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Abstract. It is proved that the internal path length of a
d–dimensional quad tree after normalization converges in dis-
tribution. The limiting distribution is characterized as a fixed
point of a random affine operator. We obtain convergence of all
moments and of the Laplace transforms. The moments of the
limiting distribution can be evaluated from the recursion and
lead to first order asymptotics for the moments of the internal
path lengths. The analysis is based on the contraction method.
In the final part of the paper we state similar results for general
split tree models if the expectation of the path length has a
similar expansion as in the case of quad trees. This applies in
particular to the m-ary search trees.
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1 Introduction

Quad trees are a classical data structure introduced by Finkel and Bentley
[7] to store and retrieve data from some multidimensional data space that
extends the familiar binary search tree for one dimensional data. Several
characteristics of quad trees have been analysed in the standard random
model which assumes that the data points are independent and identically
distributed.
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The mean depth has been found in Flajolet, Labelle, Laforest and Salvy
[9];

IEDn = λd ln n + µd + o(1) (1)

with λd = 2/d and µd has an explicit (more complicated) form which is e.g.
for d = 2 given by 0.4105 . . . numerically. The first order asymptotic had
been given before independently by Flajolet, Gonnet, Puech and Robson [8]
and Devroye and Laforest [5]. The variance of Dn is of order (2/d2) ln n
(see Devroye and Laforest [5] for d = 2 and Flajolet and Lafforgue [10] for
d ≥ 2). In the last mentioned paper also asymptotic normality of Dn has
been proved.

The expected height Hn still is of logarithmic order (see Devroye [2], [3])

IEHn ∼ c

d
ln n, c = 4.31107 . . . (2)

and Hn/ ln n
P→ c/d (where

P→ denotes convergence in probability). The
asymptotic variance and distribution are still unknown. For a presentation
of basic results and an introduction to alternative data structures we refer
to Mahmoud [12].

In this paper we investigate the asymptotics of the internal path length
Yn, i.e. of the sum of the levels of each node of the quad tree built from n
random data. The asymptotics of the mean IEYn results from (1)

IEYn =
2

d
n ln n + µdn + Rn (3)

where lim Rn/n = 0.
We will prove that the variance of Yn is asymptotically of the form ∼ vdn

2

and obtain an explicit formula for vd. We, therefore, introduce the normalized
internal path length

Xn =
Yn − IEYn

n
. (4)

Our main result in this paper states that Xn converges weakly to a random
variable X which is characterized as the fixed point of a random affine op-
erator T . We also obtain convergence of all moments and of the Laplace
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transform; X has exponential tails. It’s moments are determined (in princi-
ple) by a recursion. We calculate the second moment of X which gives the
asymptotic variance vd of Yn.

For the proof we extend the contraction method introduced by Rösler [16]
for the analysis of Quicksort to the analysis of the internal path length of quad
trees. It seems difficult to extend the martingale method which was used in
Régnier [15] for the analysis of Quicksort. The contraction method has been
further developed independently in Rösler [17] and Rachev and Rüschendorf
[14]. The essential ingredient our proof uses is the recursion satisfied by Yn

plus the second order asymptotics of the first moments as in (3). We do
not need a priori asymptotics of the second moments. The explanation of
this behavior from the point of view of the contraction method is the fact,
that the limiting operator T of the recursion of the Yn (which exists by the
asymptotics of IEYn!) has contraction properties w.r.t. the l2–metric. This
implies that only control of the first moments is necessary as is well known
from the theory of probability metrics.

In the final part of the paper we consider general split tree models as
introduced in Devroye [4]. The limit theorem for the quad trees extends to
this class of split trees if the first moment of the path length has a similar
expansion of the form cn ln n + dn + o(n), as in the case of quad trees. This
method thus yields a limit theorem also for m-ary trees.

The authors would like to thank P. Flajolet for an essential hint to the
limiting distribution.

2 Quad trees and the internal path length

A quad tree is constructed similarly to a binary search tree. Given a data
vector (p(1), . . . , p(n)), p(i) ∈ IRd, the points p(i) build up successively the
quad tree. Without loss of generality p(i) ∈ [0, 1]d. Then the i–th data
point p(i) ∈ [0, 1]d partitions the rectangle it belongs to into 2d quadrants
and thus creates 2d new rectangles (quadrants) each having p(i) as a vertex.
See Flajolet, Gonnet, Puech and Robson [8] or Mahmoud [12] for details of
this contruction. We use a special ordering for the insertion of a new key
p ∈ [0, 1]d as in Flajolet et al. [8]. When comparing p with a node w ∈ [0, 1]d

of the quad tree we determine the number of the subtree in which p is inserted
in the following way: The node w partitions the quadrant it belongs to into
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2d subquadrants. Let the number of a subquadrant be given by

d∑

k=1

2k−11{wk≤sk}, w = (wi), s = (si) (5)

if s is a point in this subquadrant. Now, p is inserted in the i–th subtree if
it belongs to the i–th subquadrant. For the binary representation of 0 ≤ i ≤
2d − 1

i =
d∑

k=1

ak2
k−1, ak = ak(i) ∈ {0, 1} (6)

let

E(i) := {k ∈ {1 . . . , d} | ak(i) = 1},
N(i) := {k ∈ {1 . . . , d} | ak(i) = 0}.

Then equivalently, p is inserted in the i–th subtree of a node w if pk ≥ wk

for all k ∈ E(i) and pk < wk for all k ∈ N(i).
A random d–dimensional quad tree is a quad tree built up by inserting

a sequence of points (p(1), . . . , p(n)) independent and identically distributed
on [0, 1]d. Note that the insertion depends only on the relative ranks of the
components and so the results for random quad trees hold true for general
multivariate distributions with continuous marginals and independent com-
ponents.

For a random quad tree with n nodes let I(n) = (I
(n)
0 , . . . , I

(n)

2d−1) denote

the number of nodes in the 2d subtrees. Let U = (U1, . . . , Ud) denote the first
key to be inserted, i.e. U1, . . . , Ud are independent, uniformly distributed on
[0, 1]. Given U = u = (u1, . . . , ud), the volume of the i–th quadrant (in the
above numbering) generated by U is given by

〈u〉i :=
∏

k∈N(i)

uk

∏

k∈E(i)

(1− uk) (i = 0, . . . , 2d − 1). (7)

Let 〈u〉 := (〈u〉0, . . . , 〈u〉2d−1) denote the vector of the generated volumes,
then I(n) is conditionally given U = u multinomial M(n−1, 〈u〉) distributed:

IP I(n) |U=u = M(n− 1, 〈u〉). (8)

In the following we denote convergence in probability and convergence in

distribution by
P→ and

D→ respectively and write
D
= for equality in distribution
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when either two random variables are compared or a random variable and a
probability distribution are compared.

The conditional distribution in (8) implies the week law of large numbers
for I(n).

Lemma 2.1 The vector I(n) of the sizes of the subtrees satisfies

IE

(
I

(n)
k

n
− 〈U〉k

)2

=
IE〈U〉k(1− 〈U〉k)

n
(9)

and

I(n)

n
P−→ 〈U〉 = (〈U〉0, . . . , 〈U〉2d−1) (10)

where U is uniformly distributed on [0, 1]d.

From a geometrical point of view Lemma 2.1 says that the limiting distribu-
tion of I(n)/n is concentrated on a d–dimensional smooth surface embedded

in a (2d−1)–dimensional simplex in IR2d

. In particular, for d = 2 this surface
is a hyperbolic paraboloid.

Since 0 ≤ ‖I(n)/n‖ ≤ 1, Lemma 2.1 implies the convergence of all mo-
ments. We shall need second moments in the following.

Corollary 2.2 The asymptotic of the second moments of I(n)/n is given by

lim
n→∞ IE


I

(n)
k

n




2

= (1/3)d. (11)

Proof:

lim
n→∞ IE


I

(n)
k

n




2

= IE〈U〉2k = IE〈U〉20 = IE(U1 · . . . · Ud)
2

= (IEU2
1 )d = (1/3)d

since 〈U〉k D
= 〈U〉0 and the components are independent.

Let Yn denote the internal path length of the random d–dimensional quad
tree, i.e. Yn is the sum of the depths of the nodes in the quad tree where
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the depth of the root is defined to be one; then Y1 = 1, Y2 = 3, . . . Since the
subtrees of a random quad tree are again random quad trees the following
recursion for the internal path length holds in distribution

Yn
D
=

2d−1∑

k=0

Y
(k)

I
(n)
k

+ n (12)

where (Y
(k)
i ) are independent copies of Yi and {(Y (k)

i ), k = 0, . . . , 2d−1}, I(n)

are independent. We define Y0 := 0. The expectation of the internal path
length Yn is given in (3). The normalized version Xn of Yn given by

Xn :=
Yn − IEYn

n
(13)

satisfies the modified recursion

Xn
D
=

2d−1∑

k=0

I
(n)
k

n
X

(k)

I
(n)
k

+ Cn(I(n)) (14)

where (X
(k)
i ) are independent copies of Xi, further {(X(k)

i ), k = 0, . . . , 2d −
1}, I(n) are independent and

Cn(i) := 1 +
1

n




2d−1∑

k=0

IEYik − IEYn


 (15)

for i = (i0, . . . , i2d−1) with
∑

ik = n− 1.

3 Limit theorem for the internal path length

In order to obtain a limiting form of the recursion (14) we introduce the
simplex

T2d−1 := {x ∈ [0, 1]2
d |

2d−1∑

i=0

xi = 1} (16)

and the entropy functional

C : T2d−1 → IR, C(x) := 1 +
2

d

2d−1∑

i=0

xi ln xi (17)
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where x ln x is defined to be 0 for x = 0. Let

Gn := {(i0, . . . , i2d−1) ∈ IN2d |
2d−1∑

k=0

ik = n− 1}

denote the domain of Cn, then as in Rösler [16] C approximates Cn in the
following sense:

Lemma 3.1 Let (z(n)) be a sequence, z(n) ∈ Gn such that z(n)/n → z ∈
(0, 1]2

d
, then

lim
n→∞Cn(z(n)) = C(z). (18)

Furthermore

sup
n∈IN

‖Cn‖∞ < ∞. (19)

Proof: Let (z(n)) be a sequence, (z(n)) ∈ Gn such that z(n)/n → z ∈ (0, 1]2
d
.

Using the expansion (3) of the expectation of Yn,

IEYn =
2

d
n ln n + µdn + Rn with Rn/n = o(1),

we obtain

Cn(z(n)) = 1+
1

n




2d−1∑

k=0

IEY
z
(n)
k

− IEYn


 (20)

= 1+
1

n




2d−1∑

k=0

(
2

d
z

(n)
k ln z

(n)
k + µdz

(n)
k + R

z
(n)
k

)
− 2

d
n ln n−µdn−Rn


.

Since
∑2d−1

k=0 z
(n)
k = n− 1 by definition of Gn,

2d−1∑

k=0

2

d
z

(n)
k ln z

(n)
k − 2

d
n ln n =

2d−1∑

k=0

2

d
z

(n)
k ln

z
(n)
k

n
− 2

d
ln n. (21)

With (20) and (21) we derive

Cn(z(n)) = 1 +
1

n




2d−1∑

k=0


2

d
z

(n)
k ln

z
(n)
k

n
+ R

z
(n)
k


− 2

d
ln n− µd −Rn




= C(z(n)/n) +
1

n

2d−1∑

k=0

R
z
(n)
k

− 1

n

(
2

d
ln n− µd −Rn

)
. (22)
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Now observe that
2α := min

0≤k≤2d−1
zk > 0

since z ∈ (0, 1]2
d
. This implies z

(n)
k ≥ αn for 0 ≤ k ≤ 2d−1 and n sufficiently

large. Let R̄n := supi≥n |Ri|. Then (R̄n)n∈IN is decreasing and R̄n/n → 0.
For n sufficiently large it follows

∣∣∣∣∣∣
1

n

2d−1∑

k=0

R
z
(n)
k

∣∣∣∣∣∣
≤ 1

n

2d−1∑

k=0

R̄
z
(n)
k

≤ 1

n

2d−1∑

k=0

R̄bαnc

≤ 2dα
1

bαncR̄bαnc → 0 for n →∞. (23)

The third summand of (22) also tends to zero. So (22) implies

Cn(z(n)) = C(z(n)/n) + o(1).

Therefore, continuity of C and the triangle inequality imply
∣∣∣Cn(z(n))− C(z)

∣∣∣ ≤
∣∣∣Cn(z(n))− C(z(n)/n)

∣∣∣ +
∣∣∣C(z(n)/n)− C(z)

∣∣∣ −→ 0.

In order to get an estimate for Cn(z(n)) uniformly in z(n) ∈ Gn let

L := sup
n∈IN

|Rn/n| < ∞.

Then (22) implies

|Cn(z(n))| ≤ |C(z(n)/n)|+ 2dL + o(1)

≤ ‖C‖∞ + 2dL + o(1). (24)

The second claim follows.

Lemmas 2.1, 3.1 suggest that a limit X of (Xn) is a solution of the limiting
equation

X
D
=

2d−1∑

k=0

〈U〉kX(k) + C(〈U〉) (25)
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where X(k) are iid copies of X and {X(k), k = 0, . . . 2d−1}, U are independent,
U uniformly distributed on [0, 1]d.

Define

M0,2 := {µ ∈ M1(IR1,B1) | IEµ = 0, Var µ < ∞} (26)

where IEµ, Var µ are defined as expectation respectively variance of a corre-
sponding random variable and M1(IR1,B1) denotes the space of probability
measures on the real line. Define the random affine operator

T : M1(IR1,B1) → M1(IR1,B1), T (µ)
D
=

2d−1∑

k=0

〈U〉kZ(k) + C(〈U〉) (27)

where (Z(k)), U are independent, Z(k) D
= µ and U is uniformly distributed on

[0, 1]d.
Our aim is to show that T is the limiting operator of the recursive se-

quence (Xn) in (14). Supply M0,2 ⊂ M1(IR1,B1) with the minimal l2–metric

l2(µ, ν) = inf{(IE|X − Y |2)1/2 : X
D
= µ, Y

D
= ν}. (28)

For random variables X,Y we use synonymously l2(X,Y ) = l2(IP
X , IP Y ).

Then (M0,2, l2) is a complete metric space and l2(µn, µ) → 0 is equivalent to

µn
D→ µ and

∫
x2 dµn(x) →

∫
x2 dµ(x). (29)

(see Rachev [13])

Lemma 3.2 T : M0,2 → M0,2 is a contraction w.r.t. l2:

l2(T (µ), T (ν)) ≤
(

2

3

)d/2

l2(µ, ν) for all µ, ν ∈ M0,2. (30)

Proof: Obviously Var (T (µ)) < ∞ and

IET (µ) = 1 +
2

d

2d−1∑

k=0

IE [〈U〉k ln〈U〉k]

= 1 +
2

d
2d IE [〈U〉0 ln〈U〉0]

= 1 +
2

d
2d

∫

[0,1]d
u1 · · · ud ln(u1 · · ·ud) dλd(u)
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= 1 + 2d+1
(∫ 1

0
u du

)d−1 ∫ 1

0
u ln u du

= 1 + 4(−1/4) = 0 (31)

so T is a well defined mapping T : M0,2 → M0,2.
To prove contractivity let µ, ν ∈ M0,2 and let (V (k),W (k)), U be inde-

pendent, U uniformly distributed on [0, 1]d. Let (V (k),W (k)) be optimal l2–

couplings of (µ, ν), i.e. V (k) D
= µ,W (k) D

= ν and l22(µ, ν) = IE(V (k) −W (k))2.
Then using the independence properties and IEV (k) = IEW (k) = 0

l22(T (µ), T (ν)) = l22




2d−1∑

k=0

〈U〉kV (k) + C(〈U〉),
2d−1∑

k=0

〈U〉kW (k) + C(〈U〉)



≤ IE




2d−1∑

k=0

〈U〉k(V (k) −W (k))




2

=
2d−1∑

k=0

IE
[
〈U〉2k(V (k) −W (k))2

]

= 2d · IE〈U〉20 · l22(µ, ν)

=
(

2

3

)d

l22(µ, ν) (32)

so T is a contraction on M0,2.

By Banach’s fixed point theorem T has a unique fixed point ρ in M0,2 and

l2(T
n(µ), ρ) → 0 (33)

exponentially fast for any µ ∈ M0,2.
We call a random variable X with distribution ρ also a fixed point of T .

(compare equation (25))

Theorem 3.3 (Limit theorem for the internal path length) The normalized
internal path length Xn of a random quad tree converges w.r.t. l2 to the
unique fixed point X in M0,2 of the limiting operator T , i.e.

l2(Xn, X) → 0. (34)
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Proof: Let X(k)
n

D
= Xn, X(k) D

= X, 0 ≤ i ≤ 2d − 1 such that
(X(k)

n , X(k)) are optimal couplings of Xn, X, i.e. l22(Xn, X) = IE(X(k)
n −

X(k))2. Furthermore let I(n) be conditionally given U = u multino-
mial M(n − 1, 〈u〉) distributed and by Lemma 2.1 assume w.l.o.g. that
I(n)/n → 〈U〉 a.s., U uniformly distributed on [0, 1]d. Finally assume
that ((X(0)

n )n∈IN , X(0)), . . . , ((X(2d−1)
n )n∈IN , X(2d−1)), (I(n)/n, U) are indepen-

dent. Then using the independence properties and that IEX(k) = IEX(k)
n = 0

we obtain

l22(Xn, X) = l22




2d−1∑

k=0

I
(n)
k

n
X

(k)

I
(n)
k

+ Cn(I(n)),
2d−1∑

k=0

〈U〉kX(k) + C(〈U〉)



≤ IE




2d−1∑

k=0


I

(n)
k

n
X

(k)

I
(n)
k

− 〈U〉kX(k)


 + Cn(I(n))− C(〈U〉)




2

= IE




2d−1∑

k=0


I

(n)
k

n
X

(k)

I
(n)
k

− 〈U〉kX(k)




2

+
(
Cn(I(n))− C(〈U〉)

)2




=
2d−1∑

k=0

IE


I

(n)
k

n
X

(k)

I
(n)
k

− 〈U〉kX(k)




2

+IE
(
Cn(I(n))− C(〈U〉)

)2
. (35)

By Lemma 2.1 respectively dominated convergence and Lemma 3.1 as n →∞

IE(I
(n)
k /n− 〈U〉k)2 → 0 and (36)

IE(Cn(I(n))− C(〈U〉))2 → 0. (37)

For the first term of (35) consider

IE


I

(n)
k

n
X

(k)

I
(n)
k

− 〈U〉kX(k)




2

= IE


I

(n)
k

n

(
X

(k)

I
(n)
k

−X(k)
)

+


I

(n)
k

n
− 〈U〉k


 X(k)




2

≤ IE

(
I

(n)
k

n

(
X

(k)

I
(n)
k

−X(k)
) )2

+ IE

( 
I

(n)
k

n
− 〈U〉k


 X(k)

)2
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+2 · IE

I

(n)
k

n

(
X

(k)

I
(n)
k

−X(k)
) 

I
(n)
k

n
− 〈U〉k


 X(k)


 . (38)

By independence and (36) the second term in (38) converges to zero. With
the Cauchy-Schwarz-inequality the third term in it’s absolute value is esti-
mated from above by

2IE





I

(n)
k

n




2 
I

(n)
k

n
− 〈U〉k




2 (
X(k)

)2


 IE

(
X

(k)

I
(n)
k

−X(k)
)2

= o(1)IE
(
X

(k)

I
(n)
k

−X(k)
)2

, (39)

where again (36) has been used. With (35)–(39) and denoting an :=
l22(Xn, X) we derive

an ≤ 2dIE

( 
I

(n)
k

n
+ o(1)




(
X

(k)

I
(n)
k

−X(k)
) )2

+ bn

= 2d
n−1∑

i=0

IP ({(I(n)
k /n) = (i/n)})

×((i/n)2 + o(1)) IE(X
(k)
i −X(k))2 + bn (40)

where bn → 0 for n →∞. From Corollary 2.2 we conclude

an ≤ 2d
n−1∑

i=1

IP ({(I(n)
k /n) = (i/n)}) ((i/n)2 + o(1)) sup

1≤i≤n−1
ai + bn

= ((2/3)d + o(1)) sup
1≤i≤n−1

ai + bn (41)

which implies that (an) is bounded. This implies as in Rösler [16] that for a
given ε > 0 there exists n0 such that for n ≥ n0

an ≤ a + ε with a := lim sup
n→∞

an

and the prefactor in (41) is uniformly less than a γ < 1. Therefore

an ≤ 2d
n0−1∑

i=1

IP


I

(n)
k

n
=

i

n




((
i

n

)2

+ o(1)

)
ai
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+2d
n−1∑

i=n0

IP


I

(n)
k

n
=

i

n




((
i

n

)2

+ o(1)

)
(a + ε) + bn

≤ γ(a + ε) + o(1). (42)

Then 0 ≤ a = lim sup an ≤ γ(a + ε) which implies a = 0.

4 Moments and tail of the internal path

length

Let X be the unique solution of the fixed point equation (25) for the internal
path length in M0,2

X
D
=

2d−1∑

k=0

〈U〉kX(k) + C(〈U〉) (43)

where X(k) are iid copies of X and {X(k), k = 0, . . . 2d−1}, U are independent,
U uniformly distributed on [0, 1]d. Then (43) implies recursive equations for
the moments IEXk of X which can be solved (in principle) as soon as we
know the existence of higher order moments. For the variance of X we obtain
(note that IEX = 0)

Proposition 4.1 (Variance of X) The variance of the limit X of the nor-
malized internal path length of a d–dimensional random quad tree is given
by

vd =
21− 2π2

9d(1− (2/3)d)
. (44)

In particular

v1 = 0.4202 . . . , v2 = 0.1260 . . . , v3 = 0.0663 . . .

Proof: (43) and the independence properties imply

IEX2 =

(
1−

(
2

3

)d
)−1

IEC2(〈U〉).
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By calculation as in the proof of Lemma 3.2

IEC2(〈U〉) = −1 +
4

d2
IE




2d−1∑

i=0

〈U〉i ln〈U〉i



2

= −1 +
4

d2

2d−1∑

i,j=0

IE[〈U〉i〈U〉j ln〈U〉i ln〈U〉j].

The distribution of the factors 〈U〉i〈U〉j ln〈U〉i ln〈U〉j only depends on the
number of digits in which the dual representations of i and j differ (see (5),
(6)). Therefore

IE




2d−1∑

i=0

〈U〉i ln〈U〉i



2

=
d∑

h=0

2d

(
d

h

)
lh. (45)

lh can be calculated by first applying the functional equation of the logarithm.
This yields d2 terms of the form

∫

[0,1]d

d−h∏

i=1

u2
i

d∏

i=d−h+1

(ui(1− ui)) ln ũk ln ũl dλd(u)

with ũk = uk for k ≤ d− h and ũk = 1− uk for k > d− h. Then distinguish
the cases 1 ≤ k, l ≤ d − h and d − h + 1 ≤ k, l ≤ d for k = l and k 6= l
and finally 1 ≤ k ≤ d − h < l ≤ d. The arising integrals can be calculated
elementary. This implies the representation

vd =

(
1−

(
2

3

)d
)−1 [

−1 +
4

d2

(
2

3

)d d∑

h=0

(
d

h

) (
1

2

)h

sh

]
(46)

where

sh =

(
d

3
− h

2

)2

+
d

9
+

(
5

4
− π2

6

)
h.

Now a simplification with the help of Maple leads to the stated variance.

l2-convergence implies convergence of second order moments. We obtain as
Corollary the first order asymptotics of the variance of the internal path
length Yn.

14



Corollary 4.2

Var (Yn) ∼ vdn
2 (47)

with vd given in (44).

In the Quicksort case d = 1 Rösler [16] showed finiteness of the Laplace
transform of X and convergence of the Laplace transforms of Xn to that
of X. In particular this implies finiteness and convergence of higher order
moments. Röslers proof directly extends to the case d ≥ 1. Lemma 4.1 in
Rösler [16] holds in any dimension as follows.

Lemma 4.3 ∀L > 0 : ∃KL > 0 : ∀n ∈ IN and ∀λ ∈ [−L,L] holds

IE exp(λXn) ≤ exp(λ2KL). (48)

Proof: In place of the random variable Un in Röslers proof use

Vn := ‖I(n)/n‖2 − 1.

Then

a)− 1 ≤ Vn < 0 for all n ∈ IN

b) sup
n∈IN

IEVn < 0

c) sup
n∈IN

‖Cn‖∞ < ∞ by Lemma 3.1.

For the proof of b) note that IEVn < 0 for all n ∈ IN and Vn
D→ ‖〈U〉‖2 − 1

which implies by boundedness of Vn, IEVn → IE(‖〈U〉‖2−1) < 0. From a)–c)
one obtains (48) as in Rösler [16].

Theorem 4.4 (Convergence of Laplace transforms) For the normalized in-
ternal path length Xn holds

IE exp(λXn) → IE exp(λX), λ ∈ IR1. (49)

Proof: The exponential bound in (48) implies uniform integrability of
exp(λXn) which by Theorem 3.3 yields (49).

Finally using the expansion of the mean IEYn in (3) one obtains as in Corol-
lary 4.3 of Rösler [16] the following bounds for (large) deviations.
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Corollary 4.5 Let Yn denote the internal path length of a d–dimensional
quad tree. Then for any λ, ε > 0 there exists Cλ,ε > 0 such that for all
n ∈ IN

IP (|Yn − IEYn| ≥ εIEYn) ≤ Cλ,εn
−(2λε)/d.

Equivalently

IP (|Yn − IEYn| ≥ εIEYn) = O(n−k)

for all k ∈ IN .

5 Extension to a general split tree model

Several further random trees lead to a type of recursion for the internal path
length similar to the recursion (12) for the random quad tree. For other
characteristic quantities as the depth of insertion of a key or the height of
a tree Devroye [4] gave a uniform treatment for a rather general model of
a random tree which he calls the random split tree. This model contains
many common trees, e.g. the random binary search tree, the m-ary search
tree, the random quad tree . . . A related model for a general class of random
trees is discussed in Aldous [1]. Devroye’s random split tree is determined
by a fixed branch factor b > 0, the number s0 ≥ 0 of keys contained in an
internal node (usually s0 = 1, but for the m-ary tree we have s0 = m − 1
keys in an internal node; in the following we assume s0 ≥ 1) and a split
vector V = (V1, . . . , Vb) of random probabilities,

∑
Vk = 1, Vk ≥ 0 which

controls the splitting process during the insertions of keys independently at
each node together with some further parameters. For details see Devroye [4].

For such a general type of random split tree the internal path length Yn

satisfies the recursion

Yn
D
=

b∑

k=1

Y
(k)

I
(n)
k

+ n (50)

where (Y
(k)
i ) are independent copies of Yi, {(Y (k)

i ), k = 1, . . . , b}, I(n) are
independent and I(n) (the vector of the cardinalities of the subtrees) is con-
ditionally given V = (v1, . . . , vb) multinomial M(n−s0, v1, . . . , vb) distributed.
Here V is the split vector controlling the splitting process at the root. Now

16



the question arises under which conditions on V a limit theorem for the in-
ternal path length of a random split tree holds. We can’t solve this problem
in general. Inspecting our proof for the case of the random quad tree from
section 3 we will explain that similar limit theorems as in the case of quad
trees hold true if the first moment IEYn admits an expansion of the form

IEYn = cn ln n + dn + o(n) (51)

with c > 0 and d ∈ IR. In particular this type of expansion implies that the
tree is well balanced like random binary trees. For an example which leads to
a different order of expansion see Devroye [4] and the references given therein.

Assume (51) is valid for a random split tree with split vector V =
(V1, . . . , Vb). Then the normalized internal path length

Xn :=
Yn − IEYn

n

analogously to (14) satisfies the modified recursion

Xn
D
=

b∑

k=1

I
(n)
k

n
X

(k)

I
(n)
k

+ Cn(I(b)). (52)

Here (X
(k)
i ) are i.i.d. copies of Xi, further {(X(k)

i ), k = 1, . . . , b}, I(n) are
independent and

Cn(i) := 1 +
1

n

(
b∑

k=1

IEYik − IEYn

)
(53)

for i = (i1, . . . , ib) with
∑

ik = n− s0 (cf. (15)). The entropy functional

C : Tb−1 → IR, C(x) := 1 + c
b∑

k=1

xi ln xi (54)

approximates Cn in the sense of Lemma 3.1. Here the expansion (51) is used.
The constant c in (54) is identical to the leading constant in (51). Therefore
the limiting equation for the normalized internal path length is given by

X
D
=

b∑

k=1

VkX
(k) + C(V) (55)
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where X(k) are i.i.d. copies of X, X(1), . . . , X(b),V are independent and V is
a split vector. The associated random affine operator (cf. (27)) similarly to
the proof of Lemma 3.2 turns out to be a contraction on M0,2 w.r.t. l2 with
contraction factor

(
IE

b∑

k=1

V 2
k

)1/2

=: γ1/2 < 1. (56)

(By
∑

Vk = 1, Vk ≥ 0 we deduce IE
∑

V 2
k ≤ 1. The case IE

∑
V 2

k = 1
corresponds to a degenerated tree contradicting (51).) Also the limit theorem
corresponding to Theorem 3.3 can be established. Observe that the prefactor
in (42) is given in general using an analogue of Corollary 2.2 by

IE
b∑

k=1

(
I(n)

n

)2

= IE
b∑

k=1

V 2
k + o(1)

= γ + o(1) < 1 (57)

for n sufficiently large.
Further the results of section 4 concerning the Laplace transform, higher

order moments and large deviation of the internal path length hold true in
this general setting. Alltogether we can formulate the following limit theorem
for general split tree models.

Theorem 5.1 (Limit theorem for the path length of split trees) Let Yn de-
note the internal path length of a general split tree model with split vector
V = (V1, . . . , Vb). Assume that IEYn has the expansion

IEYn = cn ln n + dn + o(n),

and define Xn := (Yn − IEYn)/n, then

(a) l2(Xn, X) → 0 where X is the unique solution in M0,2 of the fixed point
equation

X
D
=

b∑

k=1

VkX
(k) + C(V) (cp. (55))

with C given in (54),
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(b) exponential moments exist and converge,

IE exp(λXn) → IE exp(λX), λ ∈ IR,

(c) IP (|Yn − IEYn| ≥ εIEYn) = O(n−k) for all k ∈ IN .

As a consequence we obtain as in Proposition 4.1, Corollary 4.2 an expansion
of the variance of first order, i.e. Var Yn ∼ vn2 as n →∞.

Therefore it is a challenging task to identify those split vectors
V = (V1, . . . , Vb) which induce an expansion (51) for the mean of the internal
path length.

A new and general approach to this problem was given recently by Rösler
[18] using renewal theory. In particular Rösler derives an expansion (51) for
the internal path length of the random median of (2k+1)-tree which leads to
the limit law for this kind of tree. Another example which fits not exactly in
the model of a random split tree but is of similar type is the random recursive
tree. The recursion for the path length Xn of the random recursive tree is of
the slightly modified form

Xn = X
(1)
K + X

(2)
n−K + K.

(X
(k)
i ) are i.i.d. copies of Xi, (X

(1)
i ), (X

(2)
i ), K are independent and K is

uniformly distributed on {1, . . . , n − 1}. For this tree the limit law for Xn

was proved by a similar method in Dobrow and Fill [6]. In this paper the
authors also derive explicitly the higher moments of the limiting distribution
in terms of the ζ-function.

Finally we remark that for the random m-ary search tree an expansion
for the mean of the internal path length Yn is known. In Mahmoud [11] the
expansion

IEYn =
1

Hm − 1
Hn(n + 1) + cmn + O(nβ) (58)

with β < 1 is given. Here Hn denotes the nth harmonic number, Hn =∑n
i=1 1/i. Substituting Hn = ln n + γ + O(1/n) in (58) with γ being Euler’s

constant IEYn is of the form (51) with leading constant c = 1/(Hm − 1).
The split vector V = (V1, . . . , Vb) is given by the spacings of m − 1 i.i.d.
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random variables uniformly distributed on [0, 1]. For U1, . . . , Um−1 i.i.d. and
uniformly distributed on [0, 1] denote by U(1), . . . , U(m−1) the order statistics
of U1, . . . , Um−1. Then

V D
= (U(1), U(2) − U(1), . . . , U(m−2) − U(m−1), 1− U(m−1)).

For the normalized internal path length Xn := (Yn − IEYn)/n it follows:

Corollary 5.2 The normalized internal path length Xn of a random m-ary
search tree converges w.r.t. l2 to the unique fixed point X in M0,2 of the
limiting equation

X
D
=

m∑

k=1

VkX
(k) + C(V) (59)

where X(k) are i.i.d. copies of X, X(1), . . . , X(b),V are independent and V
is the vector of spacings of m − 1 independent random variables uniformly
distributed on [0, 1]. The entropy functional C in (59) is given by

C : Tm−1 → IR, C(x) := 1 +
1

Hm − 1

m∑

k=1

xi ln xi. (60)

In principle higher moments can be calculated from the fixed point equa-
tion (59). The first order asymptotic for the second order moment of the
path length of m-ary search trees has already been achieved by generating
function methods (cf. Mahmoud [12, page 142]).
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