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Summary 

In the  present paper we deal with the  characterization of some 
dependence concepts for the mult ivariate normal distribution. I t  tu rns  
out tha t  normal distributions have some special properties w.r . t ,  these 
dependence concepts and, fur thermore,  tha t  the  characterizations are 
closely connected to some interest ing problems on matrices. Some ap- 
plications to simultaneous confidence bounds are discussed. 

1. Normal distributions and positive orthant dependence 

A basic concept of dependence was introduced by Lehmann [13]. 
Let  X =  (X1, . . . ,  X,)  be a random vector on a probability space (M, ~, P).  
X is called positively or thant  dependent  (POD) if 

( 1 )  for all a ~ , . . . , a , ~ R  L. 

Similarly, X is called negatively or thant  dependent  (NOD) if 

( 2 )  P a {X~<~,} =KP(X,<~J, 
= I = [  

for all a ~ , . . . , a , ~ R  ' .  

I t  was shown by Rfischendorf [17], Theorem 2, tha t  POD-distributions 
share wi th  normal distributions the  important  property,  tha t  the  in- 
dependent  elements in the class of all POD-distributions can be identi- 
fied by some mixed moment  conditions. In the  present section we 
extend some properties of POD-distributions and discuss applications to 
normal distributions. 

The characterization of POD in normal distributions is immediate 
from a theorem due to Slepian [21] in combination with a result  of 
Lehmann [13]. Let X be N(Z, ,Y)-distributed and let S , =  {A ~ R "• ; A 
=(a~j)~,j~,  be positive semidefinite, a~>=0, V i, ]~_n}. Then 
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(3) X i s P O D . ' .  .'. X i s  NOD .'. ~." 27~S,.  

The equivalence of POD and weak association was shown in Theorem 1 
of Riischendorf [17]. For applications of the POD-concept also the fol- 
lowing closedness properties are useful. 

PROPOSITION 1. Let Y, . . . ,  Y~ be POD, n-dimensional random 
variables, Y ~ = ( Y ~ , . . . ,  Y~), and let { Y , . . . ,  Y~} be stochastically in- 
dependent. 
a) If f i :  R~.--.R ~, l~_i~_n, are monotonically nondecreasing and meas- 

urable, then 

(4 )  Y=(f~(Y,,, . . . ,  Y,,), . . . , f , ( Y , ,  . . . ,  Y,~)) is POD. 

b) ~ Y, is POD. 
t = l  

c) If Y2>=0, then ( Y , ~ Y 2 , "  ", Y,,,Y2~) is POD. 

PROOF. In order to avoid technicalities we only give the proof of 
b). The proof of a) and c) is similar. Let a , - . . , a n ~ R  ~, and X = Y ,  
Y =  Y2, then 

P ( ~  {X~ + Y~>-a~} ) =  I P (~, [X~ +y,>_a~} )dPr(y ,  .. ., y.) 

>= f ~=~ ~[ P(X'+Y'>--aOdPr(Y" " " "' y~) 

"f ~ II P (x~+y~3gP~'~(yO 

= ~ I  �9 P (X~+ Y~>=a,) 
%=1 

The second inequality follows from Theorem 1 of Riischendorf [17] 
since f~(X~)=Ic:~+~.~ is monotonically nondecreasing in X~. The case 
k>=2 follows from induction. 

Example 1. Let X1, . - . ,  X~ be N(~, 2:)-distributed with unknown 
Z, X and let {X1, . . . ,  X~} be stochastically independent. A confidence 
interval for ~ proposed by Dunn [4] and Scott [19] is the following. 

1 ~ 1 Let J f = ~ - ~  X~ and S =  ~, (X~-.~)r(X~-~:)  be the canonical esti- 
k--1 , = l  

mators of /4 27; then consider 

( 5 ) R =  [~ e R'; lx,-X,l<d,~f~., l ~ i < n } ,  

where X~ is the i th  component of X, S ,  is the i th  diagonal element 
of the random matrix S and d ,  . . . ,  d~ ~ R~ are given. 

If X=I , ,  then 
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where t~ are Student t-variables with k - 1  degrees of freedom. The 
question is now for which normal distributions r0 can be used as con- 
servative bound for the confidence interval R (the proof of the claim 
of Scott [19] that  this should be true for all normal distributions was 
shown to be in error by Sidak [20]). 

By means of Proposition 1 we obtain the following result:  

( 6 )  Let 7(, be N(~, Z)-distributed and let IX,-/~I=(IX1,-Z11,..., 
[Xl~-/~l) be POD, then 

P.,~ (~ ~ R)> ro .  

PROOF. It is well known that  one can choose Y~.-.N(O, Z), l<_i<_ 
k -  1, which are independent from each other and from {X:, 1=<]=< k} 

such that  S and S =  1 ~-~ ~, y ry~ have the same distribution. Since 
k-I i=~ 

by assumption ]Y~[ is POD we obtain from Proposition 1, a), that  (S,, 

�9 . . ,  S~) is POD where S , , :  \-ks _ l<_i<_n. 

Using a result of Khatri  [12] tha t  ]X] is NOD for each N(0, E)- 

X, we obtain by Proposition 1, c) that  (IX'~-z~I distributed 
\ 

S n  

IX-~--/~I~ - is NOD which implies (6). 
Snn / 

Some conditions implying that  IX~->l is POD have been given by 
Sidak [20], Jogdeo [11] and Abdel-Hameed, Sampson [1]. A general 
lower bound for the probability of translated positive orthants of tX , -z I  
is given by the following proposition. 

PROPOSITION 2. Let X = ( X . . . . ,  X,,) be N(0, 2:)-distributed. Then 
for any a~, - . . ,  a~ ~ R~ 

( ) ( 7 ) P {ix, p iX, l>= , 
,:=1 "= ~,: 

where 

det (X(m)) 
det (~:(m- 1)) ' 

2<m<=n, and Z(m)-:(a,~)l~,.j~,~. 

PROOF. The proof of Proposition 2 is similar to the proof of 
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Theorem 3.2 of Das Gupta, Eaton, Olkin, Perlman, Savage and Sobel 
[3]. Let 2: have a factorization TT r where T is an upper-triangular 
n• matrix and let Y be N(O,/.)-distributed. Then 

n ~ , 

and 

H--H(y2, ..., y , ) :  {yl; ItilY~+~ t~jyj ~vl~ 1 . 

Let, fu r thermore , / /0=  {y~;Ituydia~], then as a consequence of Winter 's  
theorem (cf. Das Gupta,. . .[3]) 

f g(~l dy~>=i~og(~,y,)dyl. 

So we obtain by an inductive argument  

= f r  p (rx,  j>_ . 
~=~ \ - I t . I  / 

Since det 2:(m)=det (T(m)) det (T(m))r=-[[ t~,, we obtain 

tl~= a4~L~, t ~ -  det2"(i) i>-2.  
det Z ( i -  1)  ' 

Remark 1. Proposition 2 can be used to give a conservative bound 
for a larger class of distributions than those considered in Example 1. 

2. Normal distribution and association 

Association of random variables has been introduced by Esary, 
Proschan and Walkup [6]. Association has many useful statistical ap- 
plications. Its definition is as follows: X=(X1,. . . ,  X~) is called as- 
sociated, if 

( 8 ) Cov (f(X), g(X))~0 for all monotonically nondecreasing func- 
tions f ,  g for which the integrals exist. 
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Clearly association of X implies POD. The following proposition shows 
tha t  again the  normal distribution has special properties concerning 
this dependence concept. 

PROPOSITION 3. If there exists an associated random variable X 
with Coy ( X ) = X ,  then 

( 9 ) N(/~, X)-distributed variables are associated. 

PROOF. In this proof we shall repeatedly make use of some re- 
sults of Esary, Proschan and Walkup [6]. Let  X~, . - - ,  X~ be inde- 
pendent,  n-dimensional with px~=px, l_-<i~k, then  the  nk-dimensional 

s -  1 (z vector (X1, . . . ,  X0 is associated and, therefore,  k--~-~-~:~ 

: E  X) is associated. By the central limit theorem S, ~--* N(0, Z). Since 
associated random variables are closed w.r . t ,  weak convergence we ob- 
tain, tha t  N(0, Z)-distributed random variables are also associated. 

The following definition is due to Hall, Newman [9] and Markham 
[141. 

DEFINITION 1. An n X n  matr ix  Z 6 R a• is called completely posi- 
t ive if there  exists a k 6 N and an A ~ R aXe, 

(10) A=(a~)~_~_~ with A>___0 (i.e. a~j>=0 for all i, d) and 

X = A A  r . 

Let  Ca denote the set of all completely positive n x n  matrices. 

Ca defines a subset of S,. We have the  following result. 

THEOREM 1. I f  ~ e C~, then N(/~, 2)-distributed random variables 
are associated. 

PROOF. Let 2 e C ~ ;  then there  exists an n x k - m a t r i x  A>=0 with Z 

= A A  r. If Y is N(0, I,)-distributed, then  :F= AY has the  same distri- 
bution as X. But Y is associated and A>=0 defines a monotonically 

nondecreasing function. So also Y-is associated. 

To consider the question how large C~ is, we need the following 
definition. 

DEFINITION 2. 
a) An element 2: e S~ is called diagonally dominant,  if a ~ > ~ , a i j ,  V i 

~ n .  
b) For a convex cone A c R  ~ let ~(A) denote the  set of ext reme di- 
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c) 
d) 

rections of A. 
P~= {2 6 C~; there exists an A 6 R ~• A>_-0 with X = A A  r} 
For an n x n matrix A and a =  ( i ,  . . - ,  i0,  ~9= (3"1, . . . ,  ]~) where 1<:i~ 
< i ~ < . . . < i k ~ _ n ,  1_~]1<]2<. . .<]k~_n let A(alP) denote the minor 
of A with rows i ,  . . . ,  i~ and columns ] ,  . . - ,  3"k. 

The results of the following proposition are partially known. 
include them for the reason of completeness. 

We 

PROPOSITION 4. 

a) If  Z is diagonally dominant, then  X ~ C,. 
b) If  n<4, then P~=C~=S~. 
c) If n>__5, then P~C~cS~ (where c means strict  inclusion). 
d) C~ is a convex cone with ~(C~)= {ccr; c e R ~, c>__0}. 
e) C~=con(P~) (convex hull) and P~, C~ are pathwise connected and 

closed subsets of R ~• 
f) The parameter  k from Definition 1 can be c h o s e n ~ n 2 + l .  
g) If  s  then 2 has a factorization LL r, where L>__0, L is a 

lower t r iangular  n • n matrix if and only if/7(1, - . . ,  k, i l 1, . . . ,  k, ]) 
>__0 for all k~ i ,  ]~_n. 

PROOF. 

a) Let  /7 ~ R ~• be diagonally dominant.  Then define the ~ •  n ( n + l )  
2 

matr ix  A by A=(a~,c~,~j)l~,~,~ with 

0,  if i, ] r  

a~,c~,j~= J~, if i=k,  ] r  

I t  is easy to check, tha t  2 = A A  r, so X e C=. 
b) was proved by Gray, Wilson [8] and independently by Plesken, 

Riischendorf, Krafft [15] using geometric  arguments .  
c) The inclusion C~cS~ is due to Hall, Newman [9]. To prove P~c6~ 

take 

with B ~ R (~-~)• B > 0  (componentwise) and h denoting the unit  
matr ix  of dimension k. Using the  a rguments  of Gray, Wilson [8] 
resp. Plesken, Riischendorf, Krafft  [15] we obtain tha t  Z0 ~ P~. 
But  if we choose Z0 diagonally dominant  we obtain by par t  a) 
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2 :oE  Ca .  

d) follows from Theorems 2.1, 3.1 of Hall, Newman [9]. 
e) Since P,D~(C~) we clearly have C~=con(P~). Defining the  closed 

and pathwise connected set R~---{A e R~• A>_0} and the continu- 
ous map 9:R~--~R ~• by 9(A)---AA r, we clearly have 9(R~)=P~. 
This implies that  P~ is closed (since bounded subsets of P~ have 
bounded origins) and, fur thermore,  t ha t  P~ is pathwise connected 
(as continuous image of the  pathwise connected set R~). Since C~ 
=con  (P~) the same is t rue  for C~. 

f) If 2: e C,, then there exist by definition of C. (or by d)) c~ e R ~, c~ 
>=0, l ~ i < k ,  such that  

g) 

1) 

2) 

3) 

~ 1  d 
t= l  ~=1 

with d~:=q~--kc~, l < i ~ n .  This implies tha t  2: e con {d~d~; l~_i<=k} 
which is a compact, convex subset of R ~• By a well known theo- 
rem of Caratheodory each point of a compact convex subset A of 
R ~ has a representation as convex combination of m + l  ext reme 

~-I-1 m+l 
points of A. Therefore, 2:= ~, ~fl,.d~., where 1 < i  j_<_ k, 0-< ~j, ~ ~j 

3=1 $=1 

= 1 and m = rain { k -  1, n~}. 
has been proved by Markham [14]. 

Remark 2. 
Proposition 4, b) implies tha t  for n_~4 association is equivalent 
with POD and positive correlation. I t  is not known to the  author  
whe ther  this result is t rue  also for n>_-5. This question leads to 
the  difficult and unsolved problem of determination of ~(S~). 
Proposition 4, f) improves on a bound for the  index k given by 
Hall, Newman [9] who proved tha t  k can be chosen smaller than  
2 n . 

The characterization in g) due to Markham [14] has a simple geo- 
metr ic  interpretation. If 2:=BB r with B e R ~• where B has row 
vectors b~, . . . ,  b~ and if q , . . . ,  q~ are the  orthogonal vectors ob- 
tained from b, . . . ,  b~ by the  Gram-Schmidt orthogonalization pro- 
cess, then  the condition on the  minors is equivalent to the  condi- 
tion tha t  b, . . . ,  b~ lie in the  convex cone 

C(q,,. . . ,  q~)= {~=~ ~,q,; a~>-O, l < i ~ n ,  ~__~ ~,=11 . 
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3. Positive likelihood ratio dependence and positive 
stochastic dependence 

Within this section we discuss some concepts which are stronger 
than association. We need the following definition which is essentially 
due to Barlow, Proschan [2] and Dykstra, Hewett ,  Thompson [5]. Let 
for nonnegative function f and measure ~, f/~ denote the measure with 
density f w.r . t .  /~. 

DEFINITION 3. Let X~, Xz be k,/-dimensional random variables and 
define : 
1) 2(1 is stochastically increasing in Xz (X~ Ts~. X2) if for all x, y ~ R ~, 

x =< y implies that  

2) 

where ~s~. means stochastic order (of the k-dim, conditional dis- 
tributions). 
If p(x~.x2)=f~ (i.e. the distribution of (X ,  2(2) has density f w.r . t .  
Lebesgue-measure ~), then (X,  Xz) have positive likelihood ratio 
dependence (plrd) if for all x,~y~, i = l ,  2 

f ( x ,  x2)f(y~, Y2) >- f(x~, y~)f(y~, x2) . 

Remark 3. 
1) If k = / = l ,  plrd is equivalent to the notion TP~ (totally positive of 

order 2) (cf. Barlow, Proschan [2], p. 143). 
2) (2(1, X0 plrd is equivalent to the condition tha t  px~,x~=~ has a (multi- 

variate) monotone likelihood ratio when x is considered as a param- 
eter. (X,  X~) plrd is equivalent to (X~, 2(,) plrd. 

3) One can avoid an inconsistency of Definition 3, 2) arising from dif- 
ferent  choices of f by including an a.s. condition. 

The class of matrices which turn out to be central for these 
dependence concepts are the M-matrices which where introduced by 
Ostrowski. 

DEFINITION 4. Let A ~ R ~• A=(a~j)~.j~. Then A is called an M- 
matrix, if 

(11) a~j=<0, V i C j ,  and if all principal minors are positive. 

An important result on M-matrices is, that  each M-matrix is of 
monotone kind i.e. 

(12) A -~ exists and A - ~ 0 .  
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For several properties of M-matrices see Poole, Boullion [16]. 
For the  application to normal variables we need the  following 

factorization properties. 

LEMMA 1. Let A be positive definite. Then A is an M-matr ix  

(13) 
< > There exists a lower tr iangular M-matr ix  L with A = L L  r. 

.~ > There exists an upper triangular M-matr ix  U with A =  UU r. 

PROOF. Fiedler and Ptak [7] have shown the  existence of a lower 
t r iangular  M-matrix L and an upper t r iangular  M-matrix U such tha t  

(14) A = L  U. 

Since A = A  r we have L U =  UrL  r. Defining D = L - ~ U r = U ( L r )  -1, D is 
a diagonal matr ix and 

(15) L D =  U r . 

(15) implies tha t  D>:0 since L, U are M-matrices. So we can define 

[~=LD m and obtain A = L L  r with an M-matrix L. This proves the  
first equivalence. For the second equivalence observe tha t  with A =  
(a~j) also B=(a~_~+,,~_j+~) is an M-matrix. So there  exists a lower trian- 
gular M-matrix L with B = L L  r. Let L=(I~)  and define U=(I~+I .... +~_~) ; 
then  U is an upper tr iangular M-matrix and it is easy to see tha t  A =  
UU r. 

Remark  4. The second equivalence of Lemma 1 was proved in 
a different way by Jacobsen [10]. 

Lemma 1, (12) and Proposition 4, g) imply the  following corollary. 

COROLLARY 1. Tf X is positive definite and i f  X -1 is an M-matr ix ,  
then X ~ P~ and, especially, N(I~, X)-distributed random variables are as- 
sociated. 

From the following characterization of positive stochastic depend- 
ence in normal distributions we isolate the following lemma. 

LEMMA 2. Let X=(X1 ,  X2) be N(O, X)-distributed and X be positive 
definite. I f  X -~ is an M-matr ix ,  then there exists a random variable Y~ 
with independent components and independent o f  X and, furthermore,  
a monotonically nondecreasing func t ion  h such that X has the same 
distribution as 

(16) (x. h(X. . 
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PROOF. By Lemma 1 there exists a lower triangular M-matrix L 
such tha t  .I-~=LrL or, equivalently, X=L-~(L-~) r. If Y = ( Y .  Y2) is 
N(0,/ .)-distributed we, therefore, may assume that  X=L-~Y.  Let L =  

( L~ 0 ) be the partition of L corresponding to XL, X~, then L~, L~ 
L12 L22 

are M-matrices and L ~ 0  (componentwise). Therefore, using that  

we obtain 

and 

= L YI 

X~ = - L&~L~2L5 ~ Y~+ L~ ~ Yz = - L&~L~2X~ + L~ ~ Y~ . 

Defining h(x,, Y2):=-L~L~2x~+L~Y~ and using L~>_0, L~2=<0 we obtain 
that  h is monotonically nondecreasing and X = ( X ,  h(X, Y2)). 

For x = ( x , . . . ,  x,) and R c  { 1 , . . . ,  n}, R = ( r , . . . ,  r~) denote by xR 
:=(x,~, . . - ,  x~) and x(,~=(xl, . . . ,  x , ,  x , ,  . . . ,  x,). 

THEOREM 2. Let X be positive definite and X be N(O, X)-distributed. 
Then the following conditions are equivalent. 

(17) 

a) X -~ is an M-matrix 

b) for all i ~ n  : X~ T,~. Xc~ 

c ) '  for all R, Sc{1 ,  . . . , n } ,  R N S = r  

PROOF. a) ~ C) 

x s  . 

By a simple conditioning argument  it holds for S~cS~ that  

(18) XR T~t. Xs~ implies XR Tst. Xs. �9 

((18) is independent from the normality assumption). Therefore, we 
may assume tha t  R + S =  {1, . . . ,  n}. Furthermore,  it is clear from the 
definition tha t  the condition that  2 -1 is an M-matrix, implies that  (Q2:QT) -~ 
=(Q-grl-IQ -1 is an M-matrix for all permutation matrices Q. Now using 
Lemma 2 with Q corresponding to the partition R + S =  {1 , . . . ,  n} (i.e. 
Q(X, X2)= (Xg, Xs)) we obtain a representation (X~, Xs)= (X~, h(XR, Ys)) 
as in Lemma 2. But this is enough to imply X~ Ts~. Xs (of. Barlow, 
Proschan [2], p. 147, Lemma 4.8). 

c) ~ b) 
Take specially R =  [i}, S -  {1, . . . ,  i - 1 ,  i+1 ,  . . . ,  h i .  
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b) > a) 

Let I = (  XL~ I ' l l  be a partition of I corresponding to X = ( X ,  X2). 

Then the conditional distribution of X~ given X.~=x2 is given by 

(19) PXllx~=~=N(I~2I~'x2, Xt.2) with v - v  v I-~Xr ~ 1 . 2 - -  ~ 1 1  -- ~ 1 2  22 12 

(cf. Theorem 2.2.7, p. 47 of Srivastava, Khatri  [22]). 

Therefore, Xl ~'~. X2 if and only if 

(20) li~I~ I >= 0 . 

I - ' = ( A ' *  A,z~ then we obtain from Corollary 1.4.2 of Sriva- Let now \ A~ A22/' 
- - I  __ Y - - I  stava, Khatr i  [22] I ~ - A 2 2 - A ~ A ~ A ~  and I~=-A?#A~2122, which im- 

plies tha t  

(21) I 1 ~ I ~  I = - -  A51A12>= 0 . 

So from X~ ~ X,~ we obtain, that  a,~>0 and atj__<0, v j ~ e l ,  where A =  
( a , ) = I  -~. Using the above given permutation argument we obtain 
similarly, that  a , > 0  and a,~__<0, v i C j ,  l<__i~_n, i.e. $ -1 is an M-matrix. 

Remark 5. (20) and (21) may be used to give a characterization 
of the notion that  X is stochastically increasing in sequence, i.e. X, T~. 
( X , . . . ,  X~-O, 2<i<n.  This notion is equivalent to the condition 

(22) XR T~. Xs for all R >= S, R fq S = r 

(R>=S means that  each component of R is larger than 
each component of S). 

For the proof of (22) apply Theorem 4.13 of Barlow, Proschan [2]. 

Concerning plrd we have the following result. 

THEOREM 3. Let X be N(O, I)-distributed, where I is positive defi- 
nite. Then the following conditions are equivalent: 

a) I -~ is an M-matrix 

b) (X, Xc~)) are plrd, l<_i<_n 
(23) 

c) (X,, Xs) are plrd for all R + S =  [ 1 , . . . ,  n} 

d) (X, X~) are plrd for all i C j .  

PROOF. The equilvalence of a) and d) is due to Sarkar [18] and 

Barlow, Proschan [2]. Let A = (  A'~ A~z~=X-~ be a partition corre- 
\A~ A22/ 
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sponding to X=(X1, X2) and let f ( x .  x2)=((2~)" det I)lne-C~l'=2>~(~.~ >~a (we 
consider x~, x~ as row vectors). Then (X.  X~) is plrd 

<. > for all x = ( x .  x2)~_(y, y~)=y 

f(x~, x~.)f(y, y2)>_-f(x. Y2)f(Y. x2) 

/. ~, x~A~xr+y~A~2yr<~x~A~2y~+y~A~x r for x~_y 

(x~--y~)A~2(y~--x2)T~O for x,~y~, i=1, 2 

(24) / - 4  A~2_~0. 

Using a permutation argument (24) implies the equivalence of a), b), c). 

Remark 6. Theorem 3 shows a difference between the notions of 
plrd and positive stochastic dependence. While (X.  X~) plrd for all i 
c j  is equivalent to the condition that  X -~ is an M-matrix. it follows 
from (20). that  the condition X~ T~. Xj for all i C j  is equivalent to the 
much weaker assumption that  X e S~ in other words to the positive 
correlation assumption. In spite of that  'g lobal ly '  both concepts are 
equal for normal distributions. 

RHEINISCH-WESTFALISCHE TECHNISCHE HOCHSCHULE AACHEN 
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