1+m 2
[¢]

2 -

E
2
( _/—" ¥ )—l/m( _/°—- ¥ )-l/m
={(1-iYym — u 1+i/m —u ,
' 7z M TS

i.e. the law of Z* is in the first case given by
»* ‘;1 1 *
(6.30) Z" = Gamma (-—‘;1—, o m),
while in the second case
>

d
(6.31) Z* = Gamma (1—, Ym ¥ )*Gamma(l—, -Ym-=2-).
m o m Iz

v2 ) ¥

In the same way
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v s 0'2
2 o'ziu-——5— zu

(6.32) <pz,(u) =6f e

2

dFY(z),
where o', ¢' are determined by Theorem 5.1. (In the classical case
U(n) =5 /t/n, D(w) = -3 /t/n, a'=t(log r_+ 3 5°), c'>=0% = 5%t). The
"randomized” valuation formula corresponds by Theorem 4.1.a) to a

limiting Gamma mixture of the stock price, log (SN(m)/S)——L Z with
2 n

i — e

> xXZ
cpz(u)=6f e 2 dFY(z), «, 0 as determined by Theorem 3.1.

6.4. o-Stable Limit Laws
N ~
Let -n—“ —* 5 Y, where Y is a positive x/2-(Paretian) stable random

variable with Laplace transform
— - &/
(6.33) Ee ®Y = I81772

By Theorem 4.1.a) the limiting price S* has ch.f.

<o cxziu-—c—zu2
- 2
(6.34) (Plog(S*/S)(u) = ({ e dFY(z),
where «, ¢ are determined by (2.9), (2.10).
From the definition of Y,
2
—z(cTuz—luot) —I%— uz—iucxIO‘/2
(6.35) cplog(s*/s)(u) = fe dF _(z) = e
@t Lt u2a2)¥/s
If =0, then
- 158\ &
- 2
(6.36) ‘Plog(s*/S)(“) = e \

i.e. log(S*/S) has a symmetric a-stable distribution. Note that for o« # 0,

a o
1<% <2, Elog(8*/8)= %—d—t (—(°T ut+ uzaz)“/‘L)Iu:o = ». Moreover, since

d
Z=log(S*/8) = aY+N° o2 YY it follows that for independent copies Yi
of Y, N of N ,
i 0,0

Zy+...+Z Yqy+...+Y NijVYy +...+N VY
(6.37) e I e LS hich 2 S
n o n‘./a n‘./a

e

so Z is in the domain of attraction of a «/2-stable law 2(Y).
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In the Black-Scholes formula (5.12) we have Er(‘)tY:

_ _ —lo+t 1 &/2
ErotYe Y9 - o |9+t log ro| and, therefore, by Lemma 5.1

-9+t log rola/z*lt log r'olae/2

(6.38) b x(B) =e

6.5. Stock Price Changes With Student's Distribution

If 1/Y is xi—distributed. then Z g No,oﬁﬂ— is t_-distributed
modulo a factor w/g— . Blattbery and Gonedes (1979) argue that security
returns follow a Student t-distribution. Again we can apply Theorem 5.1
to obtain a valuation formula in the case that log (8*/S) is Student
distributed.

Note that by Keilson and Steutel (1974) the class £ of all rv's Z

with a representation of the form No 1Yl/z

coincides with the class of
all Z with ch.f. ¢, such that rpz(ltll/z) is a d.f. on [0,x). & contains
all rv's with symmetric densities that are d.f.s in x2. ® is closed under

mixing and convolution.

7. A Different Kind of Randomization and Continuous Trading

While in Section 4 we modified the original binomial option model
by introducing a random number of price changes we shall now introduce
a randomization on the up's and down's of the price changes. We shall
consider this idea in the example of a modified version of the standard

example of Cox, Ross and Rubinstein (1979).

Let us consider the binomial model with

(7.1) U=57/t/n, D=-T Yt/n, p=p(n) =X82-dn) "y t/n

u(n)-d(n)’ o

Then by some calculations one obtains

N . 73,
(7.2) pln) =—%_ 28 o 2 Jt7n + 0(t/n),
o+T C +7T
3 ~
(7.3) «=1lim n(gD+pU)+n—R94(9-PIR = (logr - 22)t,
n- o 4 P (1+q2R2) (1+p2R2) &% 2
R=U-D,
2 .. B R2p2 RZq2 | _~n~
(7.4) o rllin.}c n ((1 p)———————lmzp2 +p ————hkzqz )=o1t,

e—lt log r0|ot/2

’
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so condition C.2, C.3 of Lemma 2.1 are satisfied, and

(7.5) log S_/S —¥— Nia,0%).
Furthermore, .
~ log ro-'-;r—g——
(7.6) pr=p=_—T_+ > 2 Jt/n +0(t/n),
c+T C+ T
(7.7) a'=lim n{(q'D+p'D) = (log ro+ o ¥ )t,
and
{7.8) 6'=0.

So by the binomial pricing formula (3.1)

(7.9) Cn=Cn(3.?)=S®(an,n,p') —Kr_né(an,n,p),
where <I>(an,n,p) =P(X Cn,k > an), a = [—IM#D—]. By Theorem 3.1
(7.10) C_~»C=C(5,7)=8Sa(x)-Kr_*o(x),

<= los (SO/K)-c-oc Cx'= log(So/’K)-'-oc' -

The limiting process of Xn is by Theorem 2.2
(7.11) X(uw = (log r_-*2)u+/FT Wu).

Let £, T be nonnegative random variables independent of (Cn i)
and consider the randomized version of the binomial model with ran-

dom up's and down's:
(7.12) U=Xvyt/n, D=-Tvyt/n,

n
(7.13) log Sn/s = kz;'l Xn,k’ Xn,k = Cn,k u+({1- Cn,k)D'

Let PX denote the law of X, PX!Y=Y the conditional law given Y=y.

By (7.5): pO8Sn/SNE=ET=Y _w _\(; 2) 4=a(5,7), 6?=57¢t (cf.
(7.3), (7.4)). Therefore,

log(S,,/78) w

(7.14) P ¥, [N(«(3,7), 5Tt)dP=T(5, 7).

The equilibrium measure P* in this model should satisfy that:

1. P* is equivalent to P on {§k=6(2‘.,T,Xn X k)’ kelN;

'
2 w.r.t. P*, (£,T) and (Xn k) are independent;

3 (P*)(X,T) - P(Z,T)

4 (r_kSk,{Sk) isa martingale and S __ is either nS _or ds,

conditional on X =u, T=d.
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These conditions correspond to the situation, that the up and
down prices may vary but should be known at the beginning of the period.
Similarly to the introduction in Section 5 it follows that P* is uniquely
determined on G(Z,T,(Xn'k)) and is given by the mixture
P =] Pg’? dP=T(5,7), where P;‘.? are the riskless measures in the con-
ditional model. This implies that the pricing formula of a call B = (Sn -K),

is given by
(7.15) C =E B=fcC (5,0)dP®T(5,7).
n * n

From (7.10) we obtain by the dominated convergence theorem the ap-

proximative valuation formula

log (K/S)+logr_+ T t -
(7.16) C=5[a( — ° 2 )dpE T, 7)
FTe o
_ log (K/S)+logr - 12 ¢ -~
SKr Tt o S 2 y4qrE=T(5,71).
o gTt

The expression simplifies if ¥ = T. The limiting process in the rando-

mized model is given by
(7.17) X® ) = (log r_- LX) u+ /TT Wu)

(cf. (7.11)). In the model with a random number of price changes we

obtain in comparison as limiting (riskless) process

(7.18) XY () = (log r_- ?2?" )Yu+ Y78 /Y W(u).

The differential equation corresponding to (7.11) is
(7.19) dSs®(w =s® W ((log r_)du+ /T dW(u)

{cf. (3.37)). It was shown in an empirical study by Mittnik and Rachev
(1989) that the best fit to the (logarithmic) stock price changes for the
S & P 500 index is given by a fit for the positive and negative jumps,

with two different Weibull-distributions

o

o
- x %+
* , xz20.

(7.20) P(Z>x)=e *

Ax

, x20, P(T>x)=ze

For the estimation of the four parameters of this model cf. [9]1. By our
second randomized model (7.13) we can directly model these type of
jumps and determine the corresponding pricing formulas. A different

example where the Weibull distributions give a very good fit is the
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exchange rate of DM versus US Dollar. The following picture shows
the negative log daily changes of a sample of more than 2 000 observa-
tions and the best Weibull fit with parameters X_ = 408,117, «_ = 1.15.
(The data and the fit was kindly provided by Professor A. Berlekamp,

Axcom, Berkeley.)

—

9.01078 te 1, 0.09811/xich
]

D .

]
ON-hestweib- 1. 156000-400 . 117787,

~0.08 --.5 0. .01 0. 000 s. 00 0.000 0.000 o.040

] . 020 0.0
-0.0¢ .. 6.0 -8.01 sem  ee bw0 b Dh-megetive: -0.0800 e 6.0060, §.0308,/xick

DR-aegative: ~0.0080 te 0.0080, §.0100/tiek

sample distribution Weibull fit

Remark. The idea of randomizing the parameters can also be carried
out in continuous time option models. If we take e.g. the classical
diffusion model (in its riskless version, cf. Harrison and Pliska (1981)

or Karatzas (1989))
(7.21) dS(u) = S(u) ({(log ro)du+odW(u))

and consider a random volatility o, then we can carry out directly the
analysis in this continuous model leading to a Black-Scholes formula

as in (7.16).

The idea of random time changes of Gaussian models as better
fits to the stock price changes has been suggested by Mandelbrot and
Taylor (1967) and Clark (1973). This idea is closely related to our first
randomization model, leading in the limit to the random time trans-

formed Wiener process
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Z(u) = log S‘S“’ =2 Yu+ fz W(Yu).

As remarked in the introduction of Section 3 it is of interest to use

more realistic transformations for the development of the price process.

An interesting problem seems to be the modeling of the price process

by a point process in [0,t]l. Our method applies so far only to the case

r = 1 since then the pricing formulas only depend on the (random) number

of points.
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