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Abstract

Extreme losses of portfolios with heavy-tailed components are stud-
ied in the framework of multivariate regular variation. Asymptotic
distributions of extreme portfolio losses are characterized by a func-
tional γξ = γξ(Ψ, α) of the tail index α, the spectral measure Ψ, and
the vector ξ of portfolio weights. Existence, uniqueness, and location
of the optimal portfolio are analysed and applied to the minimization
of risk measures. It is shown that diversification effects are positive
for α > 1 and negative for α < 1. Strong consistency and asymptotic
normality are established for a semiparametric estimator of the map-
ping ξ 7→ γξ. Strong consistency is also established for the estimated
optimal portfolio.

1 Introduction

Due to empirical evidence which is based on various data it is generally ac-
cepted among practitioners that financial assets often exhibit heavy-tailed
behaviour and strong kind of dependence. This is in particular true for data
sets related to operational risk, insurance risk, currency exchange rates and
stock share prices. In some cases empirical data sets even suggest that the
losses have infinite means (cf. Moscadelli [30], Nešlehová, Embrechts, and
Chavez-Demoulin [31]). As a result of this insight, there has been a lot of
scientific activity on modelling and statistical analysis of heavy-tailed distri-
butions with applications to risk management and portfolio optimization.

The characterization of the probabilistic structure of multivariate ex-
tremes in the seminal paper by de Haan and Resnick [11] provided a sound
theoretical basis for various approaches to the modelling and the estima-
tion of extremal dependence. In particular, modelling concepts based on
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multivariate extreme value theory and copulas have been developed for an
adequate description and analysis of risks and risk portfolios. Comprehen-
sive elaborations on this topic are given in McNeil, Frey, and Embrechts
[29] and Malevergne and Sornette [28]. Further relevant developments on
the combination of extremal risks and dependence are based on the notions
of tail dependence and tail copulas, multivariate excess distributions, and
the empirical distribution of excess directions, see among others Falk et al.
[21], Schmidt and Stadtmüller [37], Klüppelberg and Resnick [27], Hauksson
et al. [23].

The main subject of the present paper is the comparison of portfolio losses
in terms of their sensitivity to extremal events. The asset losses are modelled
by a multivariate regularly varying random vector X. It turns out that both
the sensitivity to extremal events and the probability distribution of extreme
portfolio losses can be characterized by a single number that we therefore call
extreme risk index of the portfolio. The extreme risk index γξ = γξ(α,Ψ) is
a functional of the vector ξ of portfolio weights and the characteristics of the
multivariate regular variation of X, given by the tail index α and the spectral
measure Ψ. As a consequence, based on a non-parametric estimator of Ψ
and an asymptotically normal estimator of α, we propose an estimator of the
extreme risk index that is asymptotically normal under natural conditions.
Asymptotic normality is established for the estimator of γξ as a function
of the portfolio vector ξ and, under weaker conditions, pointwise in ξ. We
also establish strong consistency for the estimator of γξ (both pointwise and
uniform in ξ) and for the estimated optimal portfolio. These results extend
the empirical study on risk aggregation in Hauksson et al. [23].

There has been a lot of recent interest to the problem of portfolio di-
versification in heavy-tailed models based on copulas and tail dependence
[19, 20, 2, 7, 40, 5]. Risk measures related to the Value-at-Risk were found
to exhibit contrary behaviour in models with finite and infinite means: while
they are typically sub-additive in finite mean models, they exhibit super-
additive behaviour in the case of infinite means. Moreover, in the infinite
mean case increasing positive dependence between asset losses decreases the
losses of the diversified portfolio, which contradicts the “usual” principles of
portfolio diversification. This effect was quantified by the limiting relation

qn(α, β) := lim
u→∞

P {X1 + . . .+Xn > u} /P {X1 > u} (1)

for identically distributed random variables X1, . . . , Xn with tail index α
and dependence structure given by an Archimedean survival copula with
parameter β measuring the degree of positive dependence, cf. Embrechts
et al. [20]. In this setting, qn is found to be increasing in β for α ≥ 1 and
decreasing in β for α < 1.
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The extreme risk index γξ extends these results to the case of arbitrary,
i.e. not necessarily equally weighted portfolios and not necessarily identical
marginal distributions. Moreover, γξ is considered for all dependence struc-
tures that are possible in the framework of multivariate regular variation.
The extreme risk index γξ turns out to be a convex function of the portfolio
vector ξ for α > 1 and a concave function for α < 1.

This implies that for α > 1 diversification typically makes the portfolio
better, whereas for α < 1 diversification makes the portfolio worse. In both
cases, higher degree of positive dependence reduces the diversification effects.
An important practical consequence of these findings is the fact that in the
case of infinite means diversification of the portfolio over different assets is
not necessarily desirable.

Further we study the related statistical problems of estimating the ex-
treme risk index and the optimal portfolio. The statistical analysis of the
estimators incorporates the theory of empirical measures and empirical pro-
cesses indexed by functions. This approach is of interest on its own and can
be applied to the estimation of further functionals of the spectral measure Ψ
and the tail index α.

The paper is structured as follows. Section 2 provides the statement of
the problem and some basics on multivariate regular variation that lead to
the definition of the extreme risk index. In Section 3 the extreme risk index
γξ is introduced and the properties of the function ξ 7→ γξ are studied. The
consequences for portfolio diversification are discussed and illustrated. Sec-
tion 4 is dedicated to the statistical results and the underlying assumptions,
whereas Section 5 contains a brief discussion of applications to risk measures.
Finally, the conclusions are drawn in Section 6 and the proofs of statistical
results are given in Appendix A.

2 Heavy-tailed portfolios

Let X(1), . . . , X(d) ∈ R+ be the losses of some risky assets and let ξ ∈ Rd
+

represent the weights of the assets in the portfolio, so that the portfolio loss
is given by ξ>X with X := (X(1), . . . , X(d))>. It is obvious that multiplying
the portfolio vector ξ by a constant factor c > 0 results in multiplication
of the portfolio loss by c. Hence the influence of the portfolio composition
on the portfolio loss can be studied by considering standardized portfolios.
Following the intuition of dividing the whole capital in parts and investing
them in different assets, we standardize portfolio vectors by the sums of
their components. As a result, the set of portfolio vectors ξ that we need to
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consider is the unit simplex in Rd
+:

ξ ∈ Σd :=
{
x ∈ Rd

+ : ‖x‖1 = 1
}
.

The assets X(i) are assumed to be (univariate) regularly varying with tail
index α > 0:

∀x > 0
P{X(i) > tx}
P{X(i) > t}

→ x−α, t→∞. (2)

The tail index α characterizes the existence of absolute moments E|X(i)|β:
for β < α they exist, whereas for β > α they explode.

It is well known that heavier tails dominate the influence of the lighter
ones on the extremes, making asymptotic analysis of extreme losses trivial
if the tail indices are different. Therefore only the case of equal tail indices
is considered here. Moreover, we assume X to be multivariate regularly
varying, i.e. there exists a sequence an → ∞ and a Radon measure ν on
B([0,∞]d \ {0}) such that ν([0,∞]d \ Rd

+) = 0 and, as n→∞,

nP a−1
n X v→ ν on B([0,∞]d \ {0}), (3)

where
v→ denotes the vague convergence of Radon measures and P a−1

n X is the
probability distribution of a−1

n X. For more technical details related to the
Borel σ-field B([0,∞]d \ {0}), vague convergence and multivariate regular
variation we refer to Resnick [36]. Additionally to (3) we assume that the
limit measure ν is non-degenerate in the following sense:

ν
({
x ∈ Rd

+ : x(i) > ε
})

> 0 (4)

for all ε > 0 and i = 1, . . . , d. This assumption ensures that all components
X(i) are relevant for the extremes of X.

The measure ν exhibits the scaling property

ν(tA) = t−αν(A) (5)

for all sets A ∈ B
(
[0,∞]d \ {0}

)
that are bounded away from 0. Furthermore,

for any random vector X satisfying (3) the limit measure ν is unique up to a
constant factor. The measure ν also characterizes the asymptotic distribution
of the componentwise maxima

Mn :=
(
M (1), . . . ,M (d)

)
, M (i) := max

{
X

(i)
1 , . . . , X(i)

n

}
by the limit relation

P
{
a−1
n Mn ∈ [0, x]

} w→ exp
(
−ν
(
Rd

+ \ [0, x]
))
, x ∈ Rd

+ \ {0}.
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Therefore ν is called exponent measure. For more details and other standard-
izations of the measure ν see Resnick [35].

Another consequence of the scaling property (5) is the product represen-
tation of ν in polar coordinates τ(x) := (r, s) := (‖x‖, ‖x‖−1x) with respect
to an arbitrary norm ‖·‖. The induced measure ντ := ν ◦ τ−1 necessarily
satisfies

ντ (dr × ds) = C · ρα(dr)⊗Ψ(ds) (6)

with some constant C > 0, ρα(x,∞) = x−α and a probability measure Ψ on
the set {s ∈ Rd

+ : ‖s‖ = 1}. The measure Ψ is called spectral measure of ν
or X. Since the term “spectral measure” is already used in other areas, Ψ is
also referred to as angular measure.

As shown in Basrak et al. [3], multivariate regular variation of the loss
vector X with tail index α and the non-degeneracy condition (4) imply uni-
variate regular variation of any portfolio loss ξ>X with the same tail index
α. This property is also inherited by the norm ‖X‖. A remarkable detail fact
that the converse implication is also true in the sense that univariate regular
variation of ξ>X for all ξ ∈ Rd with ‖ξ‖ = 1 implies multivariate regular
variation of the random vector X if the common tail index α is positive and
X takes values in Rd

+. This sort of Cramér-Wold theorem was established in
Basrak et al. [3] and Boman and Lindskog [6].

Although the domain of the spectral measure Ψ depends on the norm ‖·‖
used for constructing the polar coordinates, the representation (6) is norm-
independent in the following sense: if (6) holds for some norm ‖·‖, then it
also holds for any other norm ‖·‖∗ that is equivalent to ‖·‖. The tail index α
is the same and the spectral measure Ψ∗ on the subset {s ∈ Rd

+ : ‖s‖∗ = 1}
of the unit sphere corresponding to ‖·‖∗ is obtained from Ψ by the following
transformation:

Ψ∗ = ΨT , T (s) := ‖s‖−1
∗ s.

In the following we consider polar coordinates based on the sum norm
‖·‖1 and set the constant C in (6) to 1, which does not lead to any loss of
generality. Moreover, due to this standardization, the multivariate regular
variation of X can be equivalently written in terms of weak convergence as

L
{
t−1X | ‖X‖1 > t

} w→ ν|A1 on B (A1) (7)

for t→∞, where ν|A1 is the restriction of ν to the setA1 := {x ∈ Rd
+ : ‖x‖1 > 1}.

Further details on regular variation of functions or random variables and
related applications in extreme value theory can be found in the vast liter-
ature on these topics. See among others Bingham et al. [4], Resnick [35],
Basrak et al. [3], Hult and Lindskog [25], de Haan and Ferreira [10], Resnick
[36].
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After the model is specified, an approach to the comparison of extreme
portfolio losses is needed. Let us consider events when the portfolio loss ξ>X
exceeds a high bound t > 0. These events can be written as {X ∈ Aξ,t},
where

Aξ,t :=
{
x ∈ Rd

+ : ξ>x > t
}
. (8)

In order to make the vanishing probabilities P {X ∈ Aξ,t} comparable for
t→∞ we normalize them by the probability P{X ∈ At}, where

At :=
{
x ∈ Rd

+ : ‖x‖1 > t
}
. (9)

The sets Aξ,t and At can be regarded as different kinds of extremal events:
Aξ,t indicates high losses of the portfolio ξ, whereas At is a generic extremal
event indicating that some components of the vector X produce high losses.

Figure 1: Sets A1 and Aξ,1 in R2
+ for ξ = (0.28, 0.72)>
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Figure 1 illustrates the sets A1 and Aξ,1 in R2
+. It should be noted that

due to ‖ξ‖2 ≤ ‖ξ‖1 = 1 for all ξ ∈ Σd we have

inf
x∈Aξ,1

‖x‖2 = ‖ξ‖−1
2 ≥ 1,

which means that in the “natural” Euclidean metric on Rd
+ the distance

between the set Aξ,1 and the origin depends on ξ and is bounded from below
by 1. The sets At and Aξ,t can be obtained by rescaling:

At = t · A1, Aξ,t = t · Aξ,1.
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It is easy to see that the inequality ξ>x ≤ ‖x‖1 holds for all ξ ∈ Σd. As a
result, we obtain the set inclusion Aξ,t ⊂ At and the representation

P {X ∈ Aξ,t}
P {X ∈ At}

= P
{
ξ>X > t | ‖X‖1 > t

}
.

Thus the comparison of risks corresponding to portfolios ξ ∈ Σd can be
reduced to the comparison of conditional probabilities P {X ∈ Aξ,t|X ∈ At}
for large t. According to (7), multivariate regular variation of X yields

P {X ∈ Aξ,t|X ∈ At} = P
{
t−1X ∈ Aξ,1 | ‖X‖1 > t

}
w→ ν(Aξ,1). (10)

This means that under the assumption of multivariate regular variation the
asymptotic behaviour of portfolio losses can be characterized by the func-
tional

γξ := ν(Aξ,1),

which quantifies the asymptotic sensitivity of the portfolio ξ to extremal
events. Furthermore, for any pair of portfolio vectors ξ1, ξ2 ∈ Σd relation
(10) implies

P
{
ξ>1 X > t

}
P
{
ξ>2 X > t

} → γξ1
γξ2

, t→∞,

which means that the functional γξ also allows to compare the sensitivity of
different portfolios to extremal events.

Moreover, multivariate regular variation of X yields the asymptotic rela-
tion of tail probabilities

1− Fξ>X(rt)

1− F‖X‖1(t)
→ γξ · r−α, t→∞, (11)

for all r > 1 and (cf. Resnick [35], Proposition 0.8, parts (v) and (vi)) the
asymptotic quantile relation

F←
ξ>X(1− uv)

F←‖X‖1(1− v)
→ γ

1/α
ξ · u−1/α, v ↓ 0, (12)

for all u ∈ (0, 1). Thus, γξ allows to order both the probabilities of extremal
losses and high loss quantiles for all portfolios ξ ∈ Σd. This means that γξ
provides all information that is needed for comparing the influence of the
portfolio vector ξ on the severity of extreme losses.

It should also be noted that the scaling relations (11) and (12) allow
to estimate probabilities of extremal losses and high loss quantiles and to
extrapolate these estimates beyond the observable area. The estimated values
can be used in portfolio optimization. An empirical study based on these
scaling relations is provided in Hauksson et al. [23].
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3 Extreme risk index and portfolio diversifi-

cation

The results of the previous section justify the following definition.

Definition 3.1. For any portfolio vector ξ ∈ Σd the functional

γξ := ν (Aξ,1)

is called extreme risk index of ξ.

The extreme risk index is a natural way to quantify the influence of the
asymptotic dependence structure on extreme portfolio losses in the frame-
work of multivariate regular variation. It complements the available palette
of approaches including the coefficient of tail dependence (cf. Joe [26]), the
extremal dependence measure (cf. Resnick [34]), the Pickands dependence
function (cf. Pickands [33]), and the tail copula (cf. Schmidt and Stadtmüller
[37]), which are more focused on applications different from portfolio opti-
mization. Indeed, the coefficient of tail dependence and the extremal depen-
dence measure are very useful for fitting and testing models. However, these
functionals are single-number characteristics and therefore they are not able
to carry sufficient information about the location of the optimal portfolio.
On the other hand, parametrization of dependence structures by dependence
functions and tail copulas is based on sets of the form Rd

+ \ [0, x] for x ∈ Rd
+,

which are naturally related to simultaneous exceedance of bounds by the
components X(i). Thus, the extreme risk index fills the gap for an approach
that addresses extremes of portfolio losses directly.

The product structure of the measure ν in polar coordinates yields

γξ =

∫
Σd

∫
R+

1
{
ξ> · rs > 1

}
ρα(dr)Ψ(ds)

=

∫
Σd
ρα
{
r ∈ R+ : r > 1/

(
ξ>s
)}

Ψ(ds)

=

∫
Σd

(
ξ>s
)α

Ψ(ds). (13)

It should be noted that the representation (13) does not depend on the
norm ‖·‖ used for the polar coordinates and the resulting spectral measure
Ψ‖·‖. However, since the set A1 = {x ∈ Rd

+ : ‖x‖ > 1} depends on the norm,
setting ν(Aξ,1) := 1 results in rescaling of γξ by a constant factor that depends
on the norm and the spectral measure Ψ. A remarkable property of the 1-
norm is the fact that the extreme risk index of the equally weighted portfolio
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does not depend on the spectral measure:

γd−1(1,...,1) =

∫
Σd

(
d−1

(
s(1) + . . .+ s(d)

))α
Ψ(ds) = d−α.

Now let us consider the problem of finding the portfolio with lowest sen-
sitivity to extremal events. As already shown before, this sort of riskiness is
measured by γξ. Therefore we need to minimize the function ξ 7→ γξ. The
resulting optimization problem is analysed in the following lemma.

Lemma 3.2. (a) For α > 1 the mapping ξ 7→ γξ is convex. The convexity
is strict if Ψ does not concentrate the entire mass on a linear subspace
of Σd.

(b) For α = 1 the mapping ξ 7→ γξ is linear.

(c) For α ∈ (0, 1) the mapping ξ 7→ γξ is concave. The concavity is strict if
Ψ does not concentrate the entire mass on a linear subspace of Σd.

Proof. Part (a). The convexity of ξ 7→ γξ follows from the convexity of t 7→ tα

for t > 0 and α ≥ 1. Given λ ∈ (0, 1) and ξ1, ξ2 ∈ Σd, we immediately obtain

λγξ1 + (1− λ)γξ2 =

∫ (
λ
(
ξ>1 s
)α

+ (1− λ)
(
ξ>2 s
)α)

Ψ(ds)

≤
∫ (

λξ>1 s+ (1− λ)ξ>2 s
)α

Ψ(ds)

= γλξ1+(1−λ)ξ2 .

Strict convexity holds if the upper inequality is strict, i.e. if∫ (
λ
(
ξ>1 s
)α

+ (1− λ)
(
ξ>2 s
)α)

Ψ(ds) <

∫ (
λξ>1 s+ (1− λ)ξ>2 s

)α
Ψ(ds)

for all ξ1, ξ2 ∈ Σd such that ξ1 6= ξ2. Since the mapping t 7→ tα is strictly
convex for α > 1, equality holds only if ξ>1 s = ξ>2 s almost sure with respect
to Ψ. This can also be written as

Ψ
{
s ∈ Σd : (ξ1 − ξ2)>s = 0

}
= 1,

which exactly means that the entire probability mass of Ψ is concentrated
on Σd ∩ (ξ1 − ξ2)⊥.

Part (b) is trivial since for α = 1 the mapping t 7→ tα is linear and the
mapping ξ 7→ γξ is therefore a composition of linear mappings.

Part (c) is analogous to part (a) due to the strict concavity of t 7→ tα for
α ∈ (0, 1).
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Consequently, the location of the optimal portfolio

ξopt := argmin
ξ∈Σd

γξ

can be described as follows:

• For α > 1 the typical location of ξopt would be in the interior of Σd.
The optimal portfolio is unique if there is no mass concentration on
linear subspaces under Ψ.

• For α ≤ 1 the minimum of γξ is achieved in a vertex of Σd, i.e. we have

min
ξ∈Σd

γξ = min
i=1,...,d

γei (14)

with ei denoting the ith unit vector.

Graphic examples for these facts are given in Figures 2 and 3 with discrete
spectral measures Ψ(w) defined by

Ψ(w) :=

n(w)∑
i=1

w(i)δ(i−1, n(w)−i)/(n(w)−1), (15)

where w is a vector of weights and n(w) is the size w. There are two ma-
jor reasons for using discrete spectral measures here. The first one is the
easy construction of illustrative examples and the second one is the fact that
empirical estimators are discrete. Moreover, graphics based on spectral mea-
sures with densities do not exhibit any specific properties.

The results of Lemma 3.2 and the conclusions above have an interesting
consequence: if only the losses are accounted, then portfolio diversification
does not reduce the danger of extreme losses in the case α ∈ (0, 1]. Moreover,
for α < 1 portfolio diversification typically increases extreme risks. The
representation γξ =

∫
(ξ>s)αΨ(ds) suggests that these negative effects are

stronger in the case of low positive dependence, i.e. when Ψ concentrates the
probability mass around the vertices of the unit simplex Σd. Analogously, for
α > 1 low positive dependence makes positive diversification effects stronger.
This is illustrated in Figure 4, where γξ is plotted for symmetric 3-point
spectral measures Ψλ,

Ψλ := λ · δ( 1
2
, 1
2

) +
1

2
(1− λ) ·

(
δ(1,0) + δ(0,1)

)
, λ ∈ [0, 1], (16)

with parameter λ quantifying the degree of positive dependence.
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Figure 2: Left: density of the spectral measure Ψ(w) defined as in (15) for
w = 1

12
(3, 2, 4, 1, 2). Right: resulting extreme risk index γξ(Ψ(w), α) and the

optimal portfolios (vertical lines) for selected values of α between 2 and 4.
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Figure 4 shows that for d = 2 and α > 1 best diversification effects
are achieved if X(1) and X(2) are asymptotically independent, i.e. if λ = 0,
whereas the worst case is λ = 1, which corresponds to the comonotonic
distribution of asset losses. While this behaviour accords with the usual
intuition of diversification effects, in the case α < 1 the situation is just the
opposite. It turns out that for α < 1 diversification effects are negative or
zero and that the asymptotic independence of asset losses is the worst case
for the uniformly diversified portfolio ξ = (1

2
, 1

2
), whereas the comonotonic

distribution is the best case.
We see that the comonotonic distribution just removes all diversification

effects: the positive ones for α > 1 and the negative ones for α < 1. This
implies that in the case of infinite means sensitivity to extremal events can
only be optimized by minimizing the number of uncertainty sources and not
by diversification.

This remarkable property has been repeatedly observed in settings similar
to (1) and vividly discussed in the recent literature [19, 20, 2, 7, 40]. It should
be noted that the clear evidence of negative diversification effects for α < 1 is
restricted to models that account only the asset losses. If the profits are also
incorporated, i.e. if X(i) can take positive and negative values as well, then
a countermonotonic distribution of (X(1), X(2)) leads to the compensation
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Figure 3: Left: density of the spectral measure Ψ(w) defined as in (15)
for w = 1

50
(10, 15, 10, 5, 2, 1, 0, 0, 0, 2, 5). Right: resulting extreme risk index

γξ(Ψ(w), α) for selected values of α between 0.5 and 2.5.
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of losses from one component by the profits from the other one, so that
diversification effects may become positive again.

Negative diversification effects in infinite mean models were already no-
ticed in the beginnings of Probability Theory. If, for example, X1, . . . , Xn

are i.i.d. α-stable random variables, then

n−1 (X1 + . . .+Xn)
d
= n(1/α)−1X1,

which implies negative diversification effects for α < 1. A general result
on negative diversification effects in similar settings can be obtained from
the Marcinkievicz–Zygmund Strong Law of Large Numbers for i.i.d. random
variables, cf. Nešlehová et al. [31].

4 Estimation of the extreme risk index and

the optimal portfolio

In the following, let X be a multivariate regularly varying random variable
and let X1, . . . , Xn be an i.i.d. sample of X. Our aim is the estimation of the
extreme risk index γξ and the optimal portfolio ξopt. The representation (13)
suggests the following plug-in approach:
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Figure 4: Influence of dependence on the extreme risk index for α > 1 (left)
and α < 1 (right) with underlying spectral measures Ψλ defined in (16)
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1. Estimate the tail index α by an estimator α̂.

2. Estimate the spectral measure Ψ by an estimator Ψ̂.

3. Estimate γξ by

γ̂ξ :=

∫
Σd

(
ξ>s
)α̂

Ψ̂(ds). (17)

4. Obtain an estimate for the optimal portfolio by minimizing γ̂ξ:

ξ̂opt := argmin
ξ∈Σd

γ̂ξ. (18)

Since γ̂ξ is obtained by plugging Ψ̂ and α̂ into the representation (13), the
minimization problem for γ̂ξ has the same properties as for γξ and is charac-
terized by Lemma 3.2. For α̂ ≤ 1 the minimization is simplified by (14).

Although the estimation and optimization procedures can be done by
approved methods, their result is not trivial. It must be assured that the
solutions of the approximating problems yield sensible approximations for
both the optimal argument ξopt and the optimal value γξopt .

These results will be obtained from the strong consistency of γ̂ξ uniformly
in ξ. Furthermore, we establish asymptotic normality (AN) of γ̂ξ as a function
of ξ. The uniform strong consistency and the uniform AN property of γ̂ξ are
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the central statistical results of the present paper. They are based on well-
known consistency and AN results for estimators of α and incorporate the
theory of empirical measures and empirical processes indexed by functions.

Before formulating the estimators and stating the central results, some
notation is needed. Let (R, S) and (Ri, Si) denote the polar coordinates of
X and Xi with respect to the 1-norm:

(R, S) :=
(
‖X‖1 , ‖X‖

−1
1 X

)
, (Ri, Si) :=

(
‖Xi‖1 , ‖Xi‖−1

1 Xi

)
.

In order to avoid technical difficulties we assume that the distribution func-
tion of the radial parts is continuous:

FR(t) := P {R ≤ t} ∈ C(R).

Since this assumption is fulfilled in common applications and models, this
restriction is not problematic.

Further we denote by k = k(n) the number of the observations in the
sample X1, . . . , Xn that the estimates of tail related parameters are based
on. These are the observations with highest absolute values, i.e. the ones
associated with the k upper order statistics Rn:1, . . . , Rn:k of the radial parts
R1, . . . , Rn. The growth of k is linked to n by the following assumption:

k(n)→∞, k(n)

n
→ 0.

Let i(n, 1), . . . , i(n, k) denote the indices corresponding to the k observa-
tions with greatest values of Ri, ordered as they appear in the sample. Then
we have

1 ≤ i(n, 1) < . . . < i(n, k) ≤ n

and there exists a permutation π of the tuple (1, . . . , k) such that(
Ri(n,1), . . . , Ri(n,k)

)
=
(
Rn:π(1), . . . , Rn:π(k)

)
. (19)

The subsample Xi(n,1), . . . , Xi(n,k) contains all information that is needed for
estimating γξ. By (13), γξ can be written as

Ψf :=

∫
Σd
f(s)Ψ(ds), (20)

where
f(s) := fξ,α(s) :=

(
ξ>s
)α
.

The function f is estimated by

f̂ := fξ,α̂
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with an estimator α̂ obtained from the upper order statistics of radial parts,

α̂ = α̂ (Rn:1, . . . , Rn:k) , (21)

which can be based on various approaches (cf. Hill [24], Pickands [32], Smith
[38], Dekkers et al. [13]). The spectral measure Ψ is estimated by the empir-
ical measure of the angular parts Si(n,1), . . . , Si(n,k):

Ψ̂ := Pn :=
1

k

k∑
j=1

δSi(n,j) . (22)

There is vast literature on the estimation of the exponent measure ν and
the spectral measure Ψ, incorporating methods based on convergence of point
processes (cf. de Haan and Resnick [9]) and empirical processes (cf. Einmahl
et al. [16, 17, 18], de Haan and Sinha [12], Schmidt and Stadtmüller [37]).
However, there is no reference that would cover the asymptotic behaviour of
γ̂ξ. Indeed, estimation of the exponent measure ν on sets related to portfo-
lio losses is studied only in [12] for estimators that are essentially different
from γ̂ξ. Moreover, estimation of Ψ with respect to function classes con-
taining functions fξ,α and uniform consistency, which is needed in portfolio
optimization have not been considered so far.

The following theorem states strong consistency of γ̂ξ uniformly in ξ ∈ Σd

and, under weaker conditions, pointwise in ξ.

Theorem 4.1. Let X1, . . . , Xn be i.i.d. multivariate regularly varying random
variables with tail index α ∈ (0,∞) and spectral measure Ψ and assume that
the distribution function FR of the radial parts is continuous.

(a) If the estimator α̂ is consistent almost surely,

α̂→ α P-a.s., (23)

and
sup
ξ∈Σd

∣∣∣EΨ̂fξ,α −Ψfξ,α

∣∣∣→ 0, (24)

then the estimator γ̂ξ is consistent uniformly in ξ ∈ Σd almost surely:

sup
ξ∈Σd
|γ̂ξ − γξ| → 0 P-a.s.

(b) If only (23) is satisfied, then the almost sure consistency of γ̂ξ holds
pointwise:

∀ξ ∈ Σd |γ̂ξ − γξ| → 0 P-a.s.
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Remark 4.2. Since the functions fξ,α are bounded by 1 and for any fixed
α ≥ 1 the function class {fξ,α : ξ ∈ Σd} is uniformly Lipschitz, condition (24)
is satisfied for any α ≥ 1. See Remark A.5 for more details.

It is well known that uniform convergence of functions implies conver-
gence of their minima to the minimum of the limit function in the case when
the limit function has a unique minimum. Hence, as a consequence of The-
orem 4.1, we obtain the following result.

Corollary 4.3. Suppose that the conditions of Theorem 4.1(a) are satisfied
and the optimal portfolio ξopt is unique. Then the estimator ξ̂opt and the
estimated optimal value γ̂ξ̂opt are consistent almost surely:

ξ̂opt → ξopt P-a.s., γ̂ξ̂opt → γξopt P-a.s.

It was already noted that condition (24) is satisfied for α ≥ 1, which
makes the applications easier in this case. However, since for α ≤ 1 the
optimization problem can be reduced to the minimization of γ̂ξ in the vertices
of Σd, condition (24) is crucial only for applications where there is no clear
evidence for α > 1 or α ≤ 1.

The rest of this section is dedicated to the asymptotic normality (AN)
results for the estimator γ̂ξ, which are are based on the following assumption.

Condition 4.4. At least one of the following assumptions is fulfilled:

(a) The tail index α is positive and the spectral measure Ψ has no mass on
the boundary of Σd:

α ∈ (0,∞), Ψ
(
∂Σd

)
= 0.

(b) The tail index α is not smaller than 1 bounded from above:

α ∈ [1, α∗], α∗ <∞.

The next theorem states the AN result in a process version with index
ξ ∈ Σd and, under weaker conditions, pointwise in ξ. For a definition of
the Brownian bridge on a function class we refer to the formulation of the
Donsker property (39) in Appendix A.

Theorem 4.5. Let X1, . . . , Xn be i.i.d. multivariate regularly varying random
variables with tail index α and spectral measure Ψsatisfying Condition 4.4.
Further assume that the distribution function FR of the radial parts is con-
tinuous.
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(a) Suppose that the estimator α̂ is asymptotically normal,
√
k (α̂− α)

w→ Y ∼ N
(
µα, σ

2
α

)
, (25)

and that there exists a mapping b ∈ l∞(Σd) such that
√
k(EΨ̂fξ,α −Ψfξ,α)→ b(ξ) in l∞

(
Σd
)
. (26)

Then √
k (γ̂ξ − γξ)

w→ GΨfξ,α + b(ξ) + cξ,αY in l∞(Σd), (27)

where GΨ is a Brownian bridge on the function class
{
fξ,α : ξ ∈ Σd

}
“with time” Ψ, b(ξ) is the asymptotic bias term from (26), Y is a Gaus-
sian random variable which is independent from GΨ and distributed ac-
cording to (25), and cξ,α is given by

cξ,α =

∫
Σd

(
ξ>s
)α

log
(
ξ>s
)

Ψ(ds).

(b) Suppose that (25) is satisfied and that
√
k(EΨ̂fξi,α −Ψfξi,α)→ b(ξi) ∈ R (28)

holds for ξ1, . . . , ξp ∈ Σd. Then
√
k
(
γ̂ξ1 − γξ1 , . . . , γ̂ξp − γξp

) w→ N (µ(α, ξ1, . . . , ξp), σ(α, ξ1, . . . , ξp))
(29)

for all α ≥ 0. The expectations µ(i)(α, ξ1, . . . , ξp) are given by

µ(i) = b(ξi) + cα,ξiµα, i = 1, . . . , p,

and the covariances σi,j(α, ξ1, . . . , ξp) are equal to

Ψ
[(
fξi,α −Ψfξi,α

)(
fξj ,α −Ψfξj ,α

)]
+ cξi,αcξj ,ασα,

where µα is the mean and σ2
α is the variance of the random variable Y

in (25).

It is well known that the estimators of α mentioned above the statement of
Theorem 4.1 are asymptotically normal under appropriate conditions spec-
ifying convergence rate of the distribution L(t−1R|R > t) for t → ∞. A
comprehensive elaboration on this topic is given in de Haan and Ferreira
[10]. For original results see (among others) Davis and Resnick [8], Drees
[14], Dekkers et al. [13], Smith [38] and Drees et al. [15].

Condition (26) can be understood as a second order condition related to
the weak convergence of the angular parts Si(n,1), . . . , Si(n,k). Since multivari-
ate regular variation leaves convergence rates completely unspecified, similar
conditions are necessary for establishing asymptotic normality in regularly
varying models.
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5 Applications to risk minimization

This section is dedicated to the application of the extreme risk index γξ and
its estimates to risk minimization. We show that the portfolio ξopt obtained
by minimization of γξ is asymptotically optimal with respect to some well-
known and rather natural risk measures.

The ordering of large quantiles of the portfolio loss ξ>X by γξ (cf. (12))
has immediate consequences on risk measures such as the Value-at-Risk
(VaR) and the Expected Shortfall (ES). Recall the definition of VaR and
ES for an asset loss Y with distribution function FY . The Value-at-Risk at
the confidence level 1− λ for (typically small) λ ∈ (0, 1) is defined by

VaR1−λ(Y ) := F←Y (1− λ)

and the Expected Shortfall at the confidence level 1− λ is defined by

ES1−λ(Y ) := E [Y |Y > VaR1−λ] ,

if the expectation exists. If FY is continuous, then the Expected Shortfall
can be represented as

ES1−λ(Y ) =
1

λ

∫ 1

1−λ
F←Y (u)du. (30)

Now let us consider VaR1−λ(ξ
>X) and ES1−λ(ξ

>X) for λ ↓ 0 when the
loss vectorX with non-negative components is multivariate regularly varying.
Due to (12) we obtain that ξopt is the optimal portfolio if we want to minimize
VaR1−λ with respect to extreme risks, i.e. for λ ↓ 0. Moreover, for α > 1 we
have

lim
λ↓0

ES1−λ(ξ
>X)

VaR1−λ(ξ>X)
=

α

α− 1
. (31)

This asymptotic relation is a consequence of the Karamata theorem (cf.
Proposition 1.5.10 in Bingham et al. [4]). Consequently, ξopt also minimizes
ES1−λ(ξ

>X) for λ ↓ 0.
The asymptotic result (31) can be generalized to the class of spectral risk

measures. Spectral risk measures were introduced in Acerbi [1] as weighted
averages of loss quantiles,

Mφ(Y ) :=

∫ 1

0

F−1
Y (p)φ(p)dp,

where the weight function φ : [0, 1] → R is an admissible risk spectrum, i.e.

it is non-negative, non-decreasing, and satisfies
∫ 1

0
φ(p)dp = 1.
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As a consequence of (30), ES1−λ is a spectral risk measure. Thus (31)
can be viewed as a limit relation for the rescaled and properly normalized
risk spectrum. Analogously, for any admissible risk spectrum φ1 : [0, 1]→ R
the transformations τλ : u 7→ 1− λ−1(1− u) for λ ∈ (0, 1) and u ∈ [1− λ, 1]
induce a family of rescaled admissible risk spectra φλ defined by

φλ(u) = τ ′λ(u)φ1(τλ(u)) · 1[0,1](τλ(u))

= λ−1φ1

(
1− λ−1(1− u)

)
· 1[1−λ,1](u). (32)

This notion leads to the following generalization of (31).

Lemma 5.1. Let Y be a continuously distributed random variable on R+ and
suppose that Y is regularly varying with tail index α > 1. Further let φλ be
admissible risk spectra defined in (32) with φ1 satisfying

∀t ∈ (1,∞) φ1 (1− 1/t) ≤ K · t−1/α+1−ε (33)

for some K > 0 and ε > 0. Then

lim
λ↓0

Mφλ(Y )

VaR1−λ(Y )
=

∫ ∞
1

t1/α−2φ1 (1− 1/t) dt. (34)

Proof. We have

Mφλ(Y ) =

∫ 1

1−λ
F←Y (u)φλ(u)du.

Applying (32) and substituting u = τ−1
λ (1− 1/t) = 1− λ/t, we obtain

Mφλ(Y ) =

∫ ∞
1

F←Y (1− λ/t)φ1(1− 1/t)t−2dt

and, denoting gλ(t) := F←R (1− λ/t)/F←R (1− λ),

Mφλ(Y )

VaR1−λ(Y )
=

∫ ∞
1

gλ(t)t
−2φ1 (1− 1/t) dt. (35)

Since regular variation of Y with tail index α implies regular variation of the
function t 7→ F←(1 − 1/t) with index 1/α, we have gλ(t) → t1/α for λ ↓ 0
pointwise in t ∈ [1,∞) and the integrand in (35) converges pointwise to the
integrand in (34). Moreover, (33) implies

gλ(t)t
−2φ1 (1− 1/t) ≤ K · t−1/α−ε/2gλ(t) · t−1−ε/2

and the uniform convergence theorem for regularly varying functions (cf.
Theorem 1.5.2 in Bingham et al. [4]) yields t−1/α−ε/2gλ(t) → t−ε/2 for λ ↓ 0
uniformly in t ∈ [1,∞). Finally, since t−ε/2 is bounded for t ≥ 1 and
t−1−ε/2 is integrable between 1 and ∞, there exists an integrable bound
for gλ(t)t

−2φ1(1 − 1/t) on [1,∞) and the dominated convergence theorem
completes the proof.
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As a consequence, we obtain that minimization of Mφλ(ξ>X) for λ ↓ 0
can be reduced to the minimization of γξ.

6 Conclusions

The problem of characterizing the distribution tails of portfolio losses is
solved in the case when the asset losses are non-negative and multivariate
regularly varying. Both the sensitivity of portfolios to extremal events and
the severity of extreme losses are characterized by the extreme risk index
γξ = γξ(Ψ, α). The problem of portfolio optimization with respect to ex-
treme losses is solved and available results on negative diversification effects
for α < 1 are generalized to multivariate regularly varying models with non-
negative components. The extreme risk γξ is applied to the asymptotic min-
imization of the Value-at-Risk, Expected Shortfall, and general spectral risk
measures. A semi-parametric approach to the estimation of the mapping
ξ 7→ γξ is proposed and the resulting estimators are proved to be strong
consistent and asymptotically normal under natural conditions. As a result,
strong consistency of the estimated optimal portfolio is obtained.

A Proofs

As already mentioned above, the estimator γ̂ξ can be written as

γ̂ξ = Pnf̂ :=

∫
Σd
f̂(s)Pn(ds),

where f̂ = fξ,α̂ and Pn is the empirical measure of the subsample Si(n,1), . . . , Si(n,k).
Therefore it is natural to study γ̂ξ in the framework of empirical measures
indexed by functions. The strong consistency and the asymptotic normal-
ity of γ̂ξ can be viewed as special versions of the Glivenko–Cantelli and the
Donsker theorems (cf. van der Vaart and Wellner [39] and references therein).

Let Pk,Ψ denote the empirical measure corresponding to k i.i.d. random
variables with probability distribution Ψ:

Pk,Ψ :=
1

k

k∑
i=1

δYi , Y1, . . . , Yk i.i.d. ∼ Ψ. (36)

A function class F is called Glivenko–Cantelli if the Glivenko–Cantelli the-
orem holds for Pk,Ψ uniformly in f ∈ F :

Pk,Ψ → Ψ P-a.s. in l∞(F), k →∞. (37)
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Let Gk,Ψ denote the empirical process corresponding to Pk,Ψ:

Gk,Ψ :=
√
k (Pk,Ψ −Ψ) . (38)

A function class F is called Donsker if the Donsker theorem holds for Gk,Ψ

uniformly in f ∈ F ,

Gk,Ψ
w→ GΨ in l∞(F), k →∞, (39)

where GΨ is the Brownian bridge “with time” Ψ, i.e.

(GΨf1, . . .GΨfm) ∼ N (0, C)

and C = (Ci,j) is given by

Ci,j := Ψ
[(
fi −Ψfi

)(
fj −Ψfj

)]
= Ψfifj −ΨfiΨfj.

There are two major problems that do not allow us to apply the standard
Glivenko–Cantelli and Donsker theorems to the empirical measure of the
subsample Si(n,1), . . . , Si(n,k) and the resulting empirical process: the lack
of independence between Si(n,1), . . . , Si(n,k) and the fact that the underlying
probability measure varies with n. Therefore a special version is needed
which is suitable for L(Si(n,1), . . . , Si(n,k)). The following lemma gives insight
into the structure of this probability distribution and provides a basis for the
following results.

Lemma A.1. Suppose that the distribution function FR of the radial part
R = ‖X‖1 is continuous and consider the (k + 1)-st upper order statistic of
R1, . . . , Rn transformed by FR:

Un := FR (Rn:k+1) . (40)

Then, for any u ∈ (0, 1),

L
((
Si(n,1), . . . , Si(n,k)

)
|Un = u

)
= ⊗ki=1Ψu,

where
Ψu := L (S|FR(R) > u) .

Proof. The continuity of FR implies that the ordered sample indices i(n, 1), . . . , i(n, k)
and the permutation π satisfying (19) are unique almost surely. Moreover,
the random variables

Yi := FR(Ri), i = 1, . . . , n,
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are independent and uniformly distributed on (0, 1), whereas by construction
of Yi we have Ri = F←R (Yi) almost surely and(

Yi(n,1), . . . , Yi(n,k)

)
=
(
Yn:π(1), . . . , Yn:π(k)

)
.

It is well known (cf. Hajós and Rényi [22]) that the conditional probabil-
ity distribution of Yn:1, . . . , Yn:k given Yn:k+1 = u is equal to the probability
distribution of the order statistic of k i.i.d. random variables that are uni-
formly distributed on (u, 1). Due to the fact that the permutation π is
uniformly distributed on the permutation group Sk we obtain that the sub-
sample Yi(n,1), . . . , Yi(n,k) is conditionally i.i.d.:

L
(
Yi(n,1), . . . , Yi(n,k) |Un = u

)
= ⊗ki=1unif(u, 1).

Since for a random variable Z ∼ unif(u, 1) the probability distribution of
F←R (Z) is given by L(R|FR(R) > u), we obtain

L
(
Ri(n,1), . . . , Ri(n,k)|Un = u

)
= ⊗ki=1L(R|FR(R) > u).

Finally, this conditional i.i.d. property is inherited by the subsampleXi(n,1), . . . , Xi(n,k)

and its angular parts Si(n,1), . . . , Si(n,k) in the following sense:

L
((
Si(n,1), . . . , Si(n,k)

)
|Un = u

)
= ⊗ki=1L(S|FR(R) > u).

An immediate consequence of Lemma A.1 is the following representation
of L(Si(n,1), . . . , Si(n,k)) as a mixture of product measures.

Corollary A.2. If FR is continuous, then

P
{(
Si(n,1), . . . , Si(n,k)

)
∈ A

}
=

∫ 1

0

Ψk
u(A) dPUn(u) (41)

for A ∈ B
((

Σd
)k)

, where PUn is the probability distribution of Un and

Ψk
u := ⊗ki=1Ψu, u ∈ [0, 1].

Since F←R (u) → ∞ for u ↑ 1, the behaviour of Ψu for u ↑ 1 is related to
the regular variation of X. One easily obtains the following result.

Lemma A.3. Suppose that the random variable X is multivariate regularly
varying. Then

Ψu
w→ Ψ, u ↑ 1.
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Proof. The measure Ψu is obtained from the measure

µu := L
(
t(u)−1X|R > t(u)

)
, t(u) := F←R (u),

by the transformation τ : x 7→ ‖x‖−1
1 x:

Ψu = µτu.

The representation (7) of multivariate regular variation implies

µu
w→ ν|A1 ,

where ν|A1 is the restriction of ν to the set A1 = {x ∈ Rd
+ : ‖x‖1 > 1}. Hence,

the Continuous Mapping Theorem yields

µτu
w→ (ν|A1)τ = Ψ.

Now let us recapitulate the results we have obtained so far. We have the
representation γ̂ξ = Pnfξ,α̂, where Pn is the empirical measure of Si(n,1), . . . , Si(n,k),
indexed by elements of the function class

F :=
{
fξ,α : α ∈ (0,∞), ξ ∈ Σd

}
. (42)

Due to Corollary A.2 we know that the empirical measure Pn is a mixture of
empirical measures constructed from i.i.d. observations:

L (Pn) =

∫ 1

0

L (Pk,Ψu) dPUn(u).

Moreover, we have Ψu
w→ Ψ1 := Ψ as u ↑ 1 and it is well known that Un ↑ 1

P-almost surely. Thus the consistency and the asymptotic normality of the
estimator Pnfξ,α̂ are related to the uniformity of the Glivenko–Cantelli and
Donsker properties (37) and (39) of the class F in the underlying probability
measure Ψ∗ ∈ {Ψu : u ∈ (0, 1]}.

While the uniform Donsker property of F provides that convergence of
empirical processes constructed from i.i.d. observations is uniform in the
underlying probability measure, the uniform pre-Gaussian property allows to
extend the convergence of empirical processes to the case when the underlying
probability distribution converges for k →∞. Let P be a class of probability
measures on Σd. The function class F is pre-Gaussian uniformly in Ψ ∈ P if
the following two conditions are satisfied:

sup
Ψ∈P

E ‖GΨ‖l∞(F) <∞
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and
lim
δ↓0

sup
Ψ∈P

E sup
ρΨ(f,g)<δ

|Gk,Ψ(f)−Gk,Ψ(g)| = 0,

where ρΨ(f) is the seminorm ‖f −Ψf‖Ψ,2.
The following lemma states that the class F is universally Glivenko–

Cantelli, Donsker and pre-Gaussian, i.e. that these properties are uniform
over the class of all probability measures on (Σd,B(Σd)).

Lemma A.4. The function class F is universally Glivenko–Cantelli, Donsker
and pre-Gaussian.

Proof. Let us first note that F is measurable (i.e. all f ∈ F are measurable)
and that F is uniformly bounded by 1:

∀s ∈ Σd,∀f ∈ F : f(s) ≤ 1.

Therefore we can take
F (s) := 1Σd(s) (43)

as an envelope function for F .
According to van der Vaart and Wellner [39], F is universally Glivenko–

Cantelli if it satisfies the entropy condition

∀ε > 0 sup
Q∈Qn

logN
(
ε‖F‖Q,1,F ,L1(Q)

)
= o(n), (44)

where Qn denotes the class of all discrete probability measures on Σd with
atoms of size integer multiples of 1/n. Moreover, F is universally Donsker
and pre-Gaussian if it satisfies the uniform entropy condition∫ ∞

0

sup
Q∈Q

√
logN

(
ε ‖F‖Q,2 ,F ,L2(Q)

)
dε <∞, (45)

where Q denotes the class of all discrete probability measures on Σd. The
covering number N(ε,F , ‖·‖) is defined as the minimal number of balls
{g : ‖g − f‖ < ε} of radius ε needed to cover the class F . The entropy is
the logarithm of the covering number. For more details we refer to van der
Vaart and Wellner [39]. The covering numbers are defined in Section 2.1.1,
whereas conditions (44) and (45) are related to Theorems 2.8.1 and 2.8.3
respectively.

The verification of (44) and (45) can be based on the properties of Vapnik–
C̆ervonenkis (VC) classes of sets and functions. For definitions of these
objects and detailed results we refer to van der Vaart and Wellner [39], Sec-
tion 2.6.
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Let us first consider the structure of the class F . Any fξ,α ∈ F is obtained
by composition of a linear and a monotone function:

fξ,α = gα ◦ hξ,

where
gα : [0, 1]→ [0, 1], t 7→ tα

and
hξ : Σd → [0, 1], s 7→ ξ>s.

It is easy to see that the function class

H :=
{
hξ : ξ ∈ Σd

}
is a subset of a finite-dimensional vector space of functions. Hence it is a
VC-Major class. Since the functions gα are monotone, the class F is also
VC-Major. Furthermore, the uniform boundedness of F implies that it is a
VC-hull class. This property implies that F satisfies (45) and (44). For more
details we refer to Section 2.6 of van der Vaart and Wellner [39], especially
Theorem 2.6.9 and Lemmas 2.6.13, 2.6.15, and 2.6.20.

The next step is the application of Lemma A.4 to the estimator γ̂ξ. We
start with the strong consistency.

Proof of Theorem 4.1. Part (a). Consider the decomposition

γ̂ξ − γξ =
(

Ψ̂fξ,α̂ − EΨ̂fξ,α̂

)
+
(

EΨ̂fξ,α̂ −Ψfξ,α̂

)
+ (Ψfξ,α̂ −Ψfξ,α) . (46)

First we show that
Ψfξ,α̂ −Ψfξ,α → 0 P-a.s.

uniformly in ξ. Since

|Ψfξ,α̂ −Ψfξ,α| ≤ ‖fξ,α̂ − fξ,α‖∞

for all ξ ∈ Σd, it suffices to show that

sup
ξ∈Σd
‖fξ,α̂ − fξ,α‖∞ → 0 P-a.s. (47)

Consider the partial derivative of fξ,α in α:

∂

∂α

(
ξ>s
)α

=
(
ξ>s
)α

log
(
ξ>s
)
.
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Since ξ>s ranges in [0, 1], we obtain∣∣∣∣ ∂∂αfξ,α(s)

∣∣∣∣ ≤ sup
t∈[0,1]

|tα log t| = |tα0 log(t0)| ,

where t0 = exp(−1/α). Due to the strong consistency of α̂ = α̂(n) we have
α̂ > α/2 P-a.s. for n exceeding a sufficiently large bound n0 and therefore

∀ξ ∈ Σd ‖fξ,α̂ − fξ,α‖∞ ≤ 2 (e · α)−1 |α̂− α| P-a.s. (48)

for n ≥ n0. Hence (47) follows from the strong consistency of α̂.
Now consider the second term on the right side of (46). We have

EΨ̂fξ,α̂ −Ψfξ,α̂ =
(

EΨ̂−Ψ
)
fξ,α +

(
EΨ̂−Ψ

)
[fξ,α̂ − fξ,α]

Due to ∣∣∣(EΨ̂−Ψ
)

[fξ,α̂ − fξ,α]
∣∣∣ ≤ 2 ‖fξ,α̂ − fξ,α‖∞

and (47) we only need to show that (EΨ̂−Ψ)fξ,α → 0 uniformly in ξ, which
is provided by assumption (24).

Finally, let us consider the first term on the right side of (46). Since
Ψ̂ = Pn, the mixture representation (41) yields

L
(

Ψ̂fξ,α̂ − EΨ̂fξ,α̂

)
= L(Pnfξ,α̂ − EPnfξ,α̂)

=

∫
[0,1]

L (Pnfξ,α̂ − EPnfξ,α̂ |Un = u) dPUn(u)

=

∫
[0,1]

L ((Pk,Ψu −Ψu) fξ,α̂) dPUn(u). (49)

Due to the universal Glivenko–Cantelli Property of F (cf. Lemma A.4) we
have

(Pk,Ψu −Ψu) f → 0 P-a.s.

uniformly in Ψu and f ∈ F . Applied to the representation (49), this yields

Ψ̂fξ,α̂ − EΨ̂fξ,α̂ → 0 P-a.s.

uniformly in ξ. Hence all terms in (46) vanish uniformly in ξ almost surely
and the proof of part (a) is finished.

Part (b) follows along the lines of the proof of part (a). If the assump-
tion (24) is dropped, we only need to verify

EΨ̂fξ,α −Ψfξ,α → 0 (50)
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pointwise in ξ. Recall that the mixture representation (41) yields

L (Pn) =

∫
[0,1]

L (Pk,Ψu) dPUn(u)

and that we have Un ↑ 1 P-a.s. and Ψu
w→ Ψ for u ↑ 1. As a result, we obtain

the weak convergence
Pn

w→ Ψ.

Since Ψ̂ = Pn and all functions fξ,α are continuous, we obtain (50) pointwise
in ξ.

Remark A.5. It was noted in Remark 4.2 that the assumption (24) is satisfied
for all α ≥ 1. This is due to the fact that weak convergence of separable Borel
measures on a metric space Z is metrizable by the bounded Lipschitz metric

dBL1(L1, L2) := sup
h∈BL1

∣∣∣∣∫ h dL1 −
∫
h dL2

∣∣∣∣ , (51)

where BL1 is the set of all functions h ∈ l∞(Z) that are uniformly bounded
by 1 and Lipschitz with factor 1:

sup
z∈Z
|h(z)| ≤ 1,

|h(z1)− h(z2)| ≤ ‖z1 − z2‖Z

(cf. van der Vaart and Wellner [39], Chapter 1.12). It is easy to verify that
the function class {fξ,α : ξ ∈ Σd} is uniformly Lipschitz for any α ≥ 1. Hence

weak convergence Ψ̂
w→ Ψ implies that (24) is satisfied for any α ≥ 1.

The central part in the proof of Theorem 4.5 is the weak convergence of
the empirical process related to the subsample Si(n,1), . . . , Si(n,k):

Gn :=
√
k (Pn − Pn) , (52)

where the probability measure Pn is defined as the expectation of Pn:

Pnf := EPnf. (53)

With the universal Donsker property and pre-Gaussianity at hand, conver-
gence of Gn is obtained from the convergence of the conditioning random
variable Un.

Lemma A.6. Suppose that Condition 4.4 is satisfied. Then the empirical
process Gn converges to a Brownian Bridge “with time” Ψ:

Gn
w→ GΨ in l∞(F). (54)
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Proof. Since the empirical process Gn is constructed from the subsample
Si(n,1), . . . , Si(n,k), the mixture representation (41) of L(Si(n,1), . . . , Si(n,k)) im-
plies

L (Gn) =

∫
[0,1]

L (Gk,Ψu) dPUn(u). (55)

Moreover, we already know that Un ↑ 1 P-a.s. and Ψu
w→ Ψ for u ↑ 1.

Let us consider a sequence uk in (0, 1) such that uk ↑ 1 for k → ∞ and
the empirical processes Gk,Ψk with the underlying measure Ψk := Ψuk . As
shown in Lemma A.4, the class F is universally Donsker and pre-Gaussian.
According to Lemma 2.8.7 in van der Vaart and Wellner [39], the convergence

Gk,Ψk

w→ GΨ (56)

holds if the class F and the sequence Ψk satisfy

∀ε > 0 lim sup
k→∞

Ψk

[
F 2 · 1{F ≥ ε

√
k}
]

= 0 (57)

and
sup
f,g∈F

|ρΨk(f − g)− ρΨ(f − g)| → 0, (58)

where ρΨ(f) denotes the seminorm ‖f −Ψf‖Ψ,2. Since the envelope function
F of F is bounded, condition (57) is trivial and we only need to verify (58).
For h := (f − g) we have

|ρΨk(h)− ρΨ(h)| =
∣∣Ψkh

2 − (Ψkh)2 −
(
Ψh2 − (Ψh)2)∣∣

=
∣∣(Ψkh

2 −Ψh2
)
− (Ψkh−Ψh) · (Ψkh+ Ψh)

∣∣
≤
∣∣Ψkh

2 −Ψh2
∣∣+ |Ψkh−Ψh| ·O(1).

Thus, due to (f − g)2 ≤ 2f 2 + 2g2 and |f − g| ≤ |f |+ |g|, it suffices to show
that for k →∞

sup
f∈F

∣∣Ψkf
2 −Ψf 2

∣∣→ 0 and sup
f∈F
|Ψkf −Ψf | → 0.

Since f ∈ F implies f 2 ∈ F , we only need to verify

sup
f∈F
|Ψkf −Ψf | → 0, k →∞. (59)

Consider sets

Bδ :=
{
s ∈ Σd : s(i) > δ for all i = 1, . . . , d

}
, δ > 0.

28



If Condition 4.4(a) is satisfied, i.e. we have Ψ(∂Σd) = 0, then for any ε > 0
there exists δ > 0 such that

Ψ(Σd \Bδ) < ε/4.

Since the number of atoms of Ψ is countable, δ can always be chosen such
that

Ψ (∂Bδ) = 0.

Hence, Ψk
w→ Ψ implies Ψk(Σ

d \Bδ)→ Ψ(Σd \Bδ) and therefore

|Ψkf −Ψf | ≤ |Ψk [f · 1Bδ ]−Ψ [f · 1Bδ ]|+ |Ψk [f · (1− 1Bδ)]−Ψ [f · (1− 1Bδ)]|
≤ |Ψk [f · 1Bδ ]− [Ψf · 1Bδ ]|+ Ψk

(
Σd \Bδ

)
+ Ψ

(
Σd \Bδ

)
≤ |Ψk [f · 1Bδ ]−Ψ [f · 1Bδ ]|+

3

4
ε

for sufficiently large k. Hence we only need to verify

sup
f∈F
|Ψk [f · 1Bδ ]−Ψ [f · 1Bδ ]| → 0, k →∞.

Due to the metrization of weak convergence by the bounded Lipschitz metric
(cf. Remark A.5) it suffices to show that the function class F is uniformly
Lipschitz on Bδ, i.e. that there exists K > 0 such that

∀f ∈ F ,∀s1, s2 ∈ Bδ : |f(s1)− f(s2)| ≤ K |s1 − s2| . (60)

Since all f ∈ F are differentiable on Bδ it suffices to show that the partial
derivatives of f ∈ F are uniformly bounded on Bδ. We have

∂

∂s(i)
fξ,α(s) = α

(
ξ>s
)α−1 · ξ(i).

Due to ξ(i) ≤ 1 and s ∈ Bδ we obtain

sup
s∈Bδ

∣∣∣∣ ∂

∂s(i)
fξ,α(s)

∣∣∣∣ ≤ sup
t∈(δ,1−δ)

α · tα−1.

The term on the right side is uniformly bounded for α ∈ (0,∞) due to

sup
α≥1

sup
t∈(δ,1−δ)

α · tα−1 = sup
α≥1

α(1− δ)α−1 <∞

and
sup
α∈(0,1)

sup
t∈(δ,1−δ)

α · tα−1 = sup
α∈(0,1)

α · δα−1 <∞.
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As a consequence, we obtain (60), which implies (59) and (58). Hence we
obtain the convergence (56).

If Condition 4.4(b) is satisfied, i.e. we have α ∈ [1, α∗], then the class of
index functions f can be reduced to

Fα∗ :=
{
fξ,α : ξ ∈ Σd, α ∈ [1, α∗]

}
.

Thus (58) is simplified to

sup
f,g∈Fα∗

|ρΨk(f − g)− ρΨ(f − g)| → 0,

which can be obtained from the uniform Lipschitz property of f ∈ F2α∗ .
Since f ∈ F are differentiable on Σd, the uniform Lipschitz property follows
from

sup
f∈F2α∗

sup
s∈Σd

∣∣∣∣ ∂

∂s(i)
f(s)

∣∣∣∣ = 2α∗ <∞.

Hence (58) is verified and we obtain (56).
Now let us finish the proof by combination of (56) with the mixture

representation (55). It was already mentioned above that weak convergence
is metrized by the bounded Lipschitz metric dBL1 (cf. Remark A.5). Hence
it suffices to show that

dBL1 (Gn,GΨ)→ 0.

Let h ∈ BL1. Then the mixture representation (55) yields∣∣∣∣∫ h dL (Gn)−
∫
h dL (GΨ)

∣∣∣∣
=

∣∣∣∣∫
[0,1]

∫
h dL (Gk,Ψu) dPUn(u)−

∫
h dL (GΨ)

∣∣∣∣
=

∣∣∣∣∫
[0,1]

(∫
h dL (Gk,Ψu)−

∫
h dL (GΨ)

)
dPUn(u)

∣∣∣∣
≤
∫

[0,u0)

∣∣∣∣∫ h dL (Gk,Ψu)−
∫
h dL (GΨ)

∣∣∣∣ dPUn(u)

+

∫
[u0,1]

∣∣∣∣∫ h dL (Gk,Ψu)−
∫
h dL (GΨ)

∣∣∣∣ dPUn(u)

≤ 2P {Un < u0}+ sup
u≥u0

dBL1 (GΨu ,GΨ) .

Given a fixed ε > 0, there exists u0 ∈ (0, 1) and n0 ∈ N such that

dBL1(Gk,Ψu ,GΨ) < ε/2
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for u ≥ u0 and n ≥ n0. Since Un → 1 P-a.s., the index n0 can be enlarged
(if necessary) so that

P {Un < u0} <
ε

4
for n ≥ n0. Now, for n ≥ n0, we obtain

dBL1 (Gn,GΨ) = sup
h∈BL1

∣∣∣∣∫ h dL (Gn)−
∫
h dL (GΨ)

∣∣∣∣ < ε,

which implies dBL1(Gn,GΨ)→ 0.

The preceding lemma allows us to prove the AN property of γ̂ξ.

Proof of Theorem 4.5. Part (a). We need to show that the asymptotic nor-
mality (25) of α̂ and the second order condition (26) yield weak convergence
of
√
k(γ̂ξ − γξ) =

√
k(Pnf̂ −Ψf) to the Gaussian process in (27). Consider

the decomposition

√
k
(
Pnf̂ −Ψf

)
=
√
k
(
Pnf̂ − Pnf̂

)
+
√
k
(

Pnf̂ −Ψf̂
)

+
√
k
(

Ψf̂ −Ψf
)

= Gnfξ,α̂ +
√
k (Pn −Ψ) fξ,α̂ + Ψ

√
k (fξ,α̂ − fξ,α) . (61)

Recall the arguments that justified inequality (48). Since asymptotic nor-

mality of α̂ implies α̂
P→ α, for any ε > 0 there exists n0 ∈ N such that

P {α̂ < α/2} < ε (62)

for n ≥ n0. This yields

P
{
‖fξ,α̂ − fξ,α‖ > 2(e · α)−1 |α̂− α|

}
< ε (63)

for n ≥ n0 and therefore ‖fξ,α̂ − fξ,α‖∞
P→ 0. Hence Lemma A.6 implies

(Gnfξ,α̂)ξ∈Σd
w→ (GΨfξ,α)ξ∈Σd in l∞

(
Σd
)

for all α > 0.
Now consider the second term in (61). Due to the asymptotic normality

of α̂, inequality (63) implies

‖fξ,α̂ − fξ,α‖∞ = OP(1/
√
k)

and therefore
√
k(Pn −Ψ)fξ,α̂ =

√
k(Pn −Ψ)

[
fξ,α +OP(1/

√
k)
]
.
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Hence assumption (26) yields

√
k(Pn −Ψ)fξ,α̂

P→ b(ξ)

uniformly in ξ.

The asymptotic distribution of Ψ
√
k
(
f̂ − f

)
is obtained from the asymp-

totic normality (25) of α̂. Recall that fξ,α = (ξ>s)α and ξ>s ranges in [0, 1].
Taylor expansion yields(

tα̂ − tα
)

= (α̂− α) tα log t+
1

2
(α̂− α)2 tα

∗
log2 t

with some α∗ between α and α̂. Recall that asymptotic normality of α̂
implies (62). Since the mappings t 7→ tα log t and t 7→ tα log2 t are bounded
on [0, 1] uniformly in α > δ for any fixed δ > 0, we obtain

√
k
(
f̂(s)− f(s)

)
=
√
k
((
ξ>s
)α̂ − (ξ>s)α)

=
√
k (α̂− α)

(
ξ>s
)α

log
(
ξ>s
)

+
√
k OP (α̂− α)2

w→ Z(s) := Y ·
(
ξ>s
)α

log
(
ξ>s
)

as an l∞-function of ξ ∈ Σd.
Due to the continuity of the mapping g 7→ Ψg for g ∈ l∞(Σd) we can

apply the Continuous Mapping Theorem and obtain

Ψ
√
k (fξ,α̂ − fξ,α)

w→ ΨZ = Y · cξ,α in l∞(Σd),

where
cξ,α := Ψ

((
ξ>s
)α

log
(
ξ>s
))
.

Furthermore, ΨZ and GΨf are independent. This follows from the asymp-
totic independence of the radial parts Rn:1, . . . , Rn:k and the angular parts
Si(n,1), . . . , Si(n,k) of the extreme subsample Xi(n,1), . . . , Xi(n,k). Hence we ob-
tain (27).

The result of part (b) is just the finite-dimensional convergence of marginal
distributions in part (a). Since replacing the assumption (26) by (28) affects
only the middle term in (61), resulting in the replacement of the uniform con-
vergence to b(ξ) by pointwise convergence, the pointwise asymptotic normal-
ity (29) follows immediately along the lines of the proof for the part (a).
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